Example usage for org.apache.spark.launcher SparkLauncher EXECUTOR_EXTRA_JAVA_OPTIONS

List of usage examples for org.apache.spark.launcher SparkLauncher EXECUTOR_EXTRA_JAVA_OPTIONS

Introduction

In this page you can find the example usage for org.apache.spark.launcher SparkLauncher EXECUTOR_EXTRA_JAVA_OPTIONS.

Prototype

String EXECUTOR_EXTRA_JAVA_OPTIONS

To view the source code for org.apache.spark.launcher SparkLauncher EXECUTOR_EXTRA_JAVA_OPTIONS.

Click Source Link

Document

Configuration key for the executor VM options.

Usage

From source file:grakn.core.server.session.computer.GraknSparkComputer.java

License:Open Source License

@SuppressWarnings("PMD.UnusedFormalParameter")
private Future<ComputerResult> submitWithExecutor() {
    jobGroupId = Integer.toString(ThreadLocalRandom.current().nextInt(Integer.MAX_VALUE));
    String jobDescription = this.vertexProgram == null ? this.mapReducers.toString()
            : this.vertexProgram + "+" + this.mapReducers;

    // Use different output locations
    this.sparkConfiguration.setProperty(Constants.GREMLIN_HADOOP_OUTPUT_LOCATION,
            this.sparkConfiguration.getString(Constants.GREMLIN_HADOOP_OUTPUT_LOCATION) + "/" + jobGroupId);

    updateConfigKeys(sparkConfiguration);

    final Future<ComputerResult> result = computerService.submit(() -> {
        final long startTime = System.currentTimeMillis();

        //////////////////////////////////////////////////
        /////// PROCESS SHIM AND SYSTEM PROPERTIES ///////
        //////////////////////////////////////////////////
        final String shimService = KryoSerializer.class.getCanonicalName()
                .equals(this.sparkConfiguration.getString(Constants.SPARK_SERIALIZER, null))
                        ? UnshadedKryoShimService.class.getCanonicalName()
                        : HadoopPoolShimService.class.getCanonicalName();
        this.sparkConfiguration.setProperty(KryoShimServiceLoader.KRYO_SHIM_SERVICE, shimService);
        ///////////
        final StringBuilder params = new StringBuilder();
        this.sparkConfiguration.getKeys().forEachRemaining(key -> {
            if (KEYS_PASSED_IN_JVM_SYSTEM_PROPERTIES.contains(key)) {
                params.append(" -D").append("tinkerpop.").append(key).append("=")
                        .append(this.sparkConfiguration.getProperty(key));
                System.setProperty("tinkerpop." + key, this.sparkConfiguration.getProperty(key).toString());
            }//from   www  .j  a  v a 2  s . com
        });
        if (params.length() > 0) {
            this.sparkConfiguration.setProperty(SparkLauncher.EXECUTOR_EXTRA_JAVA_OPTIONS,
                    (this.sparkConfiguration.getString(SparkLauncher.EXECUTOR_EXTRA_JAVA_OPTIONS, "")
                            + params.toString()).trim());
            this.sparkConfiguration.setProperty(SparkLauncher.DRIVER_EXTRA_JAVA_OPTIONS,
                    (this.sparkConfiguration.getString(SparkLauncher.DRIVER_EXTRA_JAVA_OPTIONS, "")
                            + params.toString()).trim());
        }
        KryoShimServiceLoader.applyConfiguration(this.sparkConfiguration);
        //////////////////////////////////////////////////
        //////////////////////////////////////////////////
        //////////////////////////////////////////////////
        // apache and hadoop configurations that are used throughout the graph computer computation
        final org.apache.commons.configuration.Configuration graphComputerConfiguration = new HadoopConfiguration(
                this.sparkConfiguration);
        if (!graphComputerConfiguration.containsKey(Constants.SPARK_SERIALIZER)) {
            graphComputerConfiguration.setProperty(Constants.SPARK_SERIALIZER,
                    KryoSerializer.class.getCanonicalName());
            if (!graphComputerConfiguration.containsKey(Constants.SPARK_KRYO_REGISTRATOR)) {
                graphComputerConfiguration.setProperty(Constants.SPARK_KRYO_REGISTRATOR,
                        GryoRegistrator.class.getCanonicalName());
            }
        }
        graphComputerConfiguration.setProperty(Constants.GREMLIN_HADOOP_GRAPH_WRITER_HAS_EDGES,
                this.persist.equals(GraphComputer.Persist.EDGES));

        final Configuration hadoopConfiguration = ConfUtil.makeHadoopConfiguration(graphComputerConfiguration);

