List of usage examples for org.apache.mahout.math Vector get
double get(int index);
From source file:org.qcri.pca.CompositeJobTest.java
License:Apache License
private void verifyYtX(DummyRecordWriter<IntWritable, VectorWritable> writer) { Assert.assertEquals("The reducer should output " + cols + " keys!", cols, writer.getKeys().size()); for (IntWritable key : writer.getKeys()) { List<VectorWritable> list = writer.getValue(key); assertEquals("reducer produces more than one values per key!", 1, list.size()); Vector v = list.get(0).get(); assertEquals("reducer vector size must match the x size!", xsize, v.size()); for (int c = 0; c < xsize; c++) Assert.assertEquals("The ytx[" + key.get() + "][" + c + "] is incorrect: ", ytx[key.get()][c], v.get(c), EPSILON); }/*from w w w . ja v a 2 s . c o m*/ }
From source file:org.qcri.pca.MeanAndSpanJobTest.java
License:Apache License
private void verifyMapperOutput(DummyRecordWriter<IntWritable, VectorWritable> writer) { Assert.assertEquals("Each mapper should output three keys!", 3, writer.getKeys().size()); for (IntWritable key : writer.getKeys()) { List<VectorWritable> list = writer.getValue(key); assertEquals("Mapper did not combine the results!", 1, list.size()); Vector v = list.get(0).get(); switch (key.get()) { case MeanAndSpanJob.MEANVECTOR: Assert.assertEquals("MeanVector size does not match!", v.size(), cols + 1); Assert.assertEquals("MeanVector count does not match!", rows, v.get(0), EPSILON); verifySum(inputVectors, v.viewPart(1, cols)); break; case MeanAndSpanJob.MINVECTOR: Assert.assertEquals("MinVector size does not match!", v.size(), cols); verifyMin(inputVectors, v);//from w ww . j ava 2 s .c o m break; case MeanAndSpanJob.MAXVECTOR: Assert.assertEquals("MaxVector size does not match!", v.size(), cols); verifyMax(inputVectors, v); break; default: Assert.fail("Unknown key from mapper"); } } }
From source file:org.qcri.pca.MeanAndSpanJobTest.java
License:Apache License
private void verifySpan(double[][] vectors, Vector spanVec) { for (int c = 0; c < cols; c++) { double max = NaN2Zero(vectors[0][c]); double min = max; for (int r = 0; r < rows; r++) { double val = vectors[r][c]; max = Math.max(max, NaN2Zero(val)); min = Math.min(min, NaN2Zero(val)); }/*from w w w .ja v a 2s. c om*/ Assert.assertEquals("The span is incorrect: column: " + c, max - min, spanVec.get(c), EPSILON); } }
From source file:org.qcri.pca.MeanAndSpanJobTest.java
License:Apache License
private void verifyMax(double[][] vectors, Vector maxVec) { for (int c = 0; c < cols; c++) { double max = NaN2Zero(vectors[0][c]); for (int r = 0; r < rows; r++) { double val = vectors[r][c]; max = Math.max(max, NaN2Zero(val)); }//from w w w. j av a2s . c o m Assert.assertEquals("The max is incorrect: column: " + c, max, maxVec.get(c), EPSILON); } }
From source file:org.qcri.pca.MeanAndSpanJobTest.java
License:Apache License
private void verifyMin(double[][] vectors, Vector minVec) { for (int c = 0; c < cols; c++) { double min = NaN2Zero(vectors[0][c]); for (int r = 0; r < rows; r++) { double val = vectors[r][c]; min = Math.min(min, NaN2Zero(val)); }// w w w . j av a2 s.co m Assert.assertEquals("The min is incorrect: column: " + c, min, minVec.get(c), EPSILON); } }
From source file:org.qcri.pca.MeanAndSpanJobTest.java
License:Apache License
private void verifySum(double[][] vectors, Vector sumVec) { for (int c = 0; c < cols; c++) { double sum = 0; for (int r = 0; r < rows; r++) { double val = vectors[r][c]; sum += NaN2Zero(val); }/* w ww . jav a 2 s . com*/ Assert.assertEquals("The sum is incorrect: column: " + c, sum, sumVec.get(c), EPSILON); } }
From source file:org.qcri.pca.MeanAndSpanJobTest.java
License:Apache License
private void verifyMean(double[][] vectors, Vector meanVec) { for (int c = 0; c < cols; c++) { double sum = 0; for (int r = 0; r < rows; r++) { double val = vectors[r][c]; sum += NaN2Zero(val); }//from ww w . ja v a2s . c om double mean = sum / rows; Assert.assertEquals("The mean is incorrect: column: " + c, mean, meanVec.get(c), EPSILON); } }
From source file:org.qcri.pca.NormalizeJobTest.java
License:Apache License
