Example usage for org.opencv.core MatOfPoint2f height

List of usage examples for org.opencv.core MatOfPoint2f height

Introduction

In this page you can find the example usage for org.opencv.core MatOfPoint2f height.

Prototype

public int height() 

Source Link

Usage

From source file:ac.robinson.ticqr.TickBoxImageParserTask.java

License:Apache License

@Override
protected ArrayList<PointF> doInBackground(Void... unused) {
    Log.d(TAG, "Searching for tick boxes of " + mBoxSize + " size");

    // we look for *un-ticked* boxes, rather than ticked, as they are uniform in appearance (and hence easier to
    // detect) - they show up as a box within a box
    ArrayList<PointF> centrePoints = new ArrayList<>();
    int minimumOuterBoxArea = (int) Math.round(Math.pow(mBoxSize, 2));
    int maximumOuterBoxArea = (int) Math.round(Math.pow(mBoxSize * 1.35f, 2));
    int minimumInnerBoxArea = (int) Math.round(Math.pow(mBoxSize * 0.5f, 2));

    // image adjustment - blurSize, blurSTDev and adaptiveThresholdSize must not be even numbers
    int blurSize = 9;
    int blurSTDev = 3;
    int adaptiveThresholdSize = Math.round(mBoxSize * 3); // (oddness ensured below)
    int adaptiveThresholdC = 4; // value to add to the mean (can be negative or zero)
    adaptiveThresholdSize = adaptiveThresholdSize % 2 == 0 ? adaptiveThresholdSize + 1 : adaptiveThresholdSize;

    // how similar the recognised polygon must be to its actual contour - lower is more similar
    float outerPolygonSimilarity = 0.045f;
    float innerPolygonSimilarity = 0.075f; // don't require as much accuracy for the inner part of the tick box

    // how large the maximum internal angle can be (e.g., for checking square shape)
    float maxOuterAngleCos = 0.3f;
    float maxInnerAngleCos = 0.4f;

    // use OpenCV to recognise boxes that have a box inside them - i.e. an un-ticked tick box
    // see: http://stackoverflow.com/a/11427501
    // Bitmap newBitmap = mBitmap.copy(Bitmap.Config.RGB_565, true); // not needed
    Mat bitMat = new Mat();
    Utils.bitmapToMat(mBitmap, bitMat);//  ww  w  .  jav  a2  s .c  o  m

    // blur and convert to grey
    // alternative (less flexible): Imgproc.medianBlur(bitMat, bitMat, blurSize);
    Imgproc.GaussianBlur(bitMat, bitMat, new Size(blurSize, blurSize), blurSTDev, blurSTDev);
    Imgproc.cvtColor(bitMat, bitMat, Imgproc.COLOR_RGB2GRAY); // need 8uC1 (1 channel, unsigned char) image type

    // perform adaptive thresholding to detect edges
    // alternative (slower): Imgproc.Canny(bitMat, bitMat, 10, 20, 3, false);
    Imgproc.adaptiveThreshold(bitMat, bitMat, 255, Imgproc.ADAPTIVE_THRESH_GAUSSIAN_C, Imgproc.THRESH_BINARY,
            adaptiveThresholdSize, adaptiveThresholdC);

    // get the contours in the image, and their hierarchy
    Mat hierarchyMat = new Mat();
    List<MatOfPoint> contours = new ArrayList<>();
    Imgproc.findContours(bitMat, contours, hierarchyMat, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_SIMPLE);
    if (DEBUG) {
        Imgproc.drawContours(bitMat, contours, -1, new Scalar(30, 255, 255), 1);
    }

    // parse the contours and look for a box containing another box, with similar enough sizes
    int numContours = contours.size();
    ArrayList<Integer> searchedContours = new ArrayList<>();
    Log.d(TAG, "Found " + numContours + " possible tick box areas");
    if (numContours > 0 && !hierarchyMat.empty()) {
        for (int i = 0; i < numContours; i++) {

            // the original detected contour
            MatOfPoint boxPoints = contours.get(i);