        final Storage fileSystemStorage = FileSystemStorage.open(hadoopConfiguration);
        final boolean inputFromHDFS = FileInputFormat.class.isAssignableFrom(
                hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_READER, Object.class));
        final boolean inputFromSpark = PersistedInputRDD.class.isAssignableFrom(
                hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_READER, Object.class));
        final boolean outputToHDFS = FileOutputFormat.class.isAssignableFrom(
                hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_WRITER, Object.class));
        final boolean outputToSpark = PersistedOutputRDD.class.isAssignableFrom(
                hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_WRITER, Object.class));
        final boolean skipPartitioner = graphComputerConfiguration
                .getBoolean(Constants.GREMLIN_SPARK_SKIP_PARTITIONER, false);
        final boolean skipPersist = graphComputerConfiguration
                .getBoolean(Constants.GREMLIN_SPARK_SKIP_GRAPH_CACHE, false);

        if (inputFromHDFS) {
            String inputLocation = Constants
                    .getSearchGraphLocation(hadoopConfiguration.get(Constants.GREMLIN_HADOOP_INPUT_LOCATION),
                            fileSystemStorage)
                    .orElse(null);
            if (null != inputLocation) {
                try {
                    graphComputerConfiguration.setProperty(Constants.MAPREDUCE_INPUT_FILEINPUTFORMAT_INPUTDIR,
                            FileSystem.get(hadoopConfiguration).getFileStatus(new Path(inputLocation)).getPath()
                                    .toString());
                    hadoopConfiguration.set(Constants.MAPREDUCE_INPUT_FILEINPUTFORMAT_INPUTDIR,
                            FileSystem.get(hadoopConfiguration).getFileStatus(new Path(inputLocation)).getPath()
                                    .toString());
                } catch (final IOException e) {
                    throw new IllegalStateException(e.getMessage(), e);
                }
            }
        }

        final InputRDD inputRDD;
        final OutputRDD outputRDD;
        final boolean filtered;
        try {
            inputRDD = InputRDD.class.isAssignableFrom(
                    hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_READER, Object.class))
                            ? hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_READER,
                                    InputRDD.class, InputRDD.class).newInstance()
                            : InputFormatRDD.class.newInstance();
            outputRDD = OutputRDD.class.isAssignableFrom(
                    hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_WRITER, Object.class))
                            ? hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_WRITER,
                                    OutputRDD.class, OutputRDD.class).newInstance()
                            : OutputFormatRDD.class.newInstance();

            // if the input class can filter on load, then set the filters
            if (inputRDD instanceof InputFormatRDD
                    && GraphFilterAware.class.isAssignableFrom(hadoopConfiguration.getClass(
                            Constants.GREMLIN_HADOOP_GRAPH_READER, InputFormat.class, InputFormat.class))) {
                GraphFilterAware.storeGraphFilter(graphComputerConfiguration, hadoopConfiguration,
                        this.graphFilter);
                filtered = false;
            } else if (inputRDD instanceof GraphFilterAware) {
                ((GraphFilterAware) inputRDD).setGraphFilter(this.graphFilter);
                filtered = false;
            } else
                filtered = this.graphFilter.hasFilter();
        } catch (final InstantiationException | IllegalAccessException e) {
            throw new IllegalStateException(e.getMessage(), e);
        }

        // create the spark context from the graph computer configuration
        final JavaSparkContext sparkContext = new JavaSparkContext(Spark.create(hadoopConfiguration));
        final Storage sparkContextStorage = SparkContextStorage.open();

        sparkContext.setJobGroup(jobGroupId, jobDescription);

        GraknSparkMemory memory = null;
        // delete output location
        final String outputLocation = hadoopConfiguration.get(Constants.GREMLIN_HADOOP_OUTPUT_LOCATION, null);
        if (null != outputLocation) {
            if (outputToHDFS && fileSystemStorage.exists(outputLocation)) {
                fileSystemStorage.rm(outputLocation);
            }
            if (outputToSpark && sparkContextStorage.exists(outputLocation)) {
                sparkContextStorage.rm(outputLocation);
            }
        }

        // the Spark application name will always be set by SparkContextStorage,
        // thus, INFO the name to make it easier to debug
        logger.debug(Constants.GREMLIN_HADOOP_SPARK_JOB_PREFIX
                + (null == this.vertexProgram ? "No VertexProgram" : this.vertexProgram) + "["
                + this.mapReducers + "]");

        // add the project jars to the cluster
        this.loadJars(hadoopConfiguration, sparkContext);
        updateLocalConfiguration(sparkContext, hadoopConfiguration);

        // create a message-passing friendly rdd from the input rdd
        boolean partitioned = false;
        JavaPairRDD<Object, VertexWritable> loadedGraphRDD = inputRDD.readGraphRDD(graphComputerConfiguration,
                sparkContext);

