List of usage examples for weka.classifiers Classifier getCapabilities
public Capabilities getCapabilities();
From source file:WekaRegressor.java
License:Open Source License
public WekaRegressor(Classifier wekaClassifier) { if (!wekaClassifier.getCapabilities().handles(Capability.NUMERIC_CLASS)) throw new IllegalArgumentException("The given Weka classifier (" + wekaClassifier.getClass().getSimpleName() + ") dosn't support regression tasks"); this.wekaClassifier = wekaClassifier; }
From source file:com.rapidminer.tools.WekaLearnerCapabilities.java
License:Open Source License
public static boolean supportsCapability(Classifier classifier, LearnerCapability lc) { Capabilities capabilities = classifier.getCapabilities(); if (lc == LearnerCapability.POLYNOMINAL_ATTRIBUTES) { return capabilities.handles(Capabilities.Capability.NOMINAL_ATTRIBUTES); } else if (lc == LearnerCapability.BINOMINAL_ATTRIBUTES) { return capabilities.handles(Capabilities.Capability.BINARY_ATTRIBUTES); } else if (lc == LearnerCapability.NUMERICAL_ATTRIBUTES) { return capabilities.handles(Capabilities.Capability.NUMERIC_ATTRIBUTES); } else if (lc == LearnerCapability.POLYNOMINAL_CLASS) { return capabilities.handles(Capabilities.Capability.NOMINAL_CLASS); } else if (lc == LearnerCapability.BINOMINAL_CLASS) { return capabilities.handles(Capabilities.Capability.BINARY_CLASS); } else if (lc == LearnerCapability.NUMERICAL_CLASS) { return capabilities.handles(Capabilities.Capability.NUMERIC_CLASS); } else if (lc == LearnerCapability.UPDATABLE) { return (classifier instanceof UpdateableClassifier); } else if (lc == LearnerCapability.WEIGHTED_EXAMPLES) { return (classifier instanceof WeightedInstancesHandler); }//from www . j a v a 2 s . c o m return false; }
From source file:com.relationalcloud.partitioning.explanation.ExplanationHandler.java
License:Open Source License
/** * Train the given classifier/*from w w w .java2 s. c om*/ * * @param newData * @param classifier * @throws Exception */ public static void trainClassifier(Instances newData, Classifier classifier) throws Exception { // if the class attributed is not unary we proceed regularly // verify the Classifier can handle this dataset classifier.getCapabilities().testWithFail(newData); System.out.println("BUILDING CLASSIFIER ON INSTANCE:" + newData.toSummaryString()); long treeTstart = System.currentTimeMillis(); classifier.buildClassifier(newData); // build classifier long treeTend = System.currentTimeMillis(); System.out.println("CLASSIFIER BUILDING TIME: " + (treeTend - treeTstart) + "ms FROM: " + newData.numInstances() + " instances \n" + classifier.toString()); }
From source file:org.knime.knip.suise.node.boundarymodel.contourdata.WekaMIContourDataClassifier.java
License:Open Source License
/** * @param classifier a multi-instance classifier *//* w ww . ja v a 2 s. c o m*/ public WekaMIContourDataClassifier(Classifier classifier) { if (!classifier.getCapabilities().handles(Capability.ONLY_MULTIINSTANCE)) { throw new IllegalArgumentException("Classifier can not handle multi-instances"); } m_classifier = classifier; }