Example usage for weka.classifiers Evaluation crossValidateModel

List of usage examples for weka.classifiers Evaluation crossValidateModel

Introduction

In this page you can find the example usage for weka.classifiers Evaluation crossValidateModel.

Prototype

public void crossValidateModel(String classifierString, Instances data, int numFolds, String[] options,
        Random random) throws Exception 

Source Link

Document

Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.

Usage

From source file:classif.Prototyper.java

License:Open Source License

/**
 * Predict the accuracy of the prototypes based on the learning set. It uses
 * cross validation to draw the prediction.
 * //from   ww  w.j a v  a  2  s . co  m
 * @param nbFolds
 *            the number of folds for the x-validation
 * @return the predicted accuracy
 */
public double predictAccuracyXVal(int nbFolds) throws Exception {
    Evaluation eval = new Evaluation(trainingData);
    eval.crossValidateModel(this, trainingData, nbFolds, new Random(), new Object[] {});
    return eval.errorRate();
}

From source file:ia02classificacao.IA02Classificacao.java

/**
 * @param args the command line arguments
 *///from   ww w.j av  a2s  .co m
public static void main(String[] args) throws Exception {

    // abre o banco de dados arff e mostra a quantidade de instancias (linhas)
    DataSource arquivo = new DataSource("data/zoo.arff");
    Instances dados = arquivo.getDataSet();
    System.out.println("Instancias lidas: " + dados.numInstances());

    // FILTER: remove o atributo nome do animal da classificao
    String[] parametros = new String[] { "-R", "1" };
    Remove filtro = new Remove();
    filtro.setOptions(parametros);
    filtro.setInputFormat(dados);
    dados = Filter.useFilter(dados, filtro);

    AttributeSelection selAtributo = new AttributeSelection();
    InfoGainAttributeEval avaliador = new InfoGainAttributeEval();
    Ranker busca = new Ranker();
    selAtributo.setEvaluator(avaliador);
    selAtributo.setSearch(busca);
    selAtributo.SelectAttributes(dados);
    int[] indices = selAtributo.selectedAttributes();
    System.out.println("Selected attributes: " + Utils.arrayToString(indices));

    // Usa o algoritimo J48 e mostra a classificao dos dados em forma textual
    String[] opcoes = new String[1];
    opcoes[0] = "-U";
    J48 arvore = new J48();
    arvore.setOptions(opcoes);
    arvore.buildClassifier(dados);
    System.out.println(arvore);

    // Usa o algoritimo J48 e mostra a classificao de dados em forma grafica
    /*
    TreeVisualizer tv = new TreeVisualizer(null, arvore.graph(), new PlaceNode2());
    JFrame frame = new javax.swing.JFrame("?rvore de Conhecimento");
    frame.setSize(800,500);
    frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
    frame.getContentPane().add(tv);
    frame.setVisible(true);
    tv.fitToScreen();
    */

    /*
    * Classificao de novos dados
    */

    System.out.println("\n\nCLASSIFICAO DE NOVOS DADOS");
    // criar atributos
    double[] vals = new double[dados.numAttributes()];
    vals[0] = 1.0; // hair
    vals[1] = 0.0; // feathers
    vals[2] = 0.0; // eggs
    vals[3] = 1.0; // milk
    vals[4] = 1.0; // airborne
    vals[5] = 0.0; // aquatic
    vals[6] = 0.0; // predator
    vals[7] = 1.0; // toothed
    vals[8] = 1.0; // backbone
    vals[9] = 1.0; // breathes
    vals[10] = 0.0; // venomous
    vals[11] = 0.0; // fins
    vals[12] = 4.0; // legs
    vals[13] = 1.0; // tail
    vals[14] = 1.0; // domestic
    vals[15] = 1.0; // catsize

    // Criar uma instncia baseada nestes atributos
    Instance meuUnicornio = new DenseInstance(1.0, vals);

    // Adicionar a instncia nos dados
    meuUnicornio.setDataset(dados);

    // Classificar esta nova instncia
    double label = arvore.classifyInstance(meuUnicornio);

    // Imprimir o resultado da classificao
    System.out.println("Novo Animal: Unicrnio");
    System.out.println("classificacao: " + dados.classAttribute().value((int) label));