        // if there are vertex or edge filters, filter the loaded graph rdd prior to partitioning and persisting
        if (filtered) {
            this.logger.debug("Filtering the loaded graphRDD: " + this.graphFilter);
            loadedGraphRDD = GraknSparkExecutor.applyGraphFilter(loadedGraphRDD, this.graphFilter);
        }
        // if the loaded graph RDD is already partitioned use that partitioner,
        // else partition it with HashPartitioner
        if (loadedGraphRDD.partitioner().isPresent()) {
            this.logger.debug("Using the existing partitioner associated with the loaded graphRDD: "
                    + loadedGraphRDD.partitioner().get());
        } else {
            if (!skipPartitioner) {
                final Partitioner partitioner = new HashPartitioner(
                        this.workersSet ? this.workers : loadedGraphRDD.partitions().size());
                this.logger.debug("Partitioning the loaded graphRDD: " + partitioner);
                loadedGraphRDD = loadedGraphRDD.partitionBy(partitioner);
                partitioned = true;
                assert loadedGraphRDD.partitioner().isPresent();
            } else {
                // no easy way to test this with a test case
                assert skipPartitioner == !loadedGraphRDD.partitioner().isPresent();

                this.logger.debug("Partitioning has been skipped for the loaded graphRDD via "
                        + Constants.GREMLIN_SPARK_SKIP_PARTITIONER);
            }
        }
        // if the loaded graphRDD was already partitioned previous,
        // then this coalesce/repartition will not take place
        if (this.workersSet) {
            // ensures that the loaded graphRDD does not have more partitions than workers
            if (loadedGraphRDD.partitions().size() > this.workers) {
                loadedGraphRDD = loadedGraphRDD.coalesce(this.workers);
            } else {
                // ensures that the loaded graphRDD does not have less partitions than workers
                if (loadedGraphRDD.partitions().size() < this.workers) {
                    loadedGraphRDD = loadedGraphRDD.repartition(this.workers);
                }
            }
        }
        // persist the vertex program loaded graph as specified by configuration
        // or else use default cache() which is MEMORY_ONLY
        if (!skipPersist && (!inputFromSpark || partitioned || filtered)) {
            loadedGraphRDD = loadedGraphRDD.persist(StorageLevel.fromString(
                    hadoopConfiguration.get(Constants.GREMLIN_SPARK_GRAPH_STORAGE_LEVEL, "MEMORY_ONLY")));
        }
        // final graph with view
        // (for persisting and/or mapReducing -- may be null and thus, possible to save space/time)
        JavaPairRDD<Object, VertexWritable> computedGraphRDD = null;
        try {
            ////////////////////////////////
            // process the vertex program //
            ////////////////////////////////
            if (null != this.vertexProgram) {
                memory = new GraknSparkMemory(this.vertexProgram, this.mapReducers, sparkContext);
                /////////////////
                // if there is a registered VertexProgramInterceptor, use it to bypass the GraphComputer semantics
                if (graphComputerConfiguration
                        .containsKey(Constants.GREMLIN_HADOOP_VERTEX_PROGRAM_INTERCEPTOR)) {
                    try {
                        final GraknSparkVertexProgramInterceptor<VertexProgram> interceptor = (GraknSparkVertexProgramInterceptor) Class
                                .forName(graphComputerConfiguration
                                        .getString(Constants.GREMLIN_HADOOP_VERTEX_PROGRAM_INTERCEPTOR))
                                .newInstance();
                        computedGraphRDD = interceptor.apply(this.vertexProgram, loadedGraphRDD, memory);
                    } catch (final ClassNotFoundException | IllegalAccessException | InstantiationException e) {
                        throw new IllegalStateException(e.getMessage());
                    }
                } else {
                    // standard GraphComputer semantics
                    // get a configuration that will be propagated to all workers
                    final HadoopConfiguration vertexProgramConfiguration = new HadoopConfiguration();
                    this.vertexProgram.storeState(vertexProgramConfiguration);
                    // set up the vertex program and wire up configurations
                    this.vertexProgram.setup(memory);
                    JavaPairRDD<Object, ViewIncomingPayload<Object>> viewIncomingRDD = null;
                    memory.broadcastMemory(sparkContext);
                    // execute the vertex program
                    while (true) {
                        if (Thread.interrupted()) {
                            sparkContext.cancelAllJobs();
                            throw new TraversalInterruptedException();
                        }
                        memory.setInExecute(true);
                        viewIncomingRDD = GraknSparkExecutor.executeVertexProgramIteration(loadedGraphRDD,
                                viewIncomingRDD, memory, graphComputerConfiguration,
                                vertexProgramConfiguration);
                        memory.setInExecute(false);
                        if (this.vertexProgram.terminate(memory)) {
                            break;
                        } else {
                            memory.incrIteration();
                            memory.broadcastMemory(sparkContext);
                        }
                    }
                    // if the graph will be continued to be used (persisted or mapreduced),
                    // then generate a view+graph
                    if ((null != outputRDD && !this.persist.equals(Persist.NOTHING))
                            || !this.mapReducers.isEmpty()) {
                        computedGraphRDD = GraknSparkExecutor.prepareFinalGraphRDD(loadedGraphRDD,
                                viewIncomingRDD, this.vertexProgram.getVertexComputeKeys());
                        assert null != computedGraphRDD && computedGraphRDD != loadedGraphRDD;
                    } else {
                        // ensure that the computedGraphRDD was not created
                        assert null == computedGraphRDD;
                    }
                }
                /////////////////
                memory.complete(); // drop all transient memory keys
                // write the computed graph to the respective output (rdd or output format)
                if (null != outputRDD && !this.persist.equals(Persist.NOTHING)) {
                    // the logic holds that a computeGraphRDD must be created at this point
                    assert null != computedGraphRDD;

                    outputRDD.writeGraphRDD(graphComputerConfiguration, computedGraphRDD);
                }
            }

            final boolean computedGraphCreated = computedGraphRDD != null && computedGraphRDD != loadedGraphRDD;
            if (!computedGraphCreated) {
                computedGraphRDD = loadedGraphRDD;
            }

            final Memory.Admin finalMemory = null == memory ? new MapMemory() : new MapMemory(memory);

