Example usage for weka.classifiers Evaluation meanAbsoluteError

List of usage examples for weka.classifiers Evaluation meanAbsoluteError

Introduction

In this page you can find the example usage for weka.classifiers Evaluation meanAbsoluteError.

Prototype

public final double meanAbsoluteError() 

Source Link

Document

Returns the mean absolute error.

Usage

From source file:FlexDMThread.java

License:Open Source License

public void run() {
    try {//  ww w .j av a  2s. c  o  m
        //Get the data from the source

        FlexDM.getMainData.acquire();
        Instances data = dataset.getSource().getDataSet();
        FlexDM.getMainData.release();

        //Set class attribute if undefined
        if (data.classIndex() == -1) {
            data.setClassIndex(data.numAttributes() - 1);
        }

        //Process hyperparameters for classifier
        String temp = "";
        for (int i = 0; i < classifier.getNumParams(); i++) {
            temp += classifier.getParameter(i).getName();
            temp += " ";
            if (classifier.getParameter(i).getValue() != null) {
                temp += classifier.getParameter(i).getValue();
                temp += " ";
            }
        }

        String[] options = weka.core.Utils.splitOptions(temp);

        //Print to console- experiment is starting
        if (temp.equals("")) { //no parameters
            temp = "results_no_parameters";
            try {
                System.out.println("STARTING CLASSIFIER " + cNum + " - " + classifier.getName() + " on dataset "
                        + dataset.getName().substring(dataset.getName().lastIndexOf("\\") + 1)
                        + " with no parameters");
            } catch (Exception e) {
                System.out.println("STARTING CLASSIFIER " + cNum + " - " + classifier.getName() + " on dataset "
                        + dataset.getName() + " with no parameters");
            }
        } else { //parameters
            try {
                System.out.println("STARTING CLASSIFIER " + cNum + " - " + classifier.getName() + " on dataset "
                        + dataset.getName().substring(dataset.getName().lastIndexOf("\\") + 1)
                        + " with parameters " + temp);
            } catch (Exception e) {
                System.out.println("STARTING CLASSIFIER " + cNum + " - " + classifier.getName() + " on dataset "
                        + dataset.getName() + " with parameters " + temp);
            }
        }

        //Create classifier, setting parameters
        weka.classifiers.Classifier x = createObject(classifier.getName());
        x.setOptions(options);
        x.buildClassifier(data);

        //Process the test selection
        String[] tempTest = dataset.getTest().split("\\s");

        //Create evaluation object for training and testing classifiers
        Evaluation eval = new Evaluation(data);
        StringBuffer predictions = new StringBuffer();

        //Train and evaluate classifier
        if (tempTest[0].equals("testset")) { //specified test file
            //Build classifier
            x.buildClassifier(data);

            //Open test file, load data
            //DataSource testFile = new DataSource(dataset.getTest().substring(7).trim());
            // Instances testSet = testFile.getDataSet();
            FlexDM.getTestData.acquire();
            Instances testSet = dataset.getTestFile().getDataSet();
            FlexDM.getTestData.release();

            //Set class attribute if undefined
            if (testSet.classIndex() == -1) {
                testSet.setClassIndex(testSet.numAttributes() - 1);
            }

            //Evaluate model
            Object[] array = { predictions, new Range(), new Boolean(true) };
            eval.evaluateModel(x, testSet, array);
        } else if (tempTest[0].equals("xval")) { //Cross validation
            //Build classifier
            x.buildClassifier(data);

            //Cross validate
            eval.crossValidateModel(x, data, Integer.parseInt(tempTest[1]), new Random(1), predictions,
                    new Range(), true);
        } else if (tempTest[0].equals("leavexval")) { //Leave one out cross validation
            //Build classifier
            x.buildClassifier(data);

            //Cross validate
            eval.crossValidateModel(x, data, data.numInstances() - 1, new Random(1), predictions, new Range(),
                    true);
        } else if (tempTest[0].equals("percent")) { //Percentage split of single data set
            //Set training and test sizes from percentage
            int trainSize = (int) Math.round(data.numInstances() * Double.parseDouble(tempTest[1]));
            int testSize = data.numInstances() - trainSize;

            //Load specified data
            Instances train = new Instances(data, 0, trainSize);
            Instances testSet = new Instances(data, trainSize, testSize);

            //Build classifier
            x.buildClassifier(train);

            //Train and evaluate model
            Object[] array = { predictions, new Range(), new Boolean(true) };
            eval.evaluateModel(x, testSet, array);
        } else { //Evaluate on training data
            //Test and evaluate model
            Object[] array = { predictions, new Range(), new Boolean(true) };
            eval.evaluateModel(x, data, array);
        }

        //create datafile for results
        String filename = dataset.getDir() + "/" + classifier.getDirName() + "/" + temp + ".txt";
        PrintWriter writer = new PrintWriter(filename, "UTF-8");

