Example usage for org.opencv.core MatOfPoint2f fromArray

List of usage examples for org.opencv.core MatOfPoint2f fromArray

Introduction

In this page you can find the example usage for org.opencv.core MatOfPoint2f fromArray.

Prototype

public void fromArray(Point... a) 

Source Link

Usage

From source file:OctoEye.java

License:Open Source License

private void detectPupil() {
    // min and max pupil radius
    int r_min = 2;
    int r_max = 45;

    // min and max pupil diameter
    int d_min = 2 * r_min;
    int d_max = 2 * r_max;

    // min and max pupil area
    double area;/*from   ww w. j av  a  2 s. com*/
    double a_min = Math.PI * r_min * r_min;
    double a_max = Math.PI * r_max * r_max;

    // histogram stuff
    List<Mat> images;
    MatOfInt channels;
    Mat mask;
    Mat hist;
    MatOfInt mHistSize;
    MatOfFloat mRanges;

    // contour and circle stuff
    Rect rect = null;
    Rect rectMin;
    Rect rectMax;
    List<MatOfPoint> contours;
    MatOfPoint3 circles;

    // pupil center
    Point p;

    // ellipse test points
    Point v;
    Point r;
    Point s;

    // rect points
    Point tl;
    Point br;

    // pupil edge detection
    Vector<Point> pointsTest;
    Vector<Point> pointsEllipse;
    Vector<Point> pointsRemoved;

    // temporary variables
    double distance;
    double rad;
    double length;
    int x;
    int y;
    int tmp;
    byte buff[];

    // -------------------------------------------------------------------------------------------------------------
    // step 1
    // blur the image to reduce noise

    Imgproc.medianBlur(src, tmp1, 25);

    // -------------------------------------------------------------------------------------------------------------
    // step 2
    // locate the pupil with feature detection and compute a histogram for each,
    // the best feature will be used as rough pupil location (rectMin)

    int score = 0;
    int winner = 0;

    // feature detection
    MatOfKeyPoint matOfKeyPoints = new MatOfKeyPoint();
    FeatureDetector blobDetector = FeatureDetector.create(FeatureDetector.MSER); // Maximal Stable Extremal Regions
    blobDetector.detect(tmp1, matOfKeyPoints);
    List<KeyPoint> keyPoints = matOfKeyPoints.toList();

    // histogram calculation
    for (int i = 0; i < keyPoints.size(); i++) {
        x = (int) keyPoints.get(i).pt.x;
        y = (int) keyPoints.get(i).pt.y;
        tl = new Point(x - 5 >= 0 ? x - 5 : 0, y - 5 >= 0 ? y - 5 : 0);
        br = new Point(x + 5 < WIDTH ? x + 5 : WIDTH - 1, y + 5 < HEIGHT ? y + 5 : HEIGHT - 1);

        images = new ArrayList<Mat>();
        images.add(tmp1.submat(new Rect(tl, br)));
        channels = new MatOfInt(0);
        mask = new Mat();
        hist = new Mat();
        mHistSize = new MatOfInt(256);
        mRanges = new MatOfFloat(0f, 256f);
        Imgproc.calcHist(images, channels, mask, hist, mHistSize, mRanges);

        tmp = 0;
        for (int j = 0; j < 256 / 3; j++) {
            tmp += (256 / 3 - j) * (int) hist.get(j, 0)[0];
        }
        if (tmp >= score) {
            score = tmp;
            winner = i;
            rect = new Rect(tl, br);
        }

        if (debug) {
            // show features (orange)
            Core.circle(dbg, new Point(x, y), 3, ORANGE);
        }
    }
    if (rect == null) {
        return;
    }
    rectMin = rect.clone();

    if (debug) {
        // show rectMin (red)
        Core.rectangle(dbg, rectMin.tl(), rect.br(), RED, 1);
    }

    // -------------------------------------------------------------------------------------------------------------
    // step 3
    // compute a rectMax (blue) which is larger than the pupil

    int margin = 32;

    rect.x = rect.x - margin;
    rect.y = rect.y - margin;
    rect.width = rect.width + 2 * margin;
    rect.height = rect.height + 2 * margin;

    rectMax = rect.clone();

    if (debug) {
        // show features (orange)
        Core.rectangle(dbg, rectMax.tl(), rectMax.br(), BLUE);
    }