            //////////////////////////////
            // process the map reducers //
            //////////////////////////////
            if (!this.mapReducers.isEmpty()) {
                // create a mapReduceRDD for executing the map reduce jobs on
                JavaPairRDD<Object, VertexWritable> mapReduceRDD = computedGraphRDD;
                if (computedGraphCreated && !outputToSpark) {
                    // drop all the edges of the graph as they are not used in mapReduce processing
                    mapReduceRDD = computedGraphRDD.mapValues(vertexWritable -> {
                        vertexWritable.get().dropEdges(Direction.BOTH);
                        return vertexWritable;
                    });
                    // if there is only one MapReduce to execute, don't bother wasting the clock cycles.
                    if (this.mapReducers.size() > 1) {
                        mapReduceRDD = mapReduceRDD.persist(StorageLevel.fromString(hadoopConfiguration
                                .get(Constants.GREMLIN_SPARK_GRAPH_STORAGE_LEVEL, "MEMORY_ONLY")));
                    }
                }

                for (final MapReduce mapReduce : this.mapReducers) {
                    // execute the map reduce job
                    final HadoopConfiguration newApacheConfiguration = new HadoopConfiguration(
                            graphComputerConfiguration);
                    mapReduce.storeState(newApacheConfiguration);
                    // map
                    final JavaPairRDD mapRDD = GraknSparkExecutor.executeMap(mapReduceRDD, mapReduce,
                            newApacheConfiguration);
                    // combine
                    final JavaPairRDD combineRDD = mapReduce.doStage(MapReduce.Stage.COMBINE)
                            ? GraknSparkExecutor.executeCombine(mapRDD, newApacheConfiguration)
                            : mapRDD;
                    // reduce
                    final JavaPairRDD reduceRDD = mapReduce.doStage(MapReduce.Stage.REDUCE)
                            ? GraknSparkExecutor.executeReduce(combineRDD, mapReduce, newApacheConfiguration)
                            : combineRDD;
                    // write the map reduce output back to disk and computer result memory
                    if (null != outputRDD) {
                        mapReduce.addResultToMemory(finalMemory, outputRDD.writeMemoryRDD(
                                graphComputerConfiguration, mapReduce.getMemoryKey(), reduceRDD));
                    }
                }
                // if the mapReduceRDD is not simply the computed graph, unpersist the mapReduceRDD
                if (computedGraphCreated && !outputToSpark) {
                    assert loadedGraphRDD != computedGraphRDD;
                    assert mapReduceRDD != computedGraphRDD;
                    mapReduceRDD.unpersist();
                } else {
                    assert mapReduceRDD == computedGraphRDD;
                }
            }

            // unpersist the loaded graph if it will not be used again (no PersistedInputRDD)
            // if the graphRDD was loaded from Spark, but then partitioned or filtered, its a different RDD
            if (!inputFromSpark || partitioned || filtered) {
                loadedGraphRDD.unpersist();
            }
            // unpersist the computed graph if it will not be used again (no PersistedOutputRDD)
            // if the computed graph is the loadedGraphRDD because it was not mutated and not-unpersisted,
            // then don't unpersist the computedGraphRDD/loadedGraphRDD
            if ((!outputToSpark || this.persist.equals(GraphComputer.Persist.NOTHING))
                    && computedGraphCreated) {
                computedGraphRDD.unpersist();
            }
            // delete any file system or rdd data if persist nothing
            if (null != outputLocation && this.persist.equals(GraphComputer.Persist.NOTHING)) {
                if (outputToHDFS) {
                    fileSystemStorage.rm(outputLocation);
                }
                if (outputToSpark) {
                    sparkContextStorage.rm(outputLocation);
                }
            }
            // update runtime and return the newly computed graph
            finalMemory.setRuntime(System.currentTimeMillis() - startTime);
            // clear properties that should not be propagated in an OLAP chain
            graphComputerConfiguration.clearProperty(Constants.GREMLIN_HADOOP_GRAPH_FILTER);
            graphComputerConfiguration.clearProperty(Constants.GREMLIN_HADOOP_VERTEX_PROGRAM_INTERCEPTOR);
            graphComputerConfiguration.clearProperty(Constants.GREMLIN_SPARK_SKIP_GRAPH_CACHE);
            graphComputerConfiguration.clearProperty(Constants.GREMLIN_SPARK_SKIP_PARTITIONER);
            return new DefaultComputerResult(InputOutputHelper.getOutputGraph(graphComputerConfiguration,
                    this.resultGraph, this.persist), finalMemory.asImmutable());
        } catch (Exception e) {
            // So it throws the same exception as tinker does
            throw new RuntimeException(e);
        }
    });
    computerService.shutdown();
    return result;
}