        //Print classifier, dataset, parameters info to file
        try {
            writer.println("CLASSIFIER: " + classifier.getName() + "\n DATASET: " + dataset.getName()
                    + "\n PARAMETERS: " + temp);
        } catch (Exception e) {
            writer.println("CLASSIFIER: " + classifier.getName() + "\n DATASET: " + dataset.getName()
                    + "\n PARAMETERS: " + temp);
        }

        //Add evaluation string to file
        writer.println(eval.toSummaryString());
        //Process result options
        if (checkResults("stats")) { //Classifier statistics
            writer.println(eval.toClassDetailsString());
        }
        if (checkResults("model")) { //The model
            writer.println(x.toString());
        }
        if (checkResults("matrix")) { //Confusion matrix
            writer.println(eval.toMatrixString());
        }
        if (checkResults("entropy")) { //Entropy statistics
            //Set options req'd to get the entropy stats
            String[] opt = new String[4];
            opt[0] = "-t";
            opt[1] = dataset.getName();
            opt[2] = "-k";
            opt[3] = "-v";

            //Evaluate model
            String entropy = Evaluation.evaluateModel(x, opt);

            //Grab the relevant info from the results, print to file
            entropy = entropy.substring(entropy.indexOf("=== Stratified cross-validation ===") + 35,
                    entropy.indexOf("=== Confusion Matrix ==="));
            writer.println("=== Entropy Statistics ===");
            writer.println(entropy);
        }
        if (checkResults("predictions")) { //The models predictions
            writer.println("=== Predictions ===\n");
            if (!dataset.getTest().contains("xval")) { //print header of predictions table if req'd
                writer.println(" inst#     actual  predicted error distribution ()");
            }
            writer.println(predictions.toString()); //print predictions to file
        }

        writer.close();

        //Summary file is semaphore controlled to ensure quality
        try { //get a permit
              //grab the summary file, write the classifiers details to it
            FlexDM.writeFile.acquire();
            PrintWriter p = new PrintWriter(new FileWriter(summary, true));
            if (temp.equals("results_no_parameters")) { //change output based on parameters
                temp = temp.substring(8);
            }

            //write percent correct, classifier name, dataset name to summary file
            p.write(dataset.getName() + ", " + classifier.getName() + ", " + temp + ", " + eval.correct() + ", "
                    + eval.incorrect() + ", " + eval.unclassified() + ", " + eval.pctCorrect() + ", "
                    + eval.pctIncorrect() + ", " + eval.pctUnclassified() + ", " + eval.kappa() + ", "
                    + eval.meanAbsoluteError() + ", " + eval.rootMeanSquaredError() + ", "
                    + eval.relativeAbsoluteError() + ", " + eval.rootRelativeSquaredError() + ", "
                    + eval.SFPriorEntropy() + ", " + eval.SFSchemeEntropy() + ", " + eval.SFEntropyGain() + ", "
                    + eval.SFMeanPriorEntropy() + ", " + eval.SFMeanSchemeEntropy() + ", "
                    + eval.SFMeanEntropyGain() + ", " + eval.KBInformation() + ", " + eval.KBMeanInformation()
                    + ", " + eval.KBRelativeInformation() + ", " + eval.weightedTruePositiveRate() + ", "
                    + eval.weightedFalsePositiveRate() + ", " + eval.weightedTrueNegativeRate() + ", "
                    + eval.weightedFalseNegativeRate() + ", " + eval.weightedPrecision() + ", "
                    + eval.weightedRecall() + ", " + eval.weightedFMeasure() + ", "
                    + eval.weightedAreaUnderROC() + "\n");
            p.close();

            //release semaphore
            FlexDM.writeFile.release();
        } catch (InterruptedException e) { //bad things happened
            System.err.println("FATAL ERROR OCCURRED: Classifier: " + cNum + " - " + classifier.getName()
                    + " on dataset " + dataset.getName());
        }

        //output we have successfully finished processing classifier
        if (temp.equals("no_parameters")) { //no parameters
            try {
                System.out.println("FINISHED CLASSIFIER " + cNum + " - " + classifier.getName() + " on dataset "
                        + dataset.getName().substring(dataset.getName().lastIndexOf("\\") + 1)
                        + " with no parameters");
            } catch (Exception e) {
                System.out.println("FINISHED CLASSIFIER " + cNum + " - " + classifier.getName() + " on dataset "
                        + dataset.getName() + " with no parameters");
            }
        } else { //with parameters
            try {
                System.out.println("FINISHED CLASSIFIER " + cNum + " - " + classifier.getName() + " on dataset "
                        + dataset.getName().substring(dataset.getName().lastIndexOf("\\") + 1)
                        + " with parameters " + temp);
            } catch (Exception e) {
                System.out.println("FINISHED CLASSIFIER " + cNum + " - " + classifier.getName() + " on dataset "
                        + dataset.getName() + " with parameters " + temp);
            }
        }

        try { //get a permit
              //grab the log file, write the classifiers details to it
            FlexDM.writeLog.acquire();
            PrintWriter p = new PrintWriter(new FileWriter(log, true));