    // -------------------------------------------------------------------------------------------------------------
    // step 4
    // blur the image again

    Imgproc.medianBlur(src, tmp1, 7);
    Imgproc.medianBlur(tmp1, tmp1, 3);
    Imgproc.medianBlur(tmp1, tmp1, 3);
    Imgproc.medianBlur(tmp1, tmp1, 3);

    // -------------------------------------------------------------------------------------------------------------
    // step 5
    // detect edges

    Imgproc.Canny(tmp1, tmp2, 40, 50);

    // -------------------------------------------------------------------------------------------------------------
    // step 6
    // from pupil center to maxRect borders, find all edge points, compute a first ellipse

    p = new Point(rectMin.x + rectMin.width / 2, rectMin.y + rectMin.height / 2);
    pointsTest = new Vector<Point>();
    pointsEllipse = new Vector<Point>();
    pointsRemoved = new Vector<Point>();
    buff = new byte[tmp2.rows() * tmp2.cols()];
    tmp2.get(0, 0, buff);

    length = Math.min(p.x - rectMax.x - 3, p.y - rectMax.y - 3);
    length = Math.sqrt(2 * Math.pow(length, 2));
    Point z = new Point(p.x, p.y - length);
    for (int i = 0; i < 360; i += 15) {
        rad = Math.toRadians(i);
        x = (int) (p.x + Math.cos(rad) * (z.x - p.x) - Math.sin(rad) * (z.y - p.y));
        y = (int) (p.y + Math.sin(rad) * (z.x - p.x) - Math.cos(rad) * (z.y - p.y));
        pointsTest.add(new Point(x, y));
    }

    if (debug) {
        for (int i = 0; i < pointsTest.size(); i++) {
            Core.line(dbg, p, pointsTest.get(i), GRAY, 1);
            Core.rectangle(dbg, rectMin.tl(), rectMin.br(), GREEN, 1);
            Core.rectangle(dbg, rectMax.tl(), rectMax.br(), BLUE, 1);
        }
        Core.rectangle(dbg, rectMin.tl(), rectMin.br(), BLACK, -1);
        Core.rectangle(dbg, rectMin.tl(), rectMin.br(), RED, 1);
        Core.rectangle(dbg, rectMax.tl(), rectMax.br(), BLUE);
    }

    // p: Ursprung ("Mittelpunkt" der Ellipse)
    // v: Zielpunkt (Testpunkt)
    // r: Richtungsvektor PV
    for (int i = 0; i < pointsTest.size(); i++) {
        v = new Point(pointsTest.get(i).x, pointsTest.get(i).y);
        r = new Point(v.x - p.x, v.y - p.y);
        length = Math.sqrt(Math.pow(p.x - v.x, 2) + Math.pow(p.y - v.y, 2));
        boolean found = false;
        for (int j = 0; j < Math.round(length); j++) {
            s = new Point(Math.rint(p.x + (double) j / length * r.x),
                    Math.rint(p.y + (double) j / length * r.y));
            s.x = Math.max(1, Math.min(s.x, WIDTH - 2));
            s.y = Math.max(1, Math.min(s.y, HEIGHT - 2));
            tl = new Point(s.x - 1, s.y - 1);
            br = new Point(s.x + 1, s.y + 1);
            buff = new byte[3 * 3];
            rect = new Rect(tl, br);
            try {
                (tmp2.submat(rect)).get(0, 0, buff);
                for (int k = 0; k < 3 * 3; k++) {
                    if (Math.abs(buff[k]) == 1) {
                        pointsEllipse.add(s);
                        found = true;
                        break;
                    }
                }
            } catch (Exception e) {
                break;
            }
            if (found) {
                break;
            }
        }
    }

    double e_min = Double.POSITIVE_INFINITY;
    double e_max = 0;
    double e_med = 0;
    for (int i = 0; i < pointsEllipse.size(); i++) {
        v = pointsEllipse.get(i);
        length = Math.sqrt(Math.pow(p.x - v.x, 2) + Math.pow(p.y - v.y, 2));
        e_min = (length < e_min) ? length : e_min;
        e_max = (length > e_max) ? length : e_max;
        e_med = e_med + length;
    }
    e_med = e_med / pointsEllipse.size();
    if (pointsEllipse.size() >= 5) {
        Point[] points1 = new Point[pointsEllipse.size()];
        for (int i = 0; i < pointsEllipse.size(); i++) {
            points1[i] = pointsEllipse.get(i);
        }
        MatOfPoint2f points2 = new MatOfPoint2f();
        points2.fromArray(points1);
        pupil = Imgproc.fitEllipse(points2);
    }
    if (pupil.center.x == 0 && pupil.center.y == 0) {
        // something went wrong, return null
        reset();
        return;
    }

