Example usage for org.opencv.core Mat zeros

List of usage examples for org.opencv.core Mat zeros

Introduction

In this page you can find the example usage for org.opencv.core Mat zeros.

Prototype

public static Mat zeros(Size size, int type) 

Source Link

Usage

From source file:org.usfirst.frc.team2084.CMonster2016.vision.CoordinateMath.java

License:Open Source License

/**
 * Multiply two matrices.//from   w  ww.  j a v a2s.c  o m
 * 
 * @param src1 the first matrix
 * @param src2 the second matrix
 * @param dest the output matrix
 */
public static void matMult(Mat src1, Mat src2, Mat dest) {
    Core.gemm(src1, src2, 1, Mat.zeros(dest.size(), dest.type()), 1, dest);
}

From source file:saliency.saliency.java

/**
 * @param args the command line arguments
 *//* ww  w .  j av a  2  s . co m*/
public static void main(String[] args) {
    // TODO code application logic here

    System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

    Mat input_img = imread("input_img/sea.jpg");
    //fot temp test start
    Imgproc.resize(input_img, input_img, new Size(1980, 1080), 0, 0, Imgproc.INTER_LINEAR);
    //fot temp test end
    if (input_img.cols() == 0) {
        return;
    }

    //benchmark
    ///////////////////////step 1 : Extraction of Early Visual Deatures///////////////////////////////
    //intensity image: intensity_img
    Mat intensity_img = new Mat(input_img.rows(), input_img.cols(), CV_16UC1);
    //intensity = (R+G+B)/3
    int img_width = intensity_img.cols();
    int img_height = intensity_img.rows();
    int x, y;
    int i, c, s;
    int max_intensity = 0;
    for (x = 0; x < img_width; x++) {
        for (y = 0; y < img_height; y++) {
            int temp_intensity = ((int) input_img.get(y, x)[0] + (int) input_img.get(y, x)[1]
                    + (int) input_img.get(y, x)[2]) / 3;
            intensity_img.put(y, x, temp_intensity);
            if (max_intensity < temp_intensity) {
                max_intensity = temp_intensity;
            }
        }
    }
    //create Guassian pyramid for intensity
    Mat[] i_gaussian_pyramid = new Mat[9];
    i_gaussian_pyramid[0] = intensity_img.clone();
    for (i = 0; i < 8; i++) {
        i_gaussian_pyramid[i + 1] = i_gaussian_pyramid[i].clone();
        Imgproc.pyrDown(i_gaussian_pyramid[i + 1], i_gaussian_pyramid[i + 1], new Size());
    }