            Date date = new Date();
            Format formatter = new SimpleDateFormat("dd/MM/YYYY HH:mm:ss");
            //formatter.format(date)

            if (temp.equals("results_no_parameters")) { //change output based on parameters
                temp = temp.substring(8);
            }

            //write details to log file
            p.write(dataset.getName() + ", " + dataset.getTest() + ", \"" + dataset.getResult_string() + "\", "
                    + classifier.getName() + ", " + temp + ", " + formatter.format(date) + "\n");
            p.close();

            //release semaphore
            FlexDM.writeLog.release();
        } catch (InterruptedException e) { //bad things happened
            System.err.println("FATAL ERROR OCCURRED: Classifier: " + cNum + " - " + classifier.getName()
                    + " on dataset " + dataset.getName());
        }

        s.release();

    } catch (Exception e) {
        //an error occurred
        System.err.println("FATAL ERROR OCCURRED: " + e.toString() + "\nClassifier: " + cNum + " - "
                + classifier.getName() + " on dataset " + dataset.getName());
        s.release();
    }

}

From source file:adams.flow.core.EvaluationHelper.java

License:Open Source License

/**
 * Returns a statistical value from the evaluation object.
 *
 * @param eval   the evaluation object to get the value from
 * @param statistic   the type of value to return
 * @param classIndex   the class label index, for statistics like AUC
 * @return      the determined value, Double.NaN if not found
 * @throws Exception   if evaluation fails
 *///from  w  w  w .j  av a 2  s  .c  o m
public static double getValue(Evaluation eval, EvaluationStatistic statistic, int classIndex) throws Exception {
    switch (statistic) {
    case NUMBER_CORRECT:
        return eval.correct();
    case NUMBER_INCORRECT:
        return eval.incorrect();
    case NUMBER_UNCLASSIFIED:
        return eval.unclassified();
    case PERCENT_CORRECT:
        return eval.pctCorrect();
    case PERCENT_INCORRECT:
        return eval.pctIncorrect();
    case PERCENT_UNCLASSIFIED:
        return eval.pctUnclassified();
    case KAPPA_STATISTIC:
        return eval.kappa();
    case MEAN_ABSOLUTE_ERROR:
        return eval.meanAbsoluteError();
    case ROOT_MEAN_SQUARED_ERROR:
        return eval.rootMeanSquaredError();
    case RELATIVE_ABSOLUTE_ERROR:
        return eval.relativeAbsoluteError();
    case ROOT_RELATIVE_SQUARED_ERROR:
        return eval.rootRelativeSquaredError();
    case CORRELATION_COEFFICIENT:
        return eval.correlationCoefficient();
    case SF_PRIOR_ENTROPY:
        return eval.SFPriorEntropy();
    case SF_SCHEME_ENTROPY:
        return eval.SFSchemeEntropy();
    case SF_ENTROPY_GAIN:
        return eval.SFEntropyGain();
    case SF_MEAN_PRIOR_ENTROPY:
        return eval.SFMeanPriorEntropy();
    case SF_MEAN_SCHEME_ENTROPY:
        return eval.SFMeanSchemeEntropy();
    case SF_MEAN_ENTROPY_GAIN:
        return eval.SFMeanEntropyGain();
    case KB_INFORMATION:
        return eval.KBInformation();
    case KB_MEAN_INFORMATION:
        return eval.KBMeanInformation();
    case KB_RELATIVE_INFORMATION:
        return eval.KBRelativeInformation();
    case TRUE_POSITIVE_RATE:
        return eval.truePositiveRate(classIndex);
    case NUM_TRUE_POSITIVES:
        return eval.numTruePositives(classIndex);
    case FALSE_POSITIVE_RATE:
        return eval.falsePositiveRate(classIndex);
    case NUM_FALSE_POSITIVES:
        return eval.numFalsePositives(classIndex);
    case TRUE_NEGATIVE_RATE:
        return eval.trueNegativeRate(classIndex);
    case NUM_TRUE_NEGATIVES:
        return eval.numTrueNegatives(classIndex);
    case FALSE_NEGATIVE_RATE:
        return eval.falseNegativeRate(classIndex);
    case NUM_FALSE_NEGATIVES:
        return eval.numFalseNegatives(classIndex);
    case IR_PRECISION:
        return eval.precision(classIndex);
    case IR_RECALL:
        return eval.recall(classIndex);
    case F_MEASURE:
        return eval.fMeasure(classIndex);
    case MATTHEWS_CORRELATION_COEFFICIENT:
        return eval.matthewsCorrelationCoefficient(classIndex);
    case AREA_UNDER_ROC:
        return eval.areaUnderROC(classIndex);
    case AREA_UNDER_PRC:
        return eval.areaUnderPRC(classIndex);
    case WEIGHTED_TRUE_POSITIVE_RATE:
        return eval.weightedTruePositiveRate();
    case WEIGHTED_FALSE_POSITIVE_RATE:
        return eval.weightedFalsePositiveRate();
    case WEIGHTED_TRUE_NEGATIVE_RATE:
        return eval.weightedTrueNegativeRate();
    case WEIGHTED_FALSE_NEGATIVE_RATE:
        return eval.weightedFalseNegativeRate();
    case WEIGHTED_IR_PRECISION:
        return eval.weightedPrecision();
    case WEIGHTED_IR_RECALL:
        return eval.weightedRecall();
    case WEIGHTED_F_MEASURE:
        return eval.weightedFMeasure();
    case WEIGHTED_MATTHEWS_CORRELATION_COEFFICIENT:
        return eval.weightedMatthewsCorrelation();
    case WEIGHTED_AREA_UNDER_ROC:
        return eval.weightedAreaUnderROC();
    case WEIGHTED_AREA_UNDER_PRC:
        return eval.weightedAreaUnderPRC();
    case UNWEIGHTED_MACRO_F_MEASURE:
        return eval.unweightedMacroFmeasure();
    case UNWEIGHTED_MICRO_F_MEASURE:
        return eval.unweightedMicroFmeasure();
    case BIAS:
        return eval.getPluginMetric(Bias.class.getName()).getStatistic(Bias.NAME);
    case RSQUARED:
        return eval.getPluginMetric(RSquared.class.getName()).getStatistic(RSquared.NAME);
    case SDR:
        return eval.getPluginMetric(SDR.class.getName()).getStatistic(SDR.NAME);
    case RPD:
        return eval.getPluginMetric(RPD.class.getName()).getStatistic(RPD.NAME);
    default:
        throw new IllegalArgumentException("Unhandled statistic field: " + statistic);
    }
}