    if (debug) {
        Core.ellipse(dbg, pupil, PURPLE, 2);
    }

    // -------------------------------------------------------------------------------------------------------------
    // step 7
    // remove some outlier points and compute the ellipse again

    try {
        for (int i = 1; i <= 4; i++) {
            distance = 0;
            int remove = 0;
            for (int j = pointsEllipse.size() - 1; j >= 0; j--) {
                v = pointsEllipse.get(j);
                length = Math.sqrt(Math.pow(v.x - pupil.center.x, 2) + Math.pow(v.y - pupil.center.y, 2));
                if (length > distance) {
                    distance = length;
                    remove = j;
                }
            }
            v = pointsEllipse.get(remove);
            pointsEllipse.removeElementAt(remove);
            pointsRemoved.add(v);
        }
    } catch (Exception e) {
        // something went wrong, return null
        reset();
        return;
    }
    if (pointsEllipse.size() >= 5) {
        Point[] points1 = new Point[pointsEllipse.size()];
        for (int i = 0; i < pointsEllipse.size(); i++) {
            points1[i] = pointsEllipse.get(i);
        }
        MatOfPoint2f points2 = new MatOfPoint2f();
        points2.fromArray(points1);
        pupil = Imgproc.fitEllipse(points2);

        Point[] vertices = new Point[4];
        pupil.points(vertices);
        double d1 = Math
                .sqrt(Math.pow(vertices[1].x - vertices[0].x, 2) + Math.pow(vertices[1].y - vertices[0].y, 2));
        double d2 = Math
                .sqrt(Math.pow(vertices[2].x - vertices[1].x, 2) + Math.pow(vertices[2].y - vertices[1].y, 2));

        if (d1 >= d2) {
            pupilMajorAxis = (int) (d1 / 2);
            pupilMinorAxis = (int) (d2 / 2);
            axisA = new Point(vertices[1].x + (vertices[2].x - vertices[1].x) / 2,
                    vertices[1].y + (vertices[2].y - vertices[1].y) / 2);
            axisB = new Point(vertices[0].x + (vertices[1].x - vertices[0].x) / 2,
                    vertices[0].y + (vertices[1].y - vertices[0].y) / 2);
        } else {
            pupilMajorAxis = (int) (d2 / 2);
            pupilMinorAxis = (int) (d1 / 2);
            axisB = new Point(vertices[1].x + (vertices[2].x - vertices[1].x) / 2,
                    vertices[1].y + (vertices[2].y - vertices[1].y) / 2);
            axisA = new Point(vertices[0].x + (vertices[1].x - vertices[0].x) / 2,
                    vertices[0].y + (vertices[1].y - vertices[0].y) / 2);
        }
    }

    double ratio = (double) pupilMinorAxis / (double) pupilMajorAxis;
    if (ratio < 0.75 || 2 * pupilMinorAxis <= d_min || 2 * pupilMajorAxis >= d_max) {
        // something went wrong, return null
        reset();
        return;
    }

    // pupil found
    if (debug) {
        Core.ellipse(dbg, pupil, GREEN, 2);
        Core.line(dbg, pupil.center, axisA, RED, 2);
        Core.line(dbg, pupil.center, axisB, BLUE, 2);
        Core.circle(dbg, pupil.center, 1, GREEN, 0);

        x = 5;
        y = 5;
        Core.rectangle(dbg, new Point(x, y), new Point(x + 80 + 4, y + 10), BLACK, -1);
        Core.rectangle(dbg, new Point(x + 2, y + 2), new Point(x + 2 + pupilMajorAxis, y + 4), RED, -1);
        Core.rectangle(dbg, new Point(x + 2, y + 6), new Point(x + 2 + pupilMinorAxis, y + 8), BLUE, -1);

        for (int i = pointsEllipse.size() - 1; i >= 0; i--) {
            Core.circle(dbg, pointsEllipse.get(i), 2, ORANGE, -1);
        }
        for (int i = pointsRemoved.size() - 1; i >= 0; i--) {
            Core.circle(dbg, pointsRemoved.get(i), 2, PURPLE, -1);
        }
    }
    Core.ellipse(dst, pupil, GREEN, 2);
    Core.circle(dst, pupil.center, 1, GREEN, 0);
}