    //create intensity feature map using center-surround differences
    Mat[][] intensity_feature_map = new Mat[3][2];
    for (c = 0; c < 3; c++) {
        for (s = 0; s < 2; s++) {
            intensity_feature_map[c][s] = center_surround.main(i_gaussian_pyramid[c + 2],
                    i_gaussian_pyramid[s + c + 5], 0);
        }
    }
    //benchmark
    //imwrite("intensity_feature_map_00.bmp", intensity_feature_map[0][0]);
    //get normalized color image by I.
    Mat norm_input_img = input_img.clone();
    norm_input_img.convertTo(norm_input_img, CV_64F);
    for (x = 0; x < img_width; x++) {
        for (y = 0; y < img_height; y++) {
            //normalization is only applied at the locations where I is larger than 1/10 of its maximum over entire image
            double[] temp = new double[3];
            if (intensity_img.get(y, x)[0] > (max_intensity / 10)) {
                temp[0] = norm_input_img.get(y, x)[0] / intensity_img.get(y, x)[0];
                temp[1] = norm_input_img.get(y, x)[1] / intensity_img.get(y, x)[0];
                temp[2] = norm_input_img.get(y, x)[2] / intensity_img.get(y, x)[0];
                norm_input_img.put(y, x, temp);
            } else {
                temp[0] = 0;
                temp[1] = 0;
                temp[2] = 0;
                norm_input_img.put(y, x, temp);
            }
        }
    }
    //get R G B Y(Yellow) single color channel images
    Mat r_img = new Mat(input_img.rows(), input_img.cols(), CV_64FC1);
    Mat g_img = new Mat(input_img.rows(), input_img.cols(), CV_64FC1);
    Mat b_img = new Mat(input_img.rows(), input_img.cols(), CV_64FC1);
    Mat y_img = new Mat(input_img.rows(), input_img.cols(), CV_64FC1);
    //[0]: b [1]:g [2]:r
    for (x = 0; x < img_width; x++) {
        for (y = 0; y < img_height; y++) {
            //R = min(0,r-(g+b)/2)
            double temp_chroma = max(0, (norm_input_img.get(y, x)[2]
                    - (norm_input_img.get(y, x)[1] + norm_input_img.get(y, x)[0]) / 2));
            r_img.put(y, x, temp_chroma);
            //G = max(0,g-(r+b)/2)
            temp_chroma = max(0, (norm_input_img.get(y, x)[1]
                    - (norm_input_img.get(y, x)[2] + norm_input_img.get(y, x)[0]) / 2));
            g_img.put(y, x, temp_chroma);
            //B = max(0,b-(r+g)/2)
            temp_chroma = max(0, (norm_input_img.get(y, x)[0]
                    - (norm_input_img.get(y, x)[2] + norm_input_img.get(y, x)[1]) / 2));
            b_img.put(y, x, temp_chroma);
            //Y = max(0,(r+g)/2-|r-g|/2-b)
            temp_chroma = max(0,
                    ((norm_input_img.get(y, x)[2] + norm_input_img.get(y, x)[1]) / 2
                            - abs(norm_input_img.get(y, x)[2] + norm_input_img.get(y, x)[1]) / 2
                            - norm_input_img.get(y, x)[0]));
            y_img.put(y, x, temp_chroma);
        }
    }
    //create Gaussian pyramid for 4 color channels
    Mat[] b_gaussian_pyramid = new Mat[9];
    b_gaussian_pyramid[0] = b_img.clone();
    for (i = 0; i < 8; i++) {
        b_gaussian_pyramid[i + 1] = b_gaussian_pyramid[i].clone();
        Imgproc.pyrDown(b_gaussian_pyramid[i + 1], b_gaussian_pyramid[i + 1], new Size());
    }
    Mat[] g_gaussian_pyramid = new Mat[9];
    g_gaussian_pyramid[0] = g_img.clone();
    for (i = 0; i < 8; i++) {
        g_gaussian_pyramid[i + 1] = g_gaussian_pyramid[i].clone();
        Imgproc.pyrDown(g_gaussian_pyramid[i + 1], g_gaussian_pyramid[i + 1], new Size());
    }
    Mat[] r_gaussian_pyramid = new Mat[9];
    r_gaussian_pyramid[0] = r_img.clone();
    for (i = 0; i < 8; i++) {
        r_gaussian_pyramid[i + 1] = r_gaussian_pyramid[i].clone();
        Imgproc.pyrDown(r_gaussian_pyramid[i + 1], r_gaussian_pyramid[i + 1], new Size());
    }
    Mat[] y_gaussian_pyramid = new Mat[9];
    y_gaussian_pyramid[0] = y_img.clone();
    for (i = 0; i < 8; i++) {
        y_gaussian_pyramid[i + 1] = y_gaussian_pyramid[i].clone();
        Imgproc.pyrDown(y_gaussian_pyramid[i + 1], y_gaussian_pyramid[i + 1], new Size());
    }
    //create color feature map using center-surround differences
    //RG(c,s) = |(R(c)-G(c))(-)(G(c)-R(c))|
    Mat[][] rg_feature_map = new Mat[3][2];
    for (c = 0; c < 3; c++) {
        for (s = 0; s < 2; s++) {
            Mat r_minus_g = r_gaussian_pyramid[c + 2].clone();
            Core.subtract(r_gaussian_pyramid[c + 2], g_gaussian_pyramid[c + 2], r_minus_g);
            Mat g_minus_r = g_gaussian_pyramid[s + c + 5].clone();
            Core.subtract(g_gaussian_pyramid[s + c + 5], r_gaussian_pyramid[s + c + 5], g_minus_r);
            rg_feature_map[c][s] = center_surround.main(r_minus_g, g_minus_r, 1);
        }
    }
    //BY(c,s) = |(B(c)-Y(c))(-)(Y(c)-B(c))|
    Mat[][] by_feature_map = new Mat[3][2];
    for (c = 0; c < 3; c++) {
        for (s = 0; s < 2; s++) {
            Mat b_minus_g = b_gaussian_pyramid[c + 2].clone();
            Core.subtract(b_gaussian_pyramid[c + 2], y_gaussian_pyramid[c + 2], b_minus_g);
            Mat y_minus_b = y_gaussian_pyramid[s + c + 5].clone();
            Core.subtract(y_gaussian_pyramid[s + c + 5], b_gaussian_pyramid[s + c + 5], y_minus_b);
            by_feature_map[c][s] = center_surround.main(b_minus_g, y_minus_b, 1);
        }
    }
    //benchmark
    //create oriented Gabor pyramid from intensity image
    int kernel_size = 10;//31;//adjust value according to reference
    double sigma = 3;//default:  = 0.56 .  the larger , the support of the Gabor function  and the number of visible parallel excitatory and inhibitory stripe zones increases.
    double[] theta = new double[4];
    theta[0] = 0;
    theta[1] = Math.PI / 4;
    theta[2] = Math.PI / 2;
    theta[3] = Math.PI * 3 / 4;
    double lambda = 5;//36; minimum 3
    double gamma = 0.5;//0.02;
    // double psi = 0;
    Mat[][] gabor_pyramid = new Mat[4][9];
    int theta_index;
    for (theta_index = 0; theta_index < 4; theta_index++) {
        Mat gabor_kernel = Imgproc.getGaborKernel(new Size(kernel_size, kernel_size), sigma, theta[theta_index],
                lambda, gamma);
        //gabor_pyramid[theta_index][0] = intensity_img.clone();
        for (i = 0; i < 9; i++) {
            //gabor_pyramid[theta_index][i] = gabor_pyramid[theta_index][i].clone();
            gabor_pyramid[theta_index][i] = i_gaussian_pyramid[i].clone();
            Imgproc.filter2D(i_gaussian_pyramid[i], gabor_pyramid[theta_index][i], -1, gabor_kernel);
            //Imgproc.resize(gabor_pyramid[theta_index][i], gabor_pyramid[theta_index][i], new Size(), 0.5, 0.5, Imgproc.INTER_AREA);
        }
    }
    //imwrite("gabor_pyramid_01.bmp", gabor_pyramid[0][1]);
    //imwrite("gabor_pyramid_11.bmp", gabor_pyramid[1][1]);
    //imwrite("gabor_pyramid_21.bmp", gabor_pyramid[2][1]);
    //imwrite("gabor_pyramid_31.bmp", gabor_pyramid[3][1]);
    //imwrite("gabor_pyramid_03.bmp", gabor_pyramid[0][3]);
    //get orientation feature map using center-surround differences
    Mat[][][] orientation_feature_map = new Mat[4][3][2];
    for (theta_index = 0; theta_index < 4; theta_index++) {
        for (c = 0; c < 3; c++) {
            for (s = 0; s < 2; s++) {
                orientation_feature_map[theta_index][c][s] = center_surround
                        .main(gabor_pyramid[theta_index][c + 2], gabor_pyramid[theta_index][s + c + 5], 0);
            }
        }
    }
    //benchmark
    //imwrite("orientation_test_00.bmp", orientation_feature_map[0][0][0]);
    ///////////////////////step 2 : the saliency map///////////////////////////////
    //get intensity conspicuity map
    Mat intensity_conspicuity_map = Mat.zeros(intensity_feature_map[2][0].size(), CV_16UC1);
    for (c = 0; c < 3; c++) {
        for (s = 0; s < 2; s++) {
            Mat norm_out = map_norm.main(intensity_feature_map[c][s]);
            Mat resized_feature_map = Mat.zeros(intensity_feature_map[2][0].size(), CV_16UC1);
            Imgproc.resize(norm_out, resized_feature_map, intensity_feature_map[2][0].size(), 0, 0,
                    Imgproc.INTER_LINEAR);
            Core.addWeighted(intensity_conspicuity_map, 1, resized_feature_map, 1.0 / 6, 0,
                    intensity_conspicuity_map);
            /*if(c == 0 && s == 0){
            imwrite("in.bmp", intensity_feature_map[c][s]);
            imwrite("map_norm.bmp",norm_out);
            imwrite("resized_feature_map.bmp", resized_feature_map);
            }*/
        }
    }
    //benchmark
    //Core.normalize(intensity_conspicuity_map, intensity_conspicuity_map, 0, 255, Core.NORM_MINMAX);
    //imwrite("intensity_conspicuity_map.bmp", intensity_conspicuity_map);
    //get color conspicuity map
    for (c = 0; c < 3; c++) {
        for (s = 0; s < 2; s++) {
            Core.normalize(rg_feature_map[c][s], rg_feature_map[c][s], 0, 255, Core.NORM_MINMAX);
            rg_feature_map[c][s].convertTo(rg_feature_map[c][s], CV_16UC1);
            Core.normalize(by_feature_map[c][s], by_feature_map[c][s], 0, 255, Core.NORM_MINMAX);
            by_feature_map[c][s].convertTo(by_feature_map[c][s], CV_16UC1);
        }
    }
    //imwrite("test_rg.bmp",rg_feature_map[0][0]);      
    Mat color_conspicuity_map = Mat.zeros(rg_feature_map[2][0].size(), CV_16UC1);
    for (c = 0; c < 3; c++) {
        for (s = 0; s < 2; s++) {
            Mat norm_out = map_norm.main(rg_feature_map[c][s]);
            Mat resized_feature_map = Mat.zeros(rg_feature_map[2][0].size(), CV_16UC1);
            Imgproc.resize(norm_out, resized_feature_map, rg_feature_map[2][0].size(), 0, 0,
                    Imgproc.INTER_LINEAR);
            Core.addWeighted(color_conspicuity_map, 1, resized_feature_map, 1.0 / 12, 0, color_conspicuity_map);
            norm_out = map_norm.main(by_feature_map[c][s]);
            resized_feature_map = Mat.zeros(by_feature_map[2][0].size(), CV_16UC1);
            Imgproc.resize(norm_out, resized_feature_map, by_feature_map[2][0].size(), 0, 0,
                    Imgproc.INTER_LINEAR);
            Core.addWeighted(color_conspicuity_map, 1, resized_feature_map, 1.0 / 12, 0, color_conspicuity_map);
        }
    }
    //benchmark
    //get orientation conspicuity map
    Mat orientation_conspicuity_map_0 = Mat.zeros(orientation_feature_map[0][2][0].size(), CV_16UC1);
    for (c = 0; c < 3; c++) {
        for (s = 0; s < 2; s++) {
            Mat norm_out = map_norm.main(orientation_feature_map[0][c][s]);
            Mat resized_feature_map = Mat.zeros(orientation_feature_map[0][2][0].size(), CV_16UC1);
            Imgproc.resize(norm_out, resized_feature_map, orientation_feature_map[0][2][0].size(), 0, 0,
                    Imgproc.INTER_LINEAR);
            Core.addWeighted(orientation_conspicuity_map_0, 1, resized_feature_map, 1.0 / 6, 0,
                    orientation_conspicuity_map_0);
        }
    }