From source file:org.apache.tinkerpop.gremlin.spark.process.computer.SparkGraphComputer.java

License:Apache License

private Future<ComputerResult> submitWithExecutor(Executor exec) {
    // create the completable future
    return computerService.submit(() -> {
        final long startTime = System.currentTimeMillis();
        //////////////////////////////////////////////////
        /////// PROCESS SHIM AND SYSTEM PROPERTIES ///////
        //////////////////////////////////////////////////
        ConfigurationUtils.copy(this.hadoopGraph.configuration(), this.sparkConfiguration);
        final String shimService = KryoSerializer.class.getCanonicalName()
                .equals(this.sparkConfiguration.getString(Constants.SPARK_SERIALIZER, null))
                        ? UnshadedKryoShimService.class.getCanonicalName()
                        : HadoopPoolShimService.class.getCanonicalName();
        this.sparkConfiguration.setProperty(KryoShimServiceLoader.KRYO_SHIM_SERVICE, shimService);
        ///////////
        final StringBuilder params = new StringBuilder();
        this.sparkConfiguration.getKeys().forEachRemaining(key -> {
            if (KEYS_PASSED_IN_JVM_SYSTEM_PROPERTIES.contains(key)) {
                params.append(" -D").append("tinkerpop.").append(key).append("=")
                        .append(this.sparkConfiguration.getProperty(key));
                System.setProperty("tinkerpop." + key, this.sparkConfiguration.getProperty(key).toString());
            }//from   w w w  .j  av a2 s .  c  om
        });
        if (params.length() > 0) {
            this.sparkConfiguration.setProperty(SparkLauncher.EXECUTOR_EXTRA_JAVA_OPTIONS,
                    (this.sparkConfiguration.getString(SparkLauncher.EXECUTOR_EXTRA_JAVA_OPTIONS, "")
                            + params.toString()).trim());
            this.sparkConfiguration.setProperty(SparkLauncher.DRIVER_EXTRA_JAVA_OPTIONS,
                    (this.sparkConfiguration.getString(SparkLauncher.DRIVER_EXTRA_JAVA_OPTIONS, "")
                            + params.toString()).trim());
        }
        KryoShimServiceLoader.applyConfiguration(this.sparkConfiguration);
        //////////////////////////////////////////////////
        //////////////////////////////////////////////////
        //////////////////////////////////////////////////
        // apache and hadoop configurations that are used throughout the graph computer computation
        final org.apache.commons.configuration.Configuration graphComputerConfiguration = new HadoopConfiguration(
                this.sparkConfiguration);
        if (!graphComputerConfiguration.containsKey(Constants.SPARK_SERIALIZER)) {
            graphComputerConfiguration.setProperty(Constants.SPARK_SERIALIZER,
                    KryoSerializer.class.getCanonicalName());
            if (!graphComputerConfiguration.containsKey(Constants.SPARK_KRYO_REGISTRATOR))
                graphComputerConfiguration.setProperty(Constants.SPARK_KRYO_REGISTRATOR,
                        GryoRegistrator.class.getCanonicalName());
        }
        graphComputerConfiguration.setProperty(Constants.GREMLIN_HADOOP_GRAPH_WRITER_HAS_EDGES,
                this.persist.equals(GraphComputer.Persist.EDGES));
        final Configuration hadoopConfiguration = ConfUtil.makeHadoopConfiguration(graphComputerConfiguration);
        final Storage fileSystemStorage = FileSystemStorage.open(hadoopConfiguration);
        final Storage sparkContextStorage = SparkContextStorage.open(graphComputerConfiguration);
        final boolean inputFromHDFS = FileInputFormat.class.isAssignableFrom(
                hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_READER, Object.class));
        final boolean inputFromSpark = PersistedInputRDD.class.isAssignableFrom(
                hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_READER, Object.class));
        final boolean outputToHDFS = FileOutputFormat.class.isAssignableFrom(
                hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_WRITER, Object.class));
        final boolean outputToSpark = PersistedOutputRDD.class.isAssignableFrom(
                hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_WRITER, Object.class));
        final boolean skipPartitioner = graphComputerConfiguration
                .getBoolean(Constants.GREMLIN_SPARK_SKIP_PARTITIONER, false);
        final boolean skipPersist = graphComputerConfiguration
                .getBoolean(Constants.GREMLIN_SPARK_SKIP_GRAPH_CACHE, false);
        String inputLocation = null;
        if (inputFromSpark)
            inputLocation = Constants
                    .getSearchGraphLocation(hadoopConfiguration.get(Constants.GREMLIN_HADOOP_INPUT_LOCATION),
                            sparkContextStorage)
                    .orElse(null);
        else if (inputFromHDFS)
            inputLocation = Constants
                    .getSearchGraphLocation(hadoopConfiguration.get(Constants.GREMLIN_HADOOP_INPUT_LOCATION),
                            fileSystemStorage)
                    .orElse(null);
        if (null == inputLocation)
            inputLocation = hadoopConfiguration.get(Constants.GREMLIN_HADOOP_INPUT_LOCATION);