From source file:adams.opt.cso.Measure.java

License:Open Source License

/**
 * Extracts the measure from the Evaluation object.
 *
 * @param evaluation   the evaluation to use
 * @param adjust   whether to adjust the measure
 * @return      the measure//  w w w  . ja  va2s  .  c o  m
 * @throws Exception   in case the retrieval of the measure fails
 */
public double extract(Evaluation evaluation, boolean adjust) throws Exception {
    switch (this) {
    case ACC:
        if (adjust)
            return 100.0 - evaluation.pctCorrect();
        else
            return evaluation.pctCorrect();
    case CC:
        if (adjust)
            return 1.0 - evaluation.correlationCoefficient();
        else
            return evaluation.correlationCoefficient();
    case MAE:
        return evaluation.meanAbsoluteError();
    case RAE:
        return evaluation.relativeAbsoluteError();
    case RMSE:
        return evaluation.rootMeanSquaredError();
    case RRSE:
        return evaluation.rootRelativeSquaredError();
    default:
        throw new IllegalStateException("Unhandled measure '" + this + "'!");
    }
}

From source file:adams.opt.genetic.Measure.java

License:Open Source License

/**
 * Extracts the measure from the Evaluation object.
 *
 * @param evaluation   the evaluation to use
 * @param adjust   whether to just the measure
 * @return      the measure//from ww w.j a  v  a  2  s . com
 * @see      #adjust(double)
 * @throws Exception   in case the retrieval of the measure fails
 */
public double extract(Evaluation evaluation, boolean adjust) throws Exception {
    double result;

    if (this == Measure.ACC)
        result = evaluation.pctCorrect();
    else if (this == Measure.CC)
        result = evaluation.correlationCoefficient();
    else if (this == Measure.MAE)
        result = evaluation.meanAbsoluteError();
    else if (this == Measure.RAE)
        result = evaluation.relativeAbsoluteError();
    else if (this == Measure.RMSE)
        result = evaluation.rootMeanSquaredError();
    else if (this == Measure.RRSE)
        result = evaluation.rootRelativeSquaredError();
    else
        throw new IllegalStateException("Unhandled measure '" + this + "'!");

    if (adjust)
        result = adjust(result);

    return result;
}

From source file:adams.opt.optimise.genetic.fitnessfunctions.AttributeSelection.java

License:Open Source License

public double evaluate(OptData opd) {
    init();/*from w ww  .  ja va2  s.co  m*/
    int cnt = 0;
    int[] weights = getWeights(opd);
    Instances newInstances = new Instances(getInstances());
    for (int i = 0; i < getInstances().numInstances(); i++) {
        Instance in = newInstances.instance(i);
        cnt = 0;
        for (int a = 0; a < getInstances().numAttributes(); a++) {
            if (a == getInstances().classIndex())
                continue;
            if (weights[cnt++] == 0) {
                in.setValue(a, 0);
            } else {
                in.setValue(a, in.value(a));
            }
        }
    }
    Classifier newClassifier = null;

    try {
        newClassifier = (Classifier) OptionUtils.shallowCopy(getClassifier());
        // evaluate classifier on data
        Evaluation evaluation = new Evaluation(newInstances);
        evaluation.crossValidateModel(newClassifier, newInstances, getFolds(),
                new Random(getCrossValidationSeed()));