    Mat orientation_conspicuity_map_1 = Mat.zeros(orientation_feature_map[1][2][0].size(), CV_16UC1);
    for (c = 0; c < 3; c++) {
        for (s = 0; s < 2; s++) {
            Mat norm_out = map_norm.main(orientation_feature_map[1][c][s]);
            Mat resized_feature_map = Mat.zeros(orientation_feature_map[1][2][0].size(), CV_16UC1);
            Imgproc.resize(norm_out, resized_feature_map, orientation_feature_map[1][2][0].size(), 0, 0,
                    Imgproc.INTER_LINEAR);
            Core.addWeighted(orientation_conspicuity_map_1, 1, resized_feature_map, 1.0 / 6, 0,
                    orientation_conspicuity_map_1);
        }
    }
    Mat orientation_conspicuity_map_2 = Mat.zeros(orientation_feature_map[2][2][0].size(), CV_16UC1);
    for (c = 0; c < 3; c++) {
        for (s = 0; s < 2; s++) {
            Mat norm_out = map_norm.main(orientation_feature_map[2][c][s]);
            Mat resized_feature_map = Mat.zeros(orientation_feature_map[2][2][0].size(), CV_16UC1);
            Imgproc.resize(norm_out, resized_feature_map, orientation_feature_map[2][2][0].size(), 0, 0,
                    Imgproc.INTER_LINEAR);
            Core.addWeighted(orientation_conspicuity_map_2, 1, resized_feature_map, 1.0 / 6, 0,
                    orientation_conspicuity_map_2);
        }
    }
    Mat orientation_conspicuity_map_3 = Mat.zeros(orientation_feature_map[3][2][0].size(), CV_16UC1);
    for (c = 0; c < 3; c++) {
        for (s = 0; s < 2; s++) {
            Mat norm_out = map_norm.main(orientation_feature_map[3][c][s]);
            Mat resized_feature_map = Mat.zeros(orientation_feature_map[3][2][0].size(), CV_16UC1);
            Imgproc.resize(norm_out, resized_feature_map, orientation_feature_map[3][2][0].size(), 0, 0,
                    Imgproc.INTER_LINEAR);
            Core.addWeighted(orientation_conspicuity_map_3, 1, resized_feature_map, 1.0 / 6, 0,
                    orientation_conspicuity_map_3);
        }
    }
    Mat orientation_conspicuity_map = Mat.zeros(orientation_feature_map[0][2][0].size(), CV_16UC1);
    Core.addWeighted(orientation_conspicuity_map, 1, map_norm.main(orientation_conspicuity_map_0), 1.0 / 4, 0,
            orientation_conspicuity_map);
    Core.addWeighted(orientation_conspicuity_map, 1, map_norm.main(orientation_conspicuity_map_1), 1.0 / 4, 0,
            orientation_conspicuity_map);
    Core.addWeighted(orientation_conspicuity_map, 1, map_norm.main(orientation_conspicuity_map_2), 1.0 / 4, 0,
            orientation_conspicuity_map);
    Core.addWeighted(orientation_conspicuity_map, 1, map_norm.main(orientation_conspicuity_map_3), 1.0 / 4, 0,
            orientation_conspicuity_map);
    //benchmark
    Mat saliency = Mat.zeros(intensity_conspicuity_map.size(), CV_16UC1);
    Core.addWeighted(saliency, 1, map_norm.main(intensity_conspicuity_map), 1.0 / 3, 0, saliency);
    Core.addWeighted(saliency, 1, map_norm.main(color_conspicuity_map), 1.0 / 3, 0, saliency);
    Core.addWeighted(saliency, 1, map_norm.main(orientation_conspicuity_map), 1.0 / 3, 0, saliency);
    //benchmark
    Core.normalize(saliency, saliency, 0, 255, Core.NORM_MINMAX);
    //fot temp test
    Imgproc.resize(saliency, saliency, new Size(720, 480), 0, 0, Imgproc.INTER_LINEAR);
    imwrite("saliency.bmp", saliency);

