Example usage for weka.classifiers Classifier subclass-usage

List of usage examples for weka.classifiers Classifier subclass-usage

Introduction

In this page you can find the example usage for weka.classifiers Classifier subclass-usage.

Usage

From source file classif.Prototyper.java

public abstract class Prototyper extends Classifier {
    private static final long serialVersionUID = 922540906465712982L;

    protected ArrayList<ClassedSequence> prototypes;
    protected HashMap<String, ArrayList<Sequence>> classedData;
    protected HashMap<String, ArrayList<Integer>> indexClassedDataInFullData;

From source file classification.classifiers.LDA.java

public class LDA extends Classifier {
    /**
     * 
     */
    private static final long serialVersionUID = 1L;
    private double[][] groupMean;

From source file classifiers.mlp.MultilayerPerceptronCustom.java

/** 
 <!-- globalinfo-start -->
 * A Classifier that uses backpropagation to classify instances.<br/>
 * This network can be built by hand, created by an algorithm or both. The network can also be monitored and modified during training time. The nodes in this network are all sigmoid (except for when the class is numeric in which case the the output nodes become unthresholded linear units).
 * <p/>
 <!-- globalinfo-end -->

From source file cn.edu.xjtu.dbmine.source.NaiveBayes.java

/**
 <!-- globalinfo-start -->
 * Class for a Naive Bayes classifier using estimator classes. Numeric estimator precision values are chosen based on analysis of the  training data. For this reason, the classifier is not an UpdateableClassifier (which in typical usage are initialized with zero training instances) -- if you need the UpdateableClassifier functionality, use the NaiveBayesUpdateable classifier. The NaiveBayesUpdateable classifier will  use a default precision of 0.1 for numeric attributes when buildClassifier is called with zero training instances.<br/>
 * <br/>
 * For more information on Naive Bayes classifiers, see<br/>
 * <br/>

From source file com.mycompany.experimentshell.HardCodedClassifier.java

/**
 *
 * @author Besseym
 */
public class HardCodedClassifier extends Classifier {

From source file com.mycompany.id3classifier.kNNClassifier.java

/**
 *
 * @author Besseym
 */
public class kNNClassifier extends Classifier {

From source file com.mycompany.knnclassifier.kNNClassifier.java

/**
 *
 * @author Besseym
 */
public class kNNClassifier extends Classifier {

From source file com.mycompany.neuralnetwork.NeuralNetworkClassifier.java

/**
 *
 * @author Besseym
 */
public class NeuralNetworkClassifier extends Classifier {
    Network network;

From source file com.mycompany.tubesann.MyANN.java

/**
 *
 * @author Riady
 */

public class MyANN extends Classifier implements Serializable {

From source file com.reactivetechnologies.analytics.core.IncrementalClassifierBean.java

/**
 * A proxy over a Weka classifier.
 */
public class IncrementalClassifierBean extends Classifier implements RegressionModelEngine {

    protected boolean isUpdateable() {