        if (null != inputLocation && inputFromHDFS) {
            try {
                graphComputerConfiguration.setProperty(Constants.MAPREDUCE_INPUT_FILEINPUTFORMAT_INPUTDIR,
                        FileSystem.get(hadoopConfiguration).getFileStatus(new Path(inputLocation)).getPath()
                                .toString());
                hadoopConfiguration.set(Constants.MAPREDUCE_INPUT_FILEINPUTFORMAT_INPUTDIR, FileSystem
                        .get(hadoopConfiguration).getFileStatus(new Path(inputLocation)).getPath().toString());
            } catch (final IOException e) {
                throw new IllegalStateException(e.getMessage(), e);
            }
        }
        final InputRDD inputRDD;
        final OutputRDD outputRDD;
        final boolean filtered;
        try {
            inputRDD = InputRDD.class.isAssignableFrom(
                    hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_READER, Object.class))
                            ? hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_READER,
                                    InputRDD.class, InputRDD.class).newInstance()
                            : InputFormatRDD.class.newInstance();
            outputRDD = OutputRDD.class.isAssignableFrom(
                    hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_WRITER, Object.class))
                            ? hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_WRITER,
                                    OutputRDD.class, OutputRDD.class).newInstance()
                            : OutputFormatRDD.class.newInstance();
            // if the input class can filter on load, then set the filters
            if (inputRDD instanceof InputFormatRDD
                    && GraphFilterAware.class.isAssignableFrom(hadoopConfiguration.getClass(
                            Constants.GREMLIN_HADOOP_GRAPH_READER, InputFormat.class, InputFormat.class))) {
                GraphFilterAware.storeGraphFilter(graphComputerConfiguration, hadoopConfiguration,
                        this.graphFilter);
                filtered = false;
            } else if (inputRDD instanceof GraphFilterAware) {
                ((GraphFilterAware) inputRDD).setGraphFilter(this.graphFilter);
                filtered = false;
            } else if (this.graphFilter.hasFilter()) {
                filtered = true;
            } else {
                filtered = false;
            }
        } catch (final InstantiationException | IllegalAccessException e) {
            throw new IllegalStateException(e.getMessage(), e);
        }

        SparkMemory memory = null;
        // delete output location
        final String outputLocation = hadoopConfiguration.get(Constants.GREMLIN_HADOOP_OUTPUT_LOCATION, null);
        if (null != outputLocation) {
            if (outputToHDFS && fileSystemStorage.exists(outputLocation))
                fileSystemStorage.rm(outputLocation);
            if (outputToSpark && sparkContextStorage.exists(outputLocation))
                sparkContextStorage.rm(outputLocation);
        }

        // the Spark application name will always be set by SparkContextStorage, thus, INFO the name to make it easier to debug
        logger.debug(Constants.GREMLIN_HADOOP_SPARK_JOB_PREFIX
                + (null == this.vertexProgram ? "No VertexProgram" : this.vertexProgram) + "["
                + this.mapReducers + "]");