    /*
    * Avaliao e predio de erros de mtrica
    */
    System.out.println("\n\nAVALIAO E PREDIO DE ERROS DE MTRICA");
    Classifier cl = new J48();
    Evaluation eval_roc = new Evaluation(dados);
    eval_roc.crossValidateModel(cl, dados, 10, new Random(1), new Object[] {});
    System.out.println(eval_roc.toSummaryString());

    /*
    * Matriz de confuso
    */
    System.out.println("\n\nMATRIZ DE CONFUSO");
    double[][] confusionMatrix = eval_roc.confusionMatrix();
    System.out.println(eval_roc.toMatrixString());

}

From source file:soccer.core.SimpleClassifier.java

public void evaluate() throws IOException, Exception {
    Instances data = loader.buildInstances();
    NumericToNominal toNominal = new NumericToNominal();
    toNominal.setOptions(new String[] { "-R", "5,6,8,9" });
    toNominal.setInputFormat(data);//from  ww  w .j a v  a  2s.c  om
    data = Filter.useFilter(data, toNominal);
    data.setClassIndex(6);

    //        DataSink.write(ARFF_STRING, data);

    EnsembleLibrary ensembleLib = new EnsembleLibrary();
    ensembleLib.addModel("weka.classifiers.trees.J48");
    ensembleLib.addModel("weka.classifiers.bayes.NaiveBayes");
    ensembleLib.addModel("weka.classifiers.functions.SMO");
    ensembleLib.addModel("weka.classifiers.meta.AdaBoostM1");
    ensembleLib.addModel("weka.classifiers.meta.LogitBoost");
    ensembleLib.addModel("classifiers.trees.DecisionStump");
    ensembleLib.addModel("classifiers.trees.DecisionStump");
    EnsembleLibrary.saveLibrary(new File("./ensembleLib.model.xml"), ensembleLib, null);
    EnsembleSelection model = new EnsembleSelection();
    model.setOptions(new String[] { "-L", "./ensembleLib.model.xml", // </path/to/modelLibrary>"-W", path+"esTmp", // </path/to/working/directory> - 
            "-B", "10", // <numModelBags> 
            "-E", "1.0", // <modelRatio>.
            "-V", "0.25", // <validationRatio>
            "-H", "100", // <hillClimbIterations> 
            "-I", "1.0", // <sortInitialization> 
            "-X", "2", // <numFolds>
            "-P", "roc", // <hillclimbMettric>
            "-A", "forward", // <algorithm> 
            "-R", "true", // - Flag to be selected more than once
            "-G", "true", // - stops adding models when performance degrades
            "-O", "true", // - verbose output.
            "-S", "1", // <num> - Random number seed.
            "-D", "true" // - run in debug mode 
    });
    //        double resES[] = evaluate(ensambleSel);
    //        System.out.println("Ensemble Selection\n"
    //                + "\tchurn:     " + resES[0] + "\n"
    //                + "\tappetency: " + resES[1] + "\n"
    //                + "\tup-sell:   " + resES[2] + "\n"
    //                + "\toverall:   " + resES[3] + "\n");
    //        models.add(new J48());
    //        models.add(new RandomForest());
    //        models.add(new NaiveBayes());
    //        models.add(new AdaBoostM1());
    //        models.add(new Logistic());
    //        models.add(new MultilayerPerceptron());

    int FOLDS = 5;
    Evaluation eval = new Evaluation(data);
    //
    //        for (Classifier model : models) {
    eval.crossValidateModel(model, data, FOLDS, new Random(1), new Object[] {});
    System.out.println(model.getClass().getName() + "\n" + "\tRecall:    " + eval.recall(1) + "\n"
            + "\tPrecision: " + eval.precision(1) + "\n" + "\tF-measure: " + eval.fMeasure(1));
    System.out.println(eval.toSummaryString());
    //        }
    //        LogitBoost cl = new LogitBoost();
    //        cl.setOptions(new String[] {
    //            "-Q", "-I", "100", "-Z", "4", "-O", "4", "-E", "4"
    //        });
    //        cl.buildClassifier(data);
    //        Evaluation eval = new Evaluation(data);
    //        eval.crossValidateModel(cl, data, 6, new Random(1), new Object[]{});
    //        System.out.println(eval.weightedFMeasure());
    //        System.out.println(cl.graph());
    //        System.out.println(cl.globalInfo());

}

From source file:tcc.FeatureExtraction.java

public void knn() throws IOException {
    //parsing CSV to Arff
    CSVLoader loader = new CSVLoader();
    loader.setSource(new File("/root/TCC/Resultados/Parte 4 - Novos Casos/TamuraHaralickMomentos.csv"));
    Instances inst = loader.getDataSet();