    Core.normalize(intensity_conspicuity_map, intensity_conspicuity_map, 0, 255, Core.NORM_MINMAX);
    Imgproc.resize(intensity_conspicuity_map, intensity_conspicuity_map, new Size(720, 480), 0, 0,
            Imgproc.INTER_LINEAR);
    imwrite("intensity_conspicuity_map.bmp", intensity_conspicuity_map);
    Core.normalize(color_conspicuity_map, color_conspicuity_map, 0, 255, Core.NORM_MINMAX);
    Imgproc.resize(color_conspicuity_map, color_conspicuity_map, new Size(720, 480), 0, 0,
            Imgproc.INTER_LINEAR);
    imwrite("color_conspicuity_map.bmp", color_conspicuity_map);
    Core.normalize(orientation_conspicuity_map, orientation_conspicuity_map, 0, 255, Core.NORM_MINMAX);
    Imgproc.resize(orientation_conspicuity_map, orientation_conspicuity_map, new Size(720, 480), 0, 0,
            Imgproc.INTER_LINEAR);
    imwrite("orientation_conspicuity_map.bmp", orientation_conspicuity_map);
    Imgproc.resize(input_img, input_img, new Size(720, 480), 0, 0, Imgproc.INTER_LINEAR);
    imwrite("input_img.bmp", input_img);
    //for testing algorithm
    /*
    Mat temp1 = Mat.zeros(intensity_conspicuity_map.size(), CV_16UC1);
    temp1 = map_norm.main(intensity_conspicuity_map);
    Core.normalize(temp1, temp1, 0, 255, Core.NORM_MINMAX);
    Imgproc.resize(temp1, temp1, new Size(720,480), 0, 0, Imgproc.INTER_LINEAR);
    imwrite("intensity.bmp", temp1);
    temp1 = map_norm.main(color_conspicuity_map);
    Core.normalize(temp1, temp1, 0, 255, Core.NORM_MINMAX);
    Imgproc.resize(temp1, temp1, new Size(720,480), 0, 0, Imgproc.INTER_LINEAR);
    imwrite("color.bmp", temp1);
    temp1 = map_norm.main(orientation_conspicuity_map);
    Core.normalize(temp1, temp1, 0, 255, Core.NORM_MINMAX);
    Imgproc.resize(temp1, temp1, new Size(720,480), 0, 0, Imgproc.INTER_LINEAR);
    imwrite("orientation.bmp", temp1);
            