        // obtain measure
        double measure = 0;
        if (getMeasure() == Measure.ACC)
            measure = evaluation.pctCorrect();
        else if (getMeasure() == Measure.CC)
            measure = evaluation.correlationCoefficient();
        else if (getMeasure() == Measure.MAE)
            measure = evaluation.meanAbsoluteError();
        else if (getMeasure() == Measure.RAE)
            measure = evaluation.relativeAbsoluteError();
        else if (getMeasure() == Measure.RMSE)
            measure = evaluation.rootMeanSquaredError();
        else if (getMeasure() == Measure.RRSE)
            measure = evaluation.rootRelativeSquaredError();
        else
            throw new IllegalStateException("Unhandled measure '" + getMeasure() + "'!");
        measure = getMeasure().adjust(measure);

        return (measure);
        // process fitness

    } catch (Exception e) {
        getLogger().log(Level.SEVERE, "Error evaluating", e);
    }

    return 0;
}

From source file:Controller.CtlDataMining.java

public String redBayesiana(Instances data) {
    try {/*from  w  ww  .  j  a va2s . c  o m*/
        //Creamos un clasificador Bayesiano                
        NaiveBayes nb = new NaiveBayes();

        //creamos el clasificador de la redBayesiana 
        nb.buildClassifier(data);

        //Creamos un objeto para la validacion del modelo con redBayesiana
        Evaluation evalB = new Evaluation(data);

        /*Aplicamos el clasificador bayesiano
        hacemos validacion cruzada, de redBayesiana, con 10 campos, 
        y un aleatorio para la semilla, en este caso es 1 para el 
        muestreo de la validacion cruzada (Como ordenar para luego
        partirlo en 10)*/
        evalB.crossValidateModel(nb, data, 10, new Random(1));

        String resBay = "<br><br><b><center>Resultados NaiveBayes</center>" + "<br>========<br>"
                + "Modelo generado indica los siguientes resultados:" + "<br>========<br></b>";
        //Obtenemos resultados
        resBay = resBay
                + ("<b>1. Numero de instancias clasificadas:</b> " + (int) evalB.numInstances() + "<br>");
        resBay = resBay + ("<b>2. Porcentaje de instancias correctamente " + "clasificadas:</b> "
                + formato.format(evalB.pctCorrect()) + "%<br>");
        resBay = resBay + ("<b>3. Numero de instancias correctamente " + "clasificadas:</b> "
                + (int) evalB.correct() + "<br>");
        resBay = resBay + ("<b>4. Porcentaje de instancias incorrectamente " + "clasificadas:</b> "
                + formato.format(evalB.pctIncorrect()) + "%<br>");
        resBay = resBay + ("<b>5. Numero de instancias incorrectamente " + "clasificadas:</b> "
                + (int) evalB.incorrect() + "<br>");
        resBay = resBay + ("<b>6. Media del error absoluto:</b> " + formato.format(evalB.meanAbsoluteError())
                + "%<br>");
        resBay = resBay
                + ("<b>7. " + evalB.toMatrixString("Matriz de " + "confusion</b>").replace("\n", "<br>"));

        return resBay;

    } catch (Exception e) {
        return "El error es" + e.getMessage();
    }
}

From source file:Controller.CtlDataMining.java

public String arbolJ48(Instances data) {
    try {//from ww  w.j  a v  a 2  s  .  com
        // Creamos un clasidicador J48
        J48 j48 = new J48();
        //creamos el clasificador  del J48 con los datos 
        j48.buildClassifier(data);

        //Creamos un objeto para la validacion del modelo con redBayesiana
        Evaluation evalJ48 = new Evaluation(data);

        /*Aplicamos el clasificador J48
        hacemos validacion cruzada, de redBayesiana, con 10 campos, 
        y el aleatorio arrancando desde 1 para la semilla*/
        evalJ48.crossValidateModel(j48, data, 10, new Random(1));
        //Obtenemos resultados
        String resJ48 = "<br><b><center>Resultados Arbol de decision J48"
                + "</center><br>========<br>Modelo generado indica los "
                + "siguientes resultados:<br>========<br></b>";

        resJ48 = resJ48
                + ("<b>1. Numero de instancias clasificadas:</b> " + (int) evalJ48.numInstances() + "<br>");
        resJ48 = resJ48 + ("<b>2. Porcentaje de instancias correctamente " + "clasificadas:</b> "
                + formato.format(evalJ48.pctCorrect()) + "<br>");
        resJ48 = resJ48 + ("<b>3. Numero de instancias correctamente " + "clasificadas:</b>"
                + (int) evalJ48.correct() + "<br>");
        resJ48 = resJ48 + ("<b>4. Porcentaje de instancias incorrectamente " + "clasificadas:</b> "
                + formato.format(evalJ48.pctIncorrect()) + "<br>");
        resJ48 = resJ48 + ("<b>5. Numero de instancias incorrectamente " + "clasificadas:</b> "
                + (int) evalJ48.incorrect() + "<br>");
        resJ48 = resJ48 + ("<b>6. Media del error absoluto:</b> " + formato.format(evalJ48.meanAbsoluteError())
                + "<br>");
        resJ48 = resJ48
                + ("<b>7. " + evalJ48.toMatrixString("Matriz de" + " confusion</b>").replace("\n", "<br>"));