    ArffSaver saver = new ArffSaver();
    saver.setInstances(inst);/*from   w  w  w.ja v a 2s  .  c  om*/
    saver.setFile(new File("/root/TCC/Resultados/Parte 4 - Novos Casos/TamuraHaralickMomentos.arff"));
    saver.setDestination(new File("/root/TCC/Resultados/Parte 4 - Novos Casos/TamuraHaralickMomentos.arff"));
    saver.writeBatch();

    BufferedReader reader = new BufferedReader(
            new FileReader("/root/TCC/Resultados/Parte 4 - Novos Casos/TamuraHaralickMomentos.arff"));
    Instances data = new Instances(reader);
    reader.close();
    data.setClassIndex(data.numAttributes() - 1);

    //Normalizando
    try {
        Normalize norm = new Normalize();
        norm.setInputFormat(data);
        data = Filter.useFilter(data, norm);

    } catch (Exception ex) {
        Logger.getLogger(FeatureExtraction.class.getName()).log(Level.SEVERE, null, ex);
    }

    File csv = new File("/root/TCC/Resultados/knn.csv");
    FileWriter fw = new FileWriter(csv);
    BufferedWriter bw = new BufferedWriter(fw);

    for (int i = 1; i < 51; i++) {
        //instanciando o classificador
        IBk knn = new IBk();
        knn.setKNN(i);

        try {

            knn.buildClassifier(data);
            Evaluation eval = new Evaluation(data);
            //System.out.println(eval.toSummaryString("\nResults\n======\n", false));
            eval.crossValidateModel(knn, data, 10, new Random(1), new Object[] {});
            double auc = eval.areaUnderROC(1);
            System.out.println(auc);
            bw.write(Double.toString(auc));
            bw.newLine();

        } catch (Exception ex) {
            Logger.getLogger(FeatureExtraction.class.getName()).log(Level.SEVERE, null, ex);
        }
    }
    bw.close();

}

From source file:tcc.FeatureExtraction.java

public void rbf() throws IOException {
    //parsing CSV to Arff
    CSVLoader loader = new CSVLoader();
    loader.setSource(new File("/root/TCC/Resultados/Parte 4 - Novos Casos/TamuraHaralickMomentos.csv"));
    Instances inst = loader.getDataSet();

    ArffSaver saver = new ArffSaver();
    saver.setInstances(inst);//from  w w w  . j a  va2 s .c o  m
    saver.setFile(new File("/root/TCC/Resultados/Parte 4 - Novos Casos/TamuraHaralickMomentos.arff"));
    saver.setDestination(new File("/root/TCC/Resultados/Parte 4 - Novos Casos/TamuraHaralickMomentos.arff"));
    saver.writeBatch();

    BufferedReader reader = new BufferedReader(
            new FileReader("/root/TCC/Resultados/Parte 4 - Novos Casos/TamuraHaralickMomentos.arff"));
    Instances data = new Instances(reader);
    reader.close();
    data.setClassIndex(data.numAttributes() - 1);

    //Normalizando
    try {
        Normalize norm = new Normalize();
        norm.setInputFormat(data);
        data = Filter.useFilter(data, norm);

    } catch (Exception ex) {
        Logger.getLogger(FeatureExtraction.class.getName()).log(Level.SEVERE, null, ex);
    }

    File csv = new File("/root/TCC/Resultados/rbf.csv");
    FileWriter fw = new FileWriter(csv);
    BufferedWriter bw = new BufferedWriter(fw);

    for (int i = 1; i < 51; i++) {
        //instanciando o classificador
        RBFNetwork rbf = new RBFNetwork();
        rbf.setNumClusters(i);

        try {

            rbf.buildClassifier(data);
            Evaluation eval = new Evaluation(data);
            //System.out.println(eval.toSummaryString("\nResults\n======\n", false));
            eval.crossValidateModel(rbf, data, 10, new Random(1), new Object[] {});
            double auc = eval.areaUnderROC(1);
            System.out.println(auc);
            bw.write(Double.toString(auc));
            bw.newLine();

        } catch (Exception ex) {
            Logger.getLogger(FeatureExtraction.class.getName()).log(Level.SEVERE, null, ex);
        }
    }
    bw.close();

}