            // hierarchy key: 0 = next sibling num, 1 = previous sibling num, 2 = first child num, 3 = parent num
            int childBox = (int) hierarchyMat.get(0, i)[2]; // usually the largest child (as we're doing RETR_TREE)
            if (childBox == -1) { // we only want elements that have children
                continue;
            } else {
                if (searchedContours.contains(childBox)) {
                    if (DEBUG) {
                        Log.d(TAG, "Ignoring duplicate box at first stage: " + childBox);
                    }
                    continue;
                } else {
                    searchedContours.add(childBox);
                }
            }

            // discard smaller (i.e. noise) outer box areas as soon as possible for speed
            // used to do Imgproc.isContourConvex(outerPoints) later, but the angle check covers this, so no need
            double originalArea = Math.abs(Imgproc.contourArea(boxPoints));
            if (originalArea < minimumOuterBoxArea) {
                // if (DEBUG) {
                // drawPoints(bitMat, boxPoints, new Scalar(255, 255, 255), 1);
                // Log.d(TAG, "Outer box too small");
                // }
                continue;
            }
            if (originalArea > maximumOuterBoxArea) {
                // if (DEBUG) {
                // drawPoints(bitMat, boxPoints, new Scalar(255, 255, 255), 1);
                // Log.d(TAG, "Outer box too big");
                // }
                continue;
            }

            // simplify the contours of the outer box - we want to detect four-sided shapes only
            MatOfPoint2f boxPoints2f = new MatOfPoint2f(boxPoints.toArray()); // Point2f for approxPolyDP
            Imgproc.approxPolyDP(boxPoints2f, boxPoints2f,
                    outerPolygonSimilarity * Imgproc.arcLength(boxPoints2f, true), true); // simplify the contour
            if (boxPoints2f.height() != 4) { // height is number of points
                if (DEBUG) {
                    // drawPoints(bitMat, new MatOfPoint(boxPoints2f.toArray()), new Scalar(255, 255, 255), 1);
                    Log.d(TAG, "Outer box not 4 points");
                }
                continue;
            }

            // check that the simplified outer box is approximately a square, angle-wise
            org.opencv.core.Point[] boxPointsArray = boxPoints2f.toArray();
            double maxCosine = 0;
            for (int j = 0; j < 4; j++) {
                org.opencv.core.Point pL = boxPointsArray[j];
                org.opencv.core.Point pIntersect = boxPointsArray[(j + 1) % 4];
                org.opencv.core.Point pR = boxPointsArray[(j + 2) % 4];
                getLineAngle(pL, pIntersect, pR);
                maxCosine = Math.max(maxCosine, getLineAngle(pL, pIntersect, pR));
            }
            if (maxCosine > maxOuterAngleCos) {
                if (DEBUG) {
                    // drawPoints(bitMat, new MatOfPoint(boxPoints2f.toArray()), new Scalar(255, 255, 255), 1);
                    Log.d(TAG, "Outer angles not square enough");
                }
                continue;
            }

            // check that the simplified outer box is approximately a square, line length-wise
            double minLine = Double.MAX_VALUE;
            double maxLine = 0;
            for (int p = 1; p < 4; p++) {
                org.opencv.core.Point p1 = boxPointsArray[p - 1];
                org.opencv.core.Point p2 = boxPointsArray[p];
                double xd = p1.x - p2.x;
                double yd = p1.y - p2.y;
                double lineLength = Math.sqrt((xd * xd) + (yd * yd));
                minLine = Math.min(minLine, lineLength);
                maxLine = Math.max(maxLine, lineLength);
            }
            if (maxLine - minLine > minLine) {
                if (DEBUG) {
                    // drawPoints(bitMat, new MatOfPoint(boxPoints2f.toArray()), new Scalar(255, 255, 255), 1);
                    Log.d(TAG, "Outer lines not square enough");
                }
                continue;
            }

            // draw the outer box if debugging
            if (DEBUG) {
                MatOfPoint debugBoxPoints = new MatOfPoint(boxPointsArray);
                Log.d(TAG,
                        "Potential tick box: " + boxPoints2f.size() + ", " + "area: "
                                + Math.abs(Imgproc.contourArea(debugBoxPoints)) + " (min:" + minimumOuterBoxArea
                                + ", max:" + maximumOuterBoxArea + ")");
                drawPoints(bitMat, debugBoxPoints, new Scalar(50, 255, 255), 2);
            }