        // SE GRAFICA EL ARBOL GENERADO
        //Se crea un Jframe Temporal
        final javax.swing.JFrame jf = new javax.swing.JFrame("Arbol de decision: J48");
        /*Se asigna un tamao*/
        jf.setSize(500, 400);
        /*Se define un borde*/
        jf.getContentPane().setLayout(new BorderLayout());
        /*Se instancia la grafica del arbol, estableciendo el tipo J48
        Parametros (Listener, Tipo de arbol, Tipo de nodos)
        El placeNode2 colocar los nodos para que caigan en forma uniforme
        por debajo de su padre*/
        TreeVisualizer tv = new TreeVisualizer(null, j48.graph(), new PlaceNode2());
        /*Aade el arbol centrandolo*/
        jf.getContentPane().add(tv, BorderLayout.CENTER);
        /*Aadimos un listener para la X del close*/
        jf.addWindowListener(new java.awt.event.WindowAdapter() {
            @Override
            public void windowClosing(java.awt.event.WindowEvent e) {
                jf.dispose();
            }
        });
        /*Lo visualizamos*/
        jf.setVisible(true);
        /*Ajustamos el arbol al ancho del JFRM*/
        tv.fitToScreen();

        return resJ48;

    } catch (Exception e) {
        return "El error es" + e.getMessage();

    }
}

From source file:lu.lippmann.cdb.datasetview.tabs.RegressionTreeTabView.java

License:Open Source License

/**
 * {@inheritDoc}//from   w w w  . ja  v a  2s.  c o  m
 */
@SuppressWarnings("unchecked")
@Override
public void update0(final Instances dataSet) throws Exception {
    this.panel.removeAll();

    //final Object[] attrNames=WekaDataStatsUtil.getNumericAttributesNames(dataSet).toArray();
    final Object[] attrNames = WekaDataStatsUtil.getAttributeNames(dataSet).toArray();
    final JComboBox xCombo = new JComboBox(attrNames);
    xCombo.setBorder(new TitledBorder("Attribute to evaluate"));

    final JXPanel comboPanel = new JXPanel();
    comboPanel.setLayout(new GridLayout(1, 2));
    comboPanel.add(xCombo);
    final JXButton jxb = new JXButton("Compute");
    comboPanel.add(jxb);
    this.panel.add(comboPanel, BorderLayout.NORTH);

    jxb.addActionListener(new ActionListener() {
        @Override
        public void actionPerformed(ActionEvent e) {
            try {
                if (gv != null)
                    panel.remove((Component) gv);

                dataSet.setClassIndex(xCombo.getSelectedIndex());

                final REPTree rt = new REPTree();
                rt.setNoPruning(true);
                //rt.setMaxDepth(3);
                rt.buildClassifier(dataSet);

                /*final M5P rt=new M5P();
                rt.buildClassifier(dataSet);*/

                final Evaluation eval = new Evaluation(dataSet);
                double[] d = eval.evaluateModel(rt, dataSet);
                System.out.println("PREDICTED -> " + FormatterUtil.buildStringFromArrayOfDoubles(d));
                System.out.println(eval.errorRate());
                System.out.println(eval.sizeOfPredictedRegions());
                System.out.println(eval.toSummaryString("", true));

                final GraphWithOperations gwo = GraphUtil
                        .buildGraphWithOperationsFromWekaRegressionString(rt.graph());
                final DecisionTree dt = new DecisionTree(gwo, eval.errorRate());

                gv = DecisionTreeToGraphViewHelper.buildGraphView(dt, eventPublisher, commandDispatcher);
                gv.addMetaInfo("Size=" + dt.getSize(), "");
                gv.addMetaInfo("Depth=" + dt.getDepth(), "");

                gv.addMetaInfo("MAE=" + FormatterUtil.DECIMAL_FORMAT.format(eval.meanAbsoluteError()) + "", "");
                gv.addMetaInfo("RMSE=" + FormatterUtil.DECIMAL_FORMAT.format(eval.rootMeanSquaredError()) + "",
                        "");

                final JCheckBox toggleDecisionTreeDetails = new JCheckBox("Toggle details");
                toggleDecisionTreeDetails.addActionListener(new ActionListener() {
                    @Override
                    public void actionPerformed(ActionEvent e) {
                        if (!tweakedGraph) {
                            final Object[] mapRep = WekaDataStatsUtil
                                    .buildNodeAndEdgeRepartitionMap(dt.getGraphWithOperations(), dataSet);
                            gv.updateVertexShapeTransformer((Map<CNode, Map<Object, Integer>>) mapRep[0]);
                            gv.updateEdgeShapeRenderer((Map<CEdge, Float>) mapRep[1]);
                        } else {
                            gv.resetVertexAndEdgeShape();
                        }
                        tweakedGraph = !tweakedGraph;
                    }
                });
                gv.addMetaInfoComponent(toggleDecisionTreeDetails);