From source file:com.github.mbillingr.correlationcheck.ImageProcessor.java

License:Open Source License

public List<Point> extractPoints() {
    Mat gray = new Mat();//work_width, work_height, CvType.CV_8UC1);
    Mat binary = new Mat();

    Mat kernel = Mat.ones(3, 3, CvType.CV_8UC1);

    debugreset();/*w  w  w  .ja v a2  s. c om*/

    Mat image = load_transformed();
    working_image = image.clone();
    debugsave(image, "source");

    Imgproc.cvtColor(image, gray, Imgproc.COLOR_RGB2GRAY);
    debugsave(gray, "grayscale");

    Imgproc.GaussianBlur(gray, gray, new Size(15, 15), 0);
    debugsave(gray, "blurred");

    //Imgproc.equalizeHist(gray, gray);
    //debugsave(gray, "equalized");

    Imgproc.adaptiveThreshold(gray, binary, 255, Imgproc.ADAPTIVE_THRESH_GAUSSIAN_C, Imgproc.THRESH_BINARY_INV,
            129, 5);
    //Imgproc.threshold(gray, binary, 0, 255, Imgproc.THRESH_BINARY_INV + Imgproc.THRESH_OTSU);
    //Imgproc.threshold(gray, binary, 128, 255, Imgproc.THRESH_BINARY_INV);
    debugsave(binary, "binary");

    Imgproc.morphologyEx(binary, binary, Imgproc.MORPH_CLOSE, kernel);
    debugsave(binary, "closed");

    Imgproc.morphologyEx(binary, binary, Imgproc.MORPH_OPEN, kernel);
    debugsave(binary, "opened");

    List<MatOfPoint> contours = new ArrayList<>();
    Mat hierarchy = new Mat();
    Imgproc.findContours(binary, contours, hierarchy, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_SIMPLE); // is binary is now changed
    Imgproc.drawContours(image, contours, -1, new Scalar(0, 0, 255), 3);
    debugsave(image, "contours");

    List<PointAndArea> points = new ArrayList<>();

    for (MatOfPoint cnt : contours) {
        MatOfPoint2f c2f = new MatOfPoint2f();
        c2f.fromArray(cnt.toArray());
        RotatedRect rr = Imgproc.minAreaRect(c2f);

        double area = Imgproc.contourArea(cnt);

        if (rr.size.width / rr.size.height < 3 && rr.size.height / rr.size.width < 3 && rr.size.width < 64
                && rr.size.height < 64 && area > 9 && area < 10000) {
            points.add(new PointAndArea((int) area, rr.center));
        }
    }

    List<Point> final_points = new ArrayList<>();

    Collections.sort(points);
    Collections.reverse(points);
    int prev = -1;
    for (PointAndArea p : points) {
        Log.i("area", Integer.toString(p.area));
        if (prev == -1 || p.area >= prev / 2) {
            prev = p.area;
            Imgproc.circle(image, p.point, 10, new Scalar(0, 255, 0), 5);
            final_points.add(new Point(1 - p.point.y / work_height, 1 - p.point.x / work_width));
        }
    }
    debugsave(image, "circles");

    return final_points;
}

From source file:com.jonwohl.Attention.java

License:Open Source License

private Mat getPerspectiveTransformation(ArrayList<PVector> inputPoints, int w, int h) {
    Point[] canonicalPoints = new Point[4];
    canonicalPoints[0] = new Point(0, 0);
    canonicalPoints[1] = new Point(w, 0);
    canonicalPoints[2] = new Point(w, h);
    canonicalPoints[3] = new Point(0, h);

    MatOfPoint2f canonicalMarker = new MatOfPoint2f();
    canonicalMarker.fromArray(canonicalPoints);

    Point[] points = new Point[4];
    for (int i = 0; i < 4; i++) {
        points[i] = new Point(inputPoints.get(i).x, inputPoints.get(i).y);
    }/*from   w ww  . j  a v  a  2  s.c  o  m*/
    MatOfPoint2f marker = new MatOfPoint2f(points);
    return Imgproc.getPerspectiveTransform(marker, canonicalMarker);
}