    Mat temp2 = Mat.zeros(orientation_conspicuity_map_0.size(), CV_16UC1);
    temp2 = map_norm.main(orientation_conspicuity_map_0);
    Core.normalize(temp2, temp2, 0, 255, Core.NORM_MINMAX);
    Imgproc.resize(temp2, temp2, new Size(720,480), 0, 0, Imgproc.INTER_LINEAR);
    imwrite("orientation_conspicuity_map_0.bmp", temp2);
    temp2 = map_norm.main(orientation_conspicuity_map_1);
    Core.normalize(temp2, temp2, 0, 255, Core.NORM_MINMAX);
    Imgproc.resize(temp2, temp2, new Size(720,480), 0, 0, Imgproc.INTER_LINEAR);
    imwrite("orientation_conspicuity_map_1.bmp", temp2);
    temp2 = map_norm.main(orientation_conspicuity_map_2);
    Core.normalize(temp2, temp2, 0, 255, Core.NORM_MINMAX);
    Imgproc.resize(temp2, temp2, new Size(720,480), 0, 0, Imgproc.INTER_LINEAR);
    imwrite("orientation_conspicuity_map_2.bmp", temp2);
    temp2 = map_norm.main(orientation_conspicuity_map_3);
    Core.normalize(temp2, temp2, 0, 255, Core.NORM_MINMAX);
    Imgproc.resize(temp2, temp2, new Size(720,480), 0, 0, Imgproc.INTER_LINEAR);
    imwrite("orientation_conspicuity_map_3.bmp", temp2);
    */
}

