Example usage for org.apache.mahout.math Vector size

List of usage examples for org.apache.mahout.math Vector size

Introduction

In this page you can find the example usage for org.apache.mahout.math Vector size.

Prototype

int size();

Source Link

Document

Return the cardinality of the recipient (the maximum number of values)

Usage

From source file:org.qcri.pca.CompositeJobTest.java

License:Apache License

private void verifyYtX(DummyRecordWriter<IntWritable, VectorWritable> writer) {
    Assert.assertEquals("The reducer should output " + cols + " keys!", cols, writer.getKeys().size());
    for (IntWritable key : writer.getKeys()) {
        List<VectorWritable> list = writer.getValue(key);
        assertEquals("reducer produces more than one values per key!", 1, list.size());
        Vector v = list.get(0).get();
        assertEquals("reducer vector size must match the x size!", xsize, v.size());
        for (int c = 0; c < xsize; c++)
            Assert.assertEquals("The ytx[" + key.get() + "][" + c + "] is incorrect: ", ytx[key.get()][c],
                    v.get(c), EPSILON);/* ww w  .  j  a va  2 s .  com*/
    }
}

From source file:org.qcri.pca.MahoutCompatibilityTest.java

License:Apache License

@Test
public void testMAHOUT_1238() throws IOException {
    Vector v = new SequentialAccessSparseVector(5);
    v.set(1, 3.0);//  ww  w  .ja  v a 2  s .c  o m
    v.set(3, 5.0);
    Vector view = new VectorView(v, 0, v.size());
    doTestVectorWritableEquals(view);
}

From source file:org.qcri.pca.MeanAndSpanJob.java

/**
 * This method overrides the Vector.assign method to allow optimization for
 * ZeroIndifferent functions/* www .  j av a  2s .  c  o m*/
 * 
 * @param vector
 *          the vector to be updated
 * @param other
 *          the other vector
 * @param function
 *          the function that operates on elements of the two vectors
 * @return the modified vector
 */
static public Vector vectorAssign(Vector vector, Vector other, ZeroIndifferentFunc function) {
    if (vector.size() != other.size()) {
        throw new CardinalityException(vector.size(), other.size());
    }
    // special case: iterate only over the non-zero elements of the vector to
    // add
    Iterator<Element> it = other.nonZeroes().iterator();
    Element e;
    while (it.hasNext() && (e = it.next()) != null) {
        double val = vector.getQuick(e.index());
        double newVal = function.apply(val, e.get());
        vector.setQuick(e.index(), newVal);
    }
    return vector;
}

From source file:org.qcri.pca.MeanAndSpanJobTest.java

License:Apache License

private void verifyMapperOutput(DummyRecordWriter<IntWritable, VectorWritable> writer) {
    Assert.assertEquals("Each mapper should output three keys!", 3, writer.getKeys().size());
    for (IntWritable key : writer.getKeys()) {
        List<VectorWritable> list = writer.getValue(key);
        assertEquals("Mapper did not combine the results!", 1, list.size());
        Vector v = list.get(0).get();
        switch (key.get()) {
        case MeanAndSpanJob.MEANVECTOR:
            Assert.assertEquals("MeanVector size does not match!", v.size(), cols + 1);
            Assert.assertEquals("MeanVector count does not match!", rows, v.get(0), EPSILON);
            verifySum(inputVectors, v.viewPart(1, cols));
            break;
        case MeanAndSpanJob.MINVECTOR:
            Assert.assertEquals("MinVector size does not match!", v.size(), cols);
            verifyMin(inputVectors, v);/*from w w  w .  ja va2s. c o m*/
            break;
        case MeanAndSpanJob.MAXVECTOR:
            Assert.assertEquals("MaxVector size does not match!", v.size(), cols);
            verifyMax(inputVectors, v);
            break;
        default:
            Assert.fail("Unknown key from mapper");
        }
    }
}

From source file:org.qcri.pca.MeanAndSpanJobTest.java

License:Apache License

private void verifyReducerOutput(DummyRecordWriter<IntWritable, VectorWritable> writer) {
    Assert.assertEquals("The reducer should output two keys!", 2, writer.getKeys().size());
    for (IntWritable key : writer.getKeys()) {
        List<VectorWritable> list = writer.getValue(key);
        assertEquals("Reducer did not combine the results!", 1, list.size());
        Vector v = list.get(0).get();
        switch (key.get()) {
        case MeanAndSpanJob.MEANVECTOR:
            Assert.assertEquals("MeanVector size does not match!", v.size(), cols);
            verifyMean(inputVectors, v);
            break;
        case MeanAndSpanJob.SPANVECTOR:
            Assert.assertEquals("SpanVector size does not match!", v.size(), cols);
            verifySpan(inputVectors, v);
            break;
        default://from ww  w .j a  va 2  s .  com
            Assert.fail("Unknown key from mapper");
        }
    }
}