                /*final JButton openInEditorButton = new JButton("Open in editor");
                openInEditorButton.addActionListener(new ActionListener() {
                   @Override
                   public void actionPerformed(ActionEvent e) {
                       GraphUtil.importDecisionTreeInEditor(dtFactory, dataSet, applicationContext, eventPublisher, commandDispatcher);
                   }
                });
                this.gv.addMetaInfoComponent(openInEditorButton);*/

                final JButton showTextButton = new JButton("In text");
                showTextButton.addActionListener(new ActionListener() {
                    @Override
                    public void actionPerformed(ActionEvent e) {
                        JOptionPane.showMessageDialog(null, graphDsl.getDslString(dt.getGraphWithOperations()));
                    }
                });
                gv.addMetaInfoComponent(showTextButton);

                panel.add(gv.asComponent(), BorderLayout.CENTER);
            } catch (Exception e1) {
                e1.printStackTrace();
                panel.add(new JXLabel("Error during computation: " + e1.getMessage()), BorderLayout.CENTER);
            }

        }
    });
}

From source file:net.sf.jclal.evaluation.measure.SingleLabelEvaluation.java

License:Open Source License

/**
 *
 * @param evaluation The evaluation/*from   ww w .  j  a v a 2 s  . c  om*/
 */
public void setEvaluation(Evaluation evaluation) {

    try {
        this.evaluation = evaluation;
        StringBuilder st = new StringBuilder();

        st.append("Iteration: ").append(getIteration()).append("\n");
        st.append("Labeled set size: ").append(getLabeledSetSize()).append("\n");
        st.append("Unlabelled set size: ").append(getUnlabeledSetSize()).append("\n");
        st.append("\t\n");

        st.append("Correctly Classified Instances: ").append(evaluation.pctCorrect()).append("\n");
        st.append("Incorrectly Classified Instances: ").append(evaluation.pctIncorrect()).append("\n");
        st.append("Kappa statistic: ").append(evaluation.kappa()).append("\n");
        st.append("Mean absolute error: ").append(evaluation.meanAbsoluteError()).append("\n");
        st.append("Root mean squared error: ").append(evaluation.rootMeanSquaredError()).append("\n");

        st.append("Relative absolute error: ").append(evaluation.relativeAbsoluteError()).append("\n");
        st.append("Root relative squared error: ").append(evaluation.rootRelativeSquaredError()).append("\n");
        st.append("Coverage of cases: ").append(evaluation.coverageOfTestCasesByPredictedRegions())
                .append("\n");
        st.append("Mean region size: ").append(evaluation.sizeOfPredictedRegions()).append("\n");

        st.append("Weighted Precision: ").append(evaluation.weightedPrecision()).append("\n");
        st.append("Weighted Recall: ").append(evaluation.weightedRecall()).append("\n");
        st.append("Weighted FMeasure: ").append(evaluation.weightedFMeasure()).append("\n");
        st.append("Weighted TruePositiveRate: ").append(evaluation.weightedTruePositiveRate()).append("\n");
        st.append("Weighted FalsePositiveRate: ").append(evaluation.weightedFalsePositiveRate()).append("\n");
        st.append("Weighted MatthewsCorrelation: ").append(evaluation.weightedMatthewsCorrelation())
                .append("\n");
        st.append("Weighted AreaUnderROC: ").append(evaluation.weightedAreaUnderROC()).append("\n");
        st.append("Weighted AreaUnderPRC: ").append(evaluation.weightedAreaUnderPRC()).append("\n");

        st.append("\t\t\n");

        loadMetrics(st.toString());

    } catch (Exception e) {
        Logger.getLogger(SingleLabelEvaluation.class.getName()).log(Level.SEVERE, null, e);
    }
}

From source file:org.openml.webapplication.io.Output.java

License:Open Source License

public static Map<Metric, MetricScore> evaluatorToMap(Evaluation evaluator, int classes, TaskType task)
        throws Exception {
    Map<Metric, MetricScore> m = new HashMap<Metric, MetricScore>();

    if (task == TaskType.REGRESSION) {

        // here all measures for regression tasks
        m.put(new Metric("mean_absolute_error", "openml.evaluation.mean_absolute_error(1.0)"),
                new MetricScore(evaluator.meanAbsoluteError(), (int) evaluator.numInstances()));
        m.put(new Metric("mean_prior_absolute_error", "openml.evaluation.mean_prior_absolute_error(1.0)"),
                new MetricScore(evaluator.meanPriorAbsoluteError(), (int) evaluator.numInstances()));
        m.put(new Metric("root_mean_squared_error", "openml.evaluation.root_mean_squared_error(1.0)"),
                new MetricScore(evaluator.rootMeanSquaredError(), (int) evaluator.numInstances()));
        m.put(new Metric("root_mean_prior_squared_error",
                "openml.evaluation.root_mean_prior_squared_error(1.0)"),
                new MetricScore(evaluator.rootMeanPriorSquaredError(), (int) evaluator.numInstances()));
        m.put(new Metric("relative_absolute_error", "openml.evaluation.relative_absolute_error(1.0)"),
                new MetricScore(evaluator.relativeAbsoluteError() / 100, (int) evaluator.numInstances()));
        m.put(new Metric("root_relative_squared_error", "openml.evaluation.root_relative_squared_error(1.0)"),
                new MetricScore(evaluator.rootRelativeSquaredError() / 100, (int) evaluator.numInstances()));