        // create the spark configuration from the graph computer configuration
        final SparkConf sparkConfiguration = new SparkConf();
        hadoopConfiguration.forEach(entry -> sparkConfiguration.set(entry.getKey(), entry.getValue()));
        // execute the vertex program and map reducers and if there is a failure, auto-close the spark context
        try {
            final JavaSparkContext sparkContext = new JavaSparkContext(
                    SparkContext.getOrCreate(sparkConfiguration));
            this.loadJars(hadoopConfiguration, sparkContext); // add the project jars to the cluster
            Spark.create(sparkContext.sc()); // this is the context RDD holder that prevents GC
            updateLocalConfiguration(sparkContext, sparkConfiguration);
            // create a message-passing friendly rdd from the input rdd
            boolean partitioned = false;
            JavaPairRDD<Object, VertexWritable> loadedGraphRDD = inputRDD
                    .readGraphRDD(graphComputerConfiguration, sparkContext);
            // if there are vertex or edge filters, filter the loaded graph rdd prior to partitioning and persisting
            if (filtered) {
                this.logger.debug("Filtering the loaded graphRDD: " + this.graphFilter);
                loadedGraphRDD = SparkExecutor.applyGraphFilter(loadedGraphRDD, this.graphFilter);
            }
            // if the loaded graph RDD is already partitioned use that partitioner, else partition it with HashPartitioner
            if (loadedGraphRDD.partitioner().isPresent())
                this.logger.debug("Using the existing partitioner associated with the loaded graphRDD: "
                        + loadedGraphRDD.partitioner().get());
            else {
                if (!skipPartitioner) {
                    final Partitioner partitioner = new HashPartitioner(
                            this.workersSet ? this.workers : loadedGraphRDD.partitions().size());
                    this.logger.debug("Partitioning the loaded graphRDD: " + partitioner);
                    loadedGraphRDD = loadedGraphRDD.partitionBy(partitioner);
                    partitioned = true;
                    assert loadedGraphRDD.partitioner().isPresent();
                } else {
                    assert skipPartitioner == !loadedGraphRDD.partitioner().isPresent(); // no easy way to test this with a test case
                    this.logger.debug("Partitioning has been skipped for the loaded graphRDD via "
                            + Constants.GREMLIN_SPARK_SKIP_PARTITIONER);
                }
            }
            // if the loaded graphRDD was already partitioned previous, then this coalesce/repartition will not take place
            if (this.workersSet) {
                if (loadedGraphRDD.partitions().size() > this.workers) // ensures that the loaded graphRDD does not have more partitions than workers
                    loadedGraphRDD = loadedGraphRDD.coalesce(this.workers);
                else if (loadedGraphRDD.partitions().size() < this.workers) // ensures that the loaded graphRDD does not have less partitions than workers
                    loadedGraphRDD = loadedGraphRDD.repartition(this.workers);
            }
            // persist the vertex program loaded graph as specified by configuration or else use default cache() which is MEMORY_ONLY
            if (!skipPersist && (!inputFromSpark || partitioned || filtered))
                loadedGraphRDD = loadedGraphRDD.persist(StorageLevel.fromString(
                        hadoopConfiguration.get(Constants.GREMLIN_SPARK_GRAPH_STORAGE_LEVEL, "MEMORY_ONLY")));

            // final graph with view (for persisting and/or mapReducing -- may be null and thus, possible to save space/time)
            JavaPairRDD<Object, VertexWritable> computedGraphRDD = null;
            ////////////////////////////////
            // process the vertex program //
            ////////////////////////////////
            if (null != this.vertexProgram) {
                memory = new SparkMemory(this.vertexProgram, this.mapReducers, sparkContext);
                /////////////////
                // if there is a registered VertexProgramInterceptor, use it to bypass the GraphComputer semantics
                if (graphComputerConfiguration
                        .containsKey(Constants.GREMLIN_HADOOP_VERTEX_PROGRAM_INTERCEPTOR)) {
                    try {
                        final SparkVertexProgramInterceptor<VertexProgram> interceptor = (SparkVertexProgramInterceptor) Class
                                .forName(graphComputerConfiguration
                                        .getString(Constants.GREMLIN_HADOOP_VERTEX_PROGRAM_INTERCEPTOR))
                                .newInstance();
                        computedGraphRDD = interceptor.apply(this.vertexProgram, loadedGraphRDD, memory);
                    } catch (final ClassNotFoundException | IllegalAccessException | InstantiationException e) {
                        throw new IllegalStateException(e.getMessage());
                    }
                } else { // standard GraphComputer semantics
                    // get a configuration that will be propagated to all workers
                    final HadoopConfiguration vertexProgramConfiguration = new HadoopConfiguration();
                    this.vertexProgram.storeState(vertexProgramConfiguration);
                    // set up the vertex program and wire up configurations
                    this.vertexProgram.setup(memory);
                    JavaPairRDD<Object, ViewIncomingPayload<Object>> viewIncomingRDD = null;
                    memory.broadcastMemory(sparkContext);
                    // execute the vertex program
                    while (true) {
                        if (Thread.interrupted()) {
                            sparkContext.cancelAllJobs();
                            throw new TraversalInterruptedException();
                        }
                        memory.setInExecute(true);
                        viewIncomingRDD = SparkExecutor.executeVertexProgramIteration(loadedGraphRDD,
                                viewIncomingRDD, memory, graphComputerConfiguration,
                                vertexProgramConfiguration);
                        memory.setInExecute(false);
                        if (this.vertexProgram.terminate(memory))
                            break;
                        else {
                            memory.incrIteration();
                            memory.broadcastMemory(sparkContext);
                        }
                    }
                    // if the graph will be continued to be used (persisted or mapreduced), then generate a view+graph
                    if ((null != outputRDD && !this.persist.equals(Persist.NOTHING))
                            || !this.mapReducers.isEmpty()) {
                        computedGraphRDD = SparkExecutor.prepareFinalGraphRDD(loadedGraphRDD, viewIncomingRDD,
                                this.vertexProgram.getVertexComputeKeys());
                        assert null != computedGraphRDD && computedGraphRDD != loadedGraphRDD;
                    } else {
                        // ensure that the computedGraphRDD was not created
                        assert null == computedGraphRDD;
                    }
                }
                /////////////////
                memory.complete(); // drop all transient memory keys
                // write the computed graph to the respective output (rdd or output format)
                if (null != outputRDD && !this.persist.equals(Persist.NOTHING)) {
                    assert null != computedGraphRDD; // the logic holds that a computeGraphRDD must be created at this point
                    outputRDD.writeGraphRDD(graphComputerConfiguration, computedGraphRDD);
                }
            }

            final boolean computedGraphCreated = computedGraphRDD != null && computedGraphRDD != loadedGraphRDD;
            if (!computedGraphCreated)
                computedGraphRDD = loadedGraphRDD;

            final Memory.Admin finalMemory = null == memory ? new MapMemory() : new MapMemory(memory);