From source file:simeav.filtros.instanciaciones.DetectorConectoresEstandar.java

@Override
public Mat detectarConectores(Mat original, Mat mascaraModulos, Diagrama diagrama) {
    Mat sinCuadrados = Utils.borrarMascara(original, mascaraModulos);
    // dilato los conectores para que se superpongan con los cuadrados
    sinCuadrados = Utils.dilate(sinCuadrados);
    sinCuadrados = Utils.dilate(sinCuadrados);
    sinCuadrados = Utils.dilate(sinCuadrados);
    //elimino puntos que pueden haber quedado de la eliminacion de cuadrados
    ArrayList<MatOfPoint> contornos = Utils.detectarContornos(sinCuadrados);
    for (int i = 0; i < contornos.size(); i++) {
        double area = Imgproc.contourArea(contornos.get(i));
        if (area <= 50) {
            Imgproc.drawContours(sinCuadrados, contornos, i, new Scalar(0, 0, 0), -1);
        }/*from w  ww  .  j  a  v a 2s  .  com*/
    }

    this.extremos = original.clone();
    Mat mascara;
    String tipo_extremo1, tipo_extremo2;
    // Imagen en la que se va a dibuja el resultado
    Mat conectores = Mat.zeros(sinCuadrados.size(), CvType.CV_8UC3);
    Mat contorno;
    contornos = Utils.detectarContornos(sinCuadrados);
    Mat intersec = new Mat();