            // loop through the children - they should be in descending size order, but sometimes this is wrong
            boolean wrongBox = false;
            while (true) {
                if (DEBUG) {
                    Log.d(TAG, "Looping with box: " + childBox);
                }

                // we've previously tried a child - try the next one
                // key: 0 = next sibling num, 1 = previous sibling num, 2 = first child num, 3 = parent num
                if (wrongBox) {
                    childBox = (int) hierarchyMat.get(0, childBox)[0];
                    if (childBox == -1) {
                        break;
                    }
                    if (searchedContours.contains(childBox)) {
                        if (DEBUG) {
                            Log.d(TAG, "Ignoring duplicate box at loop stage: " + childBox);
                        }
                        break;
                    } else {
                        searchedContours.add(childBox);
                    }
                    //noinspection UnusedAssignment
                    wrongBox = false;
                }

                // perhaps this is the outer box - check its child has no children itself
                // (removed so tiny children (i.e. noise) don't mean we mis-detect an un-ticked box as ticked)
                // if (hierarchyMat.get(0, childBox)[2] != -1) {
                // continue;
                // }

                // check the size of the child box is large enough
                boxPoints = contours.get(childBox);
                originalArea = Math.abs(Imgproc.contourArea(boxPoints));
                if (originalArea < minimumInnerBoxArea) {
                    if (DEBUG) {
                        // drawPoints(bitMat, boxPoints, new Scalar(255, 255, 255), 1);
                        Log.d(TAG, "Inner box too small");
                    }
                    wrongBox = true;
                    continue;
                }

                // simplify the contours of the inner box - again, we want four-sided shapes only
                boxPoints2f = new MatOfPoint2f(boxPoints.toArray());
                Imgproc.approxPolyDP(boxPoints2f, boxPoints2f,
                        innerPolygonSimilarity * Imgproc.arcLength(boxPoints2f, true), true);
                if (boxPoints2f.height() != 4) { // height is number of points
                    // if (DEBUG) {
                    // drawPoints(bitMat, boxPoints, new Scalar(255, 255, 255), 1);
                    // }
                    Log.d(TAG, "Inner box fewer than 4 points"); // TODO: allow > 4 for low quality images?
                    wrongBox = true;
                    continue;
                }

                // check that the simplified inner box is approximately a square, angle-wise
                // higher tolerance because noise means if we get several inners, the box may not be quite square
                boxPointsArray = boxPoints2f.toArray();
                maxCosine = 0;
                for (int j = 0; j < 4; j++) {
                    org.opencv.core.Point pL = boxPointsArray[j];
                    org.opencv.core.Point pIntersect = boxPointsArray[(j + 1) % 4];
                    org.opencv.core.Point pR = boxPointsArray[(j + 2) % 4];
                    getLineAngle(pL, pIntersect, pR);
                    maxCosine = Math.max(maxCosine, getLineAngle(pL, pIntersect, pR));
                }
                if (maxCosine > maxInnerAngleCos) {
                    Log.d(TAG, "Inner angles not square enough");
                    wrongBox = true;
                    continue;
                }

                // this is probably an inner box - log if debugging
                if (DEBUG) {
                    Log.d(TAG,
                            "Un-ticked inner box: " + boxPoints2f.size() + ", " + "area: "
                                    + Math.abs(Imgproc.contourArea(new MatOfPoint2f(boxPointsArray)))
                                    + " (min: " + minimumInnerBoxArea + ")");
                }

                // find the inner box centre
                double centreX = (boxPointsArray[0].x + boxPointsArray[1].x + boxPointsArray[2].x
                        + boxPointsArray[3].x) / 4f;
                double centreY = (boxPointsArray[0].y + boxPointsArray[1].y + boxPointsArray[2].y
                        + boxPointsArray[3].y) / 4f;

                // draw the inner box if debugging
                if (DEBUG) {
                    drawPoints(bitMat, new MatOfPoint(boxPointsArray), new Scalar(255, 255, 255), 1);
                    Core.circle(bitMat, new org.opencv.core.Point(centreX, centreY), 3,
                            new Scalar(255, 255, 255));
                }

                // add to the list of boxes to check
                centrePoints.add(new PointF((float) centreX, (float) centreY));
                break;
            }
        }
    }

    Log.d(TAG, "Found " + centrePoints.size() + " un-ticked boxes");
    return centrePoints;
}