            //////////////////////////////
            // process the map reducers //
            //////////////////////////////
            if (!this.mapReducers.isEmpty()) {
                // create a mapReduceRDD for executing the map reduce jobs on
                JavaPairRDD<Object, VertexWritable> mapReduceRDD = computedGraphRDD;
                if (computedGraphCreated && !outputToSpark) {
                    // drop all the edges of the graph as they are not used in mapReduce processing
                    mapReduceRDD = computedGraphRDD.mapValues(vertexWritable -> {
                        vertexWritable.get().dropEdges(Direction.BOTH);
                        return vertexWritable;
                    });
                    // if there is only one MapReduce to execute, don't bother wasting the clock cycles.
                    if (this.mapReducers.size() > 1)
                        mapReduceRDD = mapReduceRDD.persist(StorageLevel.fromString(hadoopConfiguration
                                .get(Constants.GREMLIN_SPARK_GRAPH_STORAGE_LEVEL, "MEMORY_ONLY")));
                }

                for (final MapReduce mapReduce : this.mapReducers) {
                    // execute the map reduce job
                    final HadoopConfiguration newApacheConfiguration = new HadoopConfiguration(
                            graphComputerConfiguration);
                    mapReduce.storeState(newApacheConfiguration);
                    // map
                    final JavaPairRDD mapRDD = SparkExecutor.executeMap((JavaPairRDD) mapReduceRDD, mapReduce,
                            newApacheConfiguration);
                    // combine
                    final JavaPairRDD combineRDD = mapReduce.doStage(MapReduce.Stage.COMBINE)
                            ? SparkExecutor.executeCombine(mapRDD, newApacheConfiguration)
                            : mapRDD;
                    // reduce
                    final JavaPairRDD reduceRDD = mapReduce.doStage(MapReduce.Stage.REDUCE)
                            ? SparkExecutor.executeReduce(combineRDD, mapReduce, newApacheConfiguration)
                            : combineRDD;
                    // write the map reduce output back to disk and computer result memory
                    if (null != outputRDD)
                        mapReduce.addResultToMemory(finalMemory, outputRDD.writeMemoryRDD(
                                graphComputerConfiguration, mapReduce.getMemoryKey(), reduceRDD));
                }
                // if the mapReduceRDD is not simply the computed graph, unpersist the mapReduceRDD
                if (computedGraphCreated && !outputToSpark) {
                    assert loadedGraphRDD != computedGraphRDD;
                    assert mapReduceRDD != computedGraphRDD;
                    mapReduceRDD.unpersist();
                } else {
                    assert mapReduceRDD == computedGraphRDD;
                }
            }

            // unpersist the loaded graph if it will not be used again (no PersistedInputRDD)
            // if the graphRDD was loaded from Spark, but then partitioned or filtered, its a different RDD
            if (!inputFromSpark || partitioned || filtered)
                loadedGraphRDD.unpersist();
            // unpersist the computed graph if it will not be used again (no PersistedOutputRDD)
            // if the computed graph is the loadedGraphRDD because it was not mutated and not-unpersisted, then don't unpersist the computedGraphRDD/loadedGraphRDD
            if ((!outputToSpark || this.persist.equals(GraphComputer.Persist.NOTHING)) && computedGraphCreated)
                computedGraphRDD.unpersist();
            // delete any file system or rdd data if persist nothing
            if (null != outputLocation && this.persist.equals(GraphComputer.Persist.NOTHING)) {
                if (outputToHDFS)
                    fileSystemStorage.rm(outputLocation);
                if (outputToSpark)
                    sparkContextStorage.rm(outputLocation);
            }
            // update runtime and return the newly computed graph
            finalMemory.setRuntime(System.currentTimeMillis() - startTime);
            // clear properties that should not be propagated in an OLAP chain
            graphComputerConfiguration.clearProperty(Constants.GREMLIN_HADOOP_GRAPH_FILTER);
            graphComputerConfiguration.clearProperty(Constants.GREMLIN_HADOOP_VERTEX_PROGRAM_INTERCEPTOR);
            graphComputerConfiguration.clearProperty(Constants.GREMLIN_SPARK_SKIP_GRAPH_CACHE);
            graphComputerConfiguration.clearProperty(Constants.GREMLIN_SPARK_SKIP_PARTITIONER);
            return new DefaultComputerResult(InputOutputHelper.getOutputGraph(graphComputerConfiguration,
                    this.resultGraph, this.persist), finalMemory.asImmutable());
        } finally {
            if (!graphComputerConfiguration.getBoolean(Constants.GREMLIN_SPARK_PERSIST_CONTEXT, false))
                Spark.close();
        }
    });
}