    ArrayList<MatOfPoint> contornos_intersec;
    int r, g, b;
    for (int j = contornos.size() - 1; j >= 0; j--) {
        //Dibujo el contorno relleno, para despues sacar la interseccion con los cuadrados
        contorno = Mat.zeros(sinCuadrados.size(), CvType.CV_8UC3);
        Imgproc.drawContours(contorno, contornos, j, new Scalar(180, 255, 255), -1);
        Imgproc.cvtColor(contorno, contorno, Imgproc.COLOR_BGR2GRAY);
        //Calculo la interseccion con los cuadrados (se dibujan en intersec)
        Core.bitwise_and(contorno, mascaraModulos, intersec);
        //Saco los contornos de las intersecciones para saber donde estan
        contornos_intersec = Utils.detectarContornos(intersec);
        if (contornos_intersec.size() > 1) {
            Scalar color = Utils.getColorRandom();
            for (int z = 0; z < contornos_intersec.size(); z++) {
                Imgproc.drawContours(conectores, contornos_intersec, z, color, -1);
            }
            ArrayList<Point> centros_extremos = Utils.getCentros(contornos_intersec);
            for (Point centros_extremo : centros_extremos) {
                Core.circle(conectores, centros_extremo, 4, color, -1);
            }
            analizarExtremos(j, centros_extremos, diagrama);
            Conector c = diagrama.getConector(j);

            Core.rectangle(conectores, c.getModuloDesde().getRectangulo().tl(),
                    c.getModuloDesde().getRectangulo().br(), color, 3);
            Core.rectangle(conectores, c.getModuloHasta().getRectangulo().tl(),
                    c.getModuloHasta().getRectangulo().br(), color, 3);
            Point tl_desde = new Point(c.getDesde().x - 20, c.getDesde().y - 20);
            Point br_desde = new Point(c.getDesde().x + 20, c.getDesde().y + 20);
            Point tl_hasta = new Point(c.getHasta().x - 20, c.getHasta().y - 20);
            Point br_hasta = new Point(c.getHasta().x + 20, c.getHasta().y + 20);
            mascara = new Mat(sinCuadrados.size(), CvType.CV_8U, new Scalar(255, 255, 255));
            Core.rectangle(mascara, tl_desde, br_desde, new Scalar(0, 0, 0), -1);
            tipo_extremo1 = clasificarExtremo(Utils.borrarMascara(original, mascara));

            mascara = new Mat(sinCuadrados.size(), CvType.CV_8U, new Scalar(255, 255, 255));
            Core.rectangle(mascara, tl_hasta, br_hasta, new Scalar(0, 0, 0), -1);
            tipo_extremo2 = clasificarExtremo(Utils.borrarMascara(original, mascara));
            if (!tipo_extremo1.equals(tipo_extremo2)) {
                if (tipo_extremo1.equals("Normal"))
                    c.setTipo(tipo_extremo2);
                else if (tipo_extremo2.equals("Normal")) {
                    Modulo aux = c.getModuloDesde();
                    c.setDesde(c.getModuloHasta());
                    c.setHacia(aux);
                    Point p_aux = c.getDesde();
                    c.setDesde(c.getHasta());
                    c.setHasta(p_aux);
                    c.setTipo(tipo_extremo1);
                } else {
                    c.setTipo("Indeterminado");
                }
            } else {
                c.setTipo("Indeterminado");
            }
        }
    }
    return conectores;
}