From source file:org.qcri.sparkpca.PCAUtils.java

/**
 * Subtract two dense vectors/*from   w w  w  .  j a  v a  2 s.  c  o m*/
 * @param vector1
 * @param vector2
 * @param resArray: result array
 * @return
 */
static double[] denseVectorMinusVector(org.apache.spark.mllib.linalg.Vector vector1, Vector vector2,
        double[] resArray) {

    for (int i = 0; i < vector2.size(); i++) {
        resArray[i] = vector1.apply(i) - vector2.getQuick(i);
    }
    return resArray;
}

From source file:org.qcri.sparkpca.PCAUtils.java

/***
 * Mi = (Yi-Ym)' x (Xi-Xm) = Yi' x (Xi-Xm) - Ym' x (Xi-Xm)
 * //from   w  w w.  j av a 2  s .c  o  m
 * M = Sum(Mi) = Sum(Yi' x (Xi-Xm)) - Ym' x (Sum(Xi)-N*Xm)
 * 
 * The second part is done in this function
 */

public static Matrix updateXtXAndYtx(Matrix realCentralYtx, Vector realCentralSumX, Vector ym, Vector xm,
        int nRows) {
    for (int yRow = 0; yRow < ym.size(); yRow++) {
        double scale = ym.getQuick(yRow);
        for (int xCol = 0; xCol < realCentralSumX.size(); xCol++) {
            double centeredValue = realCentralSumX.getQuick(xCol) - nRows * xm.getQuick(xCol);
            double currValue = realCentralYtx.getQuick(yRow, xCol);
            currValue -= centeredValue * scale;
            realCentralYtx.setQuick(yRow, xCol, currValue);
        }
    }
    return realCentralYtx;
}

From source file:org.trustedanalytics.atk.giraph.aggregators.VectorSumAggregator.java

License:Apache License

@Override
public void aggregate(VectorWritable value) {
    Vector currentValue = getAggregatedValue().get();
    if (currentValue.size() == 0) {
        getAggregatedValue().set(value.get());
    } else if (value.get().size() > 0) {
        getAggregatedValue().set(currentValue.plus(value.get()));
    }/*from ww  w.  ja v  a  2 s  . co m*/
}

From source file:org.trustedanalytics.atk.giraph.algorithms.lbp.LoopyBeliefPropagationComputation.java

License:Apache License

/**
 * Initialize vertex/*  w ww  .  j  a  v a  2 s.  c o  m*/
 *
 * @param vertex of the graph
 */
private void initializeVertex(Vertex<LongWritable, VertexData4LBPWritable, DoubleWritable> vertex) {
    // normalize prior and posterior
    Vector prior = vertex.getValue().getPriorVector();
    Vector posterior = vertex.getValue().getPosteriorVector();
    int nStates = prior.size();
    double sum = 0d;
    for (int i = 0; i < nStates; i++) {
        double v = prior.getQuick(i);
        if (v < 0d) {
            throw new IllegalArgumentException("Vertex ID: " + vertex.getId() + " has negative prior value.");
        } else if (v < MIN_PRIOR_VALUE) {
            v = MIN_PRIOR_VALUE;
            prior.setQuick(i, v);
        }
        sum += v;
    }
    for (int i = 0; i < nStates; i++) {
        posterior.setQuick(i, prior.getQuick(i) / sum);
        prior.setQuick(i, Math.log(posterior.getQuick(i)));
    }
    // collect graph statistics
    VertexType vt = vertex.getValue().getType();
    vt = ignoreVertexType ? VertexType.TRAIN : vt;
    switch (vt) {
    case TRAIN:
        aggregate(SUM_TRAIN_VERTICES, new LongWritable(1));
        break;
    case VALIDATE:
        aggregate(SUM_VALIDATE_VERTICES, new LongWritable(1));
        break;
    case TEST:
        aggregate(SUM_TEST_VERTICES, new LongWritable(1));
        break;
    default:
        throw new IllegalArgumentException("Unknown vertex type: " + vt.toString());
    }
    // if it's not a training vertex, use uniform posterior and don't send out messages
    if (vt != VertexType.TRAIN) {
        posterior.assign(1.0 / nStates);
        return;
    }
    // calculate messages
    IdWithVectorMessage newMessage = new IdWithVectorMessage();
    newMessage.setData(vertex.getId().get());
    // calculate initial belief
    Vector belief = prior.clone();
    for (Edge<LongWritable, DoubleWritable> edge : vertex.getEdges()) {
        double weight = edge.getValue().get();
        if (weight <= 0d) {
            throw new IllegalArgumentException("Vertex ID: " + vertex.getId()
                    + " has an edge with negative or zero weight value " + weight);
        }
        for (int i = 0; i < nStates; i++) {
            sum = 0d;
            for (int j = 0; j < nStates; j++) {
                double msg = Math.exp(
                        prior.getQuick(j) + edgePotential(Math.abs(i - j) / (double) (nStates - 1), weight));
                if (maxProduct) {
                    sum = sum > msg ? sum : msg;
                } else {
                    sum += msg;
                }
            }
            belief.setQuick(i, sum > 0d ? Math.log(sum) : Double.MIN_VALUE);
        }
        belief = belief.plus(-belief.maxValue());
        // send out messages
        newMessage.setVector(belief);
        sendMessage(edge.getTargetVertexId(), newMessage);
    }
}