private void verifyMapperOutput(DummyRecordWriter<IntWritable, VectorWritable> writer) { Assert.assertEquals("The mapper should output " + rows + " keys!", rows, writer.getKeys().size()); double[][] normalizedVectors = normalize(inputVectors); for (IntWritable key : writer.getKeys()) { List<VectorWritable> list = writer.getValue(key); assertEquals("Mapper produces more than one values per key!", 1, list.size()); Vector v = list.get(0).get(); for (int c = 0; c < cols; c++) Assert.assertEquals("The normalized value is incorrect: ", normalizedVectors[key.get()][c], v.get(c), EPSILON); }//from www. j av a2 s.c o m }
From source file:org.qcri.pca.SPCADriver.java
/** * Run PPCA sequentially given the small input Y which fit into memory This * could be used also on sampled data from a distributed matrix * //w w w. j a v a 2 s. co m * Note: this implementation ignore NaN values by replacing them with 0 * * @param conf * the configuration * @param centralY * the input matrix * @param initVal * the initial values for C and ss * @param MAX_ROUNDS * maximum number of iterations * @return the error * @throws Exception */ double runSequential(Configuration conf, Matrix centralY, InitialValues initVal, final int MAX_ROUNDS) throws Exception { Matrix centralC = initVal.C; double ss = initVal.ss; final int nRows = centralY.numRows(); final int nCols = centralY.numCols(); final int nPCs = centralC.numCols(); final float threshold = 0.00001f; log.info("tracec= " + PCACommon.trace(centralC)); //ignore NaN elements by replacing them with 0 for (int r = 0; r < nRows; r++) for (int c = 0; c < nCols; c++) if (new Double(centralY.getQuick(r, c)).isNaN()) { centralY.setQuick(r, c, 0); } //centralize and normalize the input matrix Vector mean = centralY.aggregateColumns(new VectorFunction() { @Override public double apply(Vector v) { return v.zSum() / nRows; } }); //also normalize the matrix by dividing each element by its columns range Vector spanVector = new DenseVector(nCols); for (int c = 0; c < nCols; c++) { Vector col = centralY.viewColumn(c); double max = col.maxValue(); double min = col.minValue(); double span = max - min; spanVector.setQuick(c, span); } for (int r = 0; r < nRows; r++) for (int c = 0; c < nCols; c++) centralY.set(r, c, (centralY.get(r, c) - mean.get(c)) / (spanVector.getQuick(c) != 0 ? spanVector.getQuick(c) : 1)); Matrix centralCtC = centralC.transpose().times(centralC); log.info("tracectc= " + PCACommon.trace(centralCtC)); log.info("traceinvctc= " + PCACommon.trace(inv(centralCtC))); log.info("traceye= " + PCACommon.trace(centralY)); log.info("SSSSSSSSSSSSSSSSSSSSSSSSSSSS " + ss); int count = 1; // old = Inf; double old = Double.MAX_VALUE; // -------------------------- EM Iterations // while count Matrix centralX = null; int round = 0; while (round < MAX_ROUNDS && count > 0) { round++; // Sx = inv( eye(d) + CtC/ss ); Matrix Sx = eye(nPCs).times(ss).plus(centralCtC); Sx = inv(Sx); // X = Ye*C*(Sx/ss); centralX = centralY.times(centralC).times(Sx.transpose()); // XtX = X'*X + ss * Sx; Matrix centralXtX = centralX.transpose().times(centralX).plus(Sx.times(ss)); // C = (Ye'*X) / XtX; Matrix tmpInv = inv(centralXtX); centralC = centralY.transpose().times(centralX).times(tmpInv); // CtC = C'*C; centralCtC = centralC.transpose().times(centralC); // ss = ( sum(sum( (X*C'-Ye).^2 )) + trace(XtX*CtC) - 2*xcty ) /(N*D); double norm2 = centralY.clone().assign(new DoubleFunction() { @Override public double apply(double arg1) { return arg1 * arg1; } }).zSum(); ss = norm2 + PCACommon.trace(centralXtX.times(centralCtC)); //ss3 = sum (X(i:0) * C' * Y(i,:)') DenseVector resVector = new DenseVector(nCols); double xctyt = 0; for (int i = 0; i < nRows; i++) { PCACommon.vectorTimesMatrixTranspose(centralX.viewRow(i), centralC, resVector); double res = resVector.dot(centralY.viewRow(i)); xctyt += res; } ss -= 2 * xctyt; ss /= (nRows * nCols); log.info("SSSSSSSSSSSSSSSSSSSSSSSSSSSS " + ss); double traceSx = PCACommon.trace(Sx); double traceX = PCACommon.trace(centralX); double traceSumXtX = PCACommon.trace(centralXtX); double traceC = PCACommon.trace(centralC); double traceCtC = PCACommon.trace(centralCtC); log.info("TTTTTTTTTTTTTTTTT " + traceSx + " " + traceX + " " + traceSumXtX + " " + traceC + " " + traceCtC + " " + 0); double objective = ss; double rel_ch = Math.abs(1 - objective / old); old = objective; count++; if (rel_ch < threshold && count > 5) count = 0; log.info("Objective: %.6f relative change: %.6f \n", objective, rel_ch); } double norm1Y = centralY.aggregateColumns(new VectorNorm1()).maxValue(); log.info("Norm1 of Ye is: " + norm1Y); Matrix newYerror = centralY.minus(centralX.times(centralC.transpose())); double norm1Err = newYerror.aggregateColumns(new VectorNorm1()).maxValue(); log.info("Norm1 of the reconstruction error is: " + norm1Err); initVal.C = centralC; initVal.ss = ss; return norm1Err / norm1Y; }