From source file:simeav.filtros.instanciaciones.DetectorModulosEstandar.java

@Override
public Mat detectarModulos(Mat original, Diagrama diagrama) {
    Imgproc.blur(original, original, new Size(15, 15));
    original = Utils.dilate(original);/*from   w w  w. ja  v  a  2s . c o  m*/
    Mat jerarquia = new Mat();
    ArrayList<MatOfPoint> contornos = new ArrayList<>();
    Imgproc.findContours(original.clone(), contornos, jerarquia, Imgproc.RETR_CCOMP,
            Imgproc.CHAIN_APPROX_SIMPLE);
    ArrayList<MatOfPoint> cp = new ArrayList<>(contornos.size());
    Map<Integer, Rect> rectangulos = new HashMap<>();
    Integer id_cuadrado = 0;
    Mat resultado = Mat.zeros(original.size(), CvType.CV_8U);
    for (int i = contornos.size() - 1; i >= 0; i--) {
        if (jerarquia.get(0, i)[3] > -1) {
            MatOfPoint2f contorno2f = new MatOfPoint2f();
            contorno2f.fromList(contornos.get(i).toList());
            MatOfPoint2f c = new MatOfPoint2f();
            Imgproc.approxPolyDP(contorno2f, c, 3, true);
            cp.add(new MatOfPoint(c.toArray()));
            int lados = cp.get(cp.size() - 1).height();
            if ((4 <= lados) && lados < 12) {
                rectangulos.put(id_cuadrado, Imgproc.boundingRect(new MatOfPoint(c.toArray())));
                Point tl = new Point(rectangulos.get(id_cuadrado).tl().x - 20,
                        rectangulos.get(id_cuadrado).tl().y - 20);
                Point br = new Point(rectangulos.get(id_cuadrado).br().x + 20,
                        rectangulos.get(id_cuadrado).br().y + 20);
                Core.rectangle(resultado, tl, br, new Scalar(255, 255, 255), -1);
                diagrama.addModulo(id_cuadrado, new Rect(tl, br));
                Imgproc.drawContours(resultado, contornos, i, new Scalar(0, 0, 0), -1);
                id_cuadrado++;
            }
        }
    }
    return resultado;
}

From source file:simeav.filtros.instanciaciones.SeparadorTextoEstandar.java

@Override
public void separarTexto(Mat origin, int umbral_radio) {
    Mat original = origin.clone();//from w  ww  . ja  v a 2s.  co  m
    imagenSinTexto = original.clone();
    imagenTexto = Mat.zeros(original.size(), CvType.CV_8U);
    imagenTexto = imagenTexto.setTo(new Scalar(255, 255, 255));
    Mat imGrises = new Mat();
    Mat bw = new Mat();
    Imgproc.cvtColor(original, imGrises, Imgproc.COLOR_BGR2GRAY);
    Imgproc.GaussianBlur(imGrises, bw, new Size(1, 1), 0);
    Imgproc.threshold(bw, bw, 200, 250, Imgproc.THRESH_BINARY_INV);
    ArrayList<MatOfPoint> contornos = Utils.detectarContornos(bw);
    for (int i = 0; i < contornos.size(); i++) {
        MatOfPoint2f contorno2f = new MatOfPoint2f();
        contorno2f.fromList(contornos.get(i).toList());
        float[] radius = new float[1];
        Point centro = new Point();
        Imgproc.minEnclosingCircle(contorno2f, centro, radius);
        double a = Imgproc.contourArea(contornos.get(i));
        if (radius[0] <= umbral_radio) {
            Imgproc.drawContours(imagenSinTexto, contornos, i, new Scalar(255, 255, 255), -1);
            Imgproc.drawContours(imagenTexto, contornos, i, new Scalar(0, 0, 0), -1);
        }
    }
}

From source file:simeav.Utils.java

public static ArrayList<Point> detectarVertices(Mat original) {
    MatOfPoint corners = new MatOfPoint();
    Imgproc.goodFeaturesToTrack(original, corners, 100, 0.01, 0, new Mat(), 2, false, 0.04);
    Mat vertices = Mat.zeros(original.size(), CvType.CV_8UC3);
    for (int i = 0; i < corners.height(); i++) {
        Core.circle(vertices, new Point(corners.get(i, 0)), 8, new Scalar(180, 170, 5), -1);
    }//from www .j  a  va  2s. c  o  m

    Mat imGrises = new Mat();
    Mat bw = new Mat();
    Imgproc.cvtColor(vertices, imGrises, Imgproc.COLOR_BGR2GRAY);
    Imgproc.Canny(imGrises, bw, 100, 150, 5, true);

    Mat jerarquia = new Mat();
    ArrayList<MatOfPoint> contornos = new ArrayList<>();
    Imgproc.findContours(bw.clone(), contornos, jerarquia, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);
    ArrayList<Point> mc = Utils.getCentros(contornos);
    Mat resultado = Mat.zeros(original.size(), CvType.CV_8UC3);
    for (int i = 0; i < contornos.size(); i++) {
        Scalar color = new Scalar(180, 170, 5);
        //            Imgproc.drawContours(resultado, contornos, i, color, 2, 8, jerarquia, 0, new Point());
        Core.circle(resultado, mc.get(i), 4, color, -1, 8, 0);
    }
    return mc;
}