From source file:org.trustedanalytics.atk.giraph.algorithms.lbp.LoopyBeliefPropagationComputation.java

License:Apache License

@Override
public void compute(Vertex<LongWritable, VertexData4LBPWritable, DoubleWritable> vertex,
        Iterable<IdWithVectorMessage> messages) throws IOException {
    long step = getSuperstep();
    if (step == 0) {
        initializeVertex(vertex);/*from  w w  w .j a  v a  2s .co m*/
        return;
    }

    // collect messages sent to this vertex
    HashMap<Long, Vector> map = new HashMap<Long, Vector>();
    for (IdWithVectorMessage message : messages) {
        map.put(message.getData(), message.getVector());
    }

    // update posterior according to prior and messages
    VertexData4LBPWritable vertexValue = vertex.getValue();
    VertexType vt = vertexValue.getType();
    vt = ignoreVertexType ? VertexType.TRAIN : vt;
    Vector prior = vertexValue.getPriorVector();
    double nStates = prior.size();
    if (vt != VertexType.TRAIN) {
        // assign a uniform prior for validate/test vertex
        prior = prior.clone().assign(Math.log(1.0 / nStates));
    }
    // sum of prior and messages
    Vector sumPosterior = prior;
    for (IdWithVectorMessage message : messages) {
        sumPosterior = sumPosterior.plus(message.getVector());
    }
    sumPosterior = sumPosterior.plus(-sumPosterior.maxValue());
    // update posterior if this isn't an anchor vertex
    if (prior.maxValue() < anchorThreshold) {
        // normalize posterior
        Vector posterior = sumPosterior.clone().assign(Functions.EXP);
        posterior = posterior.normalize(1d);
        Vector oldPosterior = vertexValue.getPosteriorVector();
        double delta = posterior.minus(oldPosterior).norm(1d);
        // aggregate deltas
        switch (vt) {
        case TRAIN:
            aggregate(SUM_TRAIN_DELTA, new DoubleWritable(delta));
            break;
        case VALIDATE:
            aggregate(SUM_VALIDATE_DELTA, new DoubleWritable(delta));
            break;
        case TEST:
            aggregate(SUM_TEST_DELTA, new DoubleWritable(delta));
            break;
        default:
            throw new IllegalArgumentException("Unknown vertex type: " + vt.toString());
        }
        // update posterior
        vertexValue.setPosteriorVector(posterior);
    }

    if (step < maxSupersteps) {
        // if it's not a training vertex, don't send out messages
        if (vt != VertexType.TRAIN) {
            return;
        }
        IdWithVectorMessage newMessage = new IdWithVectorMessage();
        newMessage.setData(vertex.getId().get());
        // update belief
        Vector belief = prior.clone();
        for (Edge<LongWritable, DoubleWritable> edge : vertex.getEdges()) {
            double weight = edge.getValue().get();
            long id = edge.getTargetVertexId().get();
            Vector tempVector = sumPosterior;
            if (map.containsKey(id)) {
                tempVector = sumPosterior.minus(map.get(id));
            }
            for (int i = 0; i < nStates; i++) {
                double sum = 0d;
                for (int j = 0; j < nStates; j++) {
                    double msg = Math.exp(
                            tempVector.getQuick(j) + edgePotential(Math.abs(i - j) / (nStates - 1), weight));
                    if (maxProduct) {
                        sum = sum > msg ? sum : msg;
                    } else {
                        sum += msg;
                    }
                }
                belief.setQuick(i, sum > 0d ? Math.log(sum) : Double.MIN_VALUE);
            }
            belief = belief.plus(-belief.maxValue());
            newMessage.setVector(belief);
            sendMessage(edge.getTargetVertexId(), newMessage);
        }
    } else {
        // convert prior back to regular scale before output
        prior = vertexValue.getPriorVector();
        prior = prior.assign(Functions.EXP);
        vertexValue.setPriorVector(prior);
        vertex.voteToHalt();
    }
}