    } else if (task == TaskType.CLASSIFICATION || task == TaskType.LEARNINGCURVE
            || task == TaskType.TESTTHENTRAIN) {

        m.put(new Metric("average_cost", "openml.evaluation.average_cost(1.0)"),
                new MetricScore(evaluator.avgCost(), (int) evaluator.numInstances()));
        m.put(new Metric("total_cost", "openml.evaluation.total_cost(1.0)"),
                new MetricScore(evaluator.totalCost(), (int) evaluator.numInstances()));

        m.put(new Metric("mean_absolute_error", "openml.evaluation.mean_absolute_error(1.0)"),
                new MetricScore(evaluator.meanAbsoluteError(), (int) evaluator.numInstances()));
        m.put(new Metric("mean_prior_absolute_error", "openml.evaluation.mean_prior_absolute_error(1.0)"),
                new MetricScore(evaluator.meanPriorAbsoluteError(), (int) evaluator.numInstances()));
        m.put(new Metric("root_mean_squared_error", "openml.evaluation.root_mean_squared_error(1.0)"),
                new MetricScore(evaluator.rootMeanSquaredError(), (int) evaluator.numInstances()));
        m.put(new Metric("root_mean_prior_squared_error",
                "openml.evaluation.root_mean_prior_squared_error(1.0)"),
                new MetricScore(evaluator.rootMeanPriorSquaredError(), (int) evaluator.numInstances()));
        m.put(new Metric("relative_absolute_error", "openml.evaluation.relative_absolute_error(1.0)"),
                new MetricScore(evaluator.relativeAbsoluteError() / 100, (int) evaluator.numInstances()));
        m.put(new Metric("root_relative_squared_error", "openml.evaluation.root_relative_squared_error(1.0)"),
                new MetricScore(evaluator.rootRelativeSquaredError() / 100, (int) evaluator.numInstances()));

        m.put(new Metric("prior_entropy", "openml.evaluation.prior_entropy(1.0)"),
                new MetricScore(evaluator.priorEntropy(), (int) evaluator.numInstances()));
        m.put(new Metric("kb_relative_information_score",
                "openml.evaluation.kb_relative_information_score(1.0)"),
                new MetricScore(evaluator.KBRelativeInformation() / 100, (int) evaluator.numInstances()));

        Double[] precision = new Double[classes];
        Double[] recall = new Double[classes];
        Double[] auroc = new Double[classes];
        Double[] fMeasure = new Double[classes];
        Double[] instancesPerClass = new Double[classes];
        double[][] confussion_matrix = evaluator.confusionMatrix();
        for (int i = 0; i < classes; ++i) {
            precision[i] = evaluator.precision(i);
            recall[i] = evaluator.recall(i);
            auroc[i] = evaluator.areaUnderROC(i);
            fMeasure[i] = evaluator.fMeasure(i);
            instancesPerClass[i] = 0.0;/*ww w  . j ava  2  s  .  c o m*/
            for (int j = 0; j < classes; ++j) {
                instancesPerClass[i] += confussion_matrix[i][j];
            }
        }

        m.put(new Metric("predictive_accuracy", "openml.evaluation.predictive_accuracy(1.0)"),
                new MetricScore(evaluator.pctCorrect() / 100, (int) evaluator.numInstances()));
        m.put(new Metric("kappa", "openml.evaluation.kappa(1.0)"),
                new MetricScore(evaluator.kappa(), (int) evaluator.numInstances()));

        m.put(new Metric("number_of_instances", "openml.evaluation.number_of_instances(1.0)"),
                new MetricScore(evaluator.numInstances(), instancesPerClass, (int) evaluator.numInstances()));

        m.put(new Metric("precision", "openml.evaluation.precision(1.0)"),
                new MetricScore(evaluator.weightedPrecision(), precision, (int) evaluator.numInstances()));
        m.put(new Metric("recall", "openml.evaluation.recall(1.0)"),
                new MetricScore(evaluator.weightedRecall(), recall, (int) evaluator.numInstances()));
        m.put(new Metric("f_measure", "openml.evaluation.f_measure(1.0)"),
                new MetricScore(evaluator.weightedFMeasure(), fMeasure, (int) evaluator.numInstances()));
        if (Utils.isMissingValue(evaluator.weightedAreaUnderROC()) == false) {
            m.put(new Metric("area_under_roc_curve", "openml.evaluation.area_under_roc_curve(1.0)"),
                    new MetricScore(evaluator.weightedAreaUnderROC(), auroc, (int) evaluator.numInstances()));
        }
        m.put(new Metric("confusion_matrix", "openml.evaluation.confusion_matrix(1.0)"),
                new MetricScore(confussion_matrix));
    }
    return m;
}