From source file:org.qcri.pca.SPCADriver.java
/** * Run PPCA sequentially given the small input Y which fit into memory This * could be used also on sampled data from a distributed matrix * //from w ww . ja v a2 s. co m * Note: this implementation ignore NaN values by replacing them with 0 * * @param conf * the configuration * @param centralY * the input matrix * @param initVal * the initial values for C and ss * @param MAX_ROUNDS * maximum number of iterations * @return the error * @throws Exception */ double runSequential_JacobVersion(Configuration conf, Matrix centralY, InitialValues initVal, final int MAX_ROUNDS) { Matrix centralC = initVal.C;// the current implementation doesn't use initial ss of // initVal final int nRows = centralY.numRows(); final int nCols = centralY.numCols(); final int nPCs = centralC.numCols(); final float threshold = 0.00001f; log.info("tracec= " + PCACommon.trace(centralC)); // Y = Y - mean(Ye) // Also normalize the matrix for (int r = 0; r < nRows; r++) for (int c = 0; c < nCols; c++) if (new Double(centralY.getQuick(r, c)).isNaN()) { centralY.setQuick(r, c, 0); } Vector mean = centralY.aggregateColumns(new VectorFunction() { @Override public double apply(Vector v) { return v.zSum() / nRows; } }); Vector spanVector = new DenseVector(nCols); for (int c = 0; c < nCols; c++) { Vector col = centralY.viewColumn(c); double max = col.maxValue(); double min = col.minValue(); double span = max - min; spanVector.setQuick(c, span); } for (int r = 0; r < nRows; r++) for (int c = 0; c < nCols; c++) centralY.set(r, c, (centralY.get(r, c) - mean.get(c)) / (spanVector.getQuick(c) != 0 ? spanVector.getQuick(c) : 1)); // -------------------------- initialization // CtC = C'*C; Matrix centralCtC = centralC.transpose().times(centralC); log.info("tracectc= " + PCACommon.trace(centralCtC)); log.info("traceinvctc= " + PCACommon.trace(inv(centralCtC))); log.info("traceye= " + PCACommon.trace(centralY)); // X = Ye * C * inv(CtC); Matrix centralX = centralY.times(centralC).times(inv(centralCtC)); log.info("tracex= " + PCACommon.trace(centralX)); // recon = X * C'; Matrix recon = centralX.times(centralC.transpose()); log.info("tracerec= " + PCACommon.trace(recon)); // ss = sum(sum((recon-Ye).^2)) / (N*D-missing); double ss = recon.minus(centralY).assign(new DoubleFunction() { @Override public double apply(double arg1) { return arg1 * arg1; } }).zSum() / (nRows * nCols); log.info("SSSSSSSSSSSSSSSSSSSSSSSSSSSS " + ss); int count = 1; // old = Inf; double old = Double.MAX_VALUE; // -------------------------- EM Iterations // while count int round = 0; while (round < MAX_ROUNDS && count > 0) { round++; // ------------------ E-step, (co)variances // Sx = inv( eye(d) + CtC/ss ); Matrix centralSx = eye(nPCs).plus(centralCtC.divide(ss)); centralSx = inv(centralSx); // ------------------ E-step expected value // X = Ye*C*(Sx/ss); centralX = centralY.times(centralC).times(centralSx.divide(ss)); // ------------------ M-step // SumXtX = X'*X; Matrix centralSumXtX = centralX.transpose().times(centralX); // C = (Ye'*X) / (SumXtX + N*Sx ); Matrix tmpInv = inv(centralSumXtX.plus(centralSx.times(nRows))); centralC = centralY.transpose().times(centralX).times(tmpInv); // CtC = C'*C; centralCtC = centralC.transpose().times(centralC); // ss = ( sum(sum( (X*C'-Ye).^2 )) + N*sum(sum(CtC.*Sx)) + // missing*ss_old ) /(N*D); recon = centralX.times(centralC.transpose()); double error = recon.minus(centralY).assign(new DoubleFunction() { @Override public double apply(double arg1) { return arg1 * arg1; } }).zSum(); ss = error + nRows * dot(centralCtC.clone(), centralSx).zSum(); ss /= (nRows * nCols); log.info("SSSSSSSSSSSSSSSSSSSSSSSSSSSS " + ss); double traceSx = PCACommon.trace(centralSx); double traceX = PCACommon.trace(centralX); double traceSumXtX = PCACommon.trace(centralSumXtX); double traceC = PCACommon.trace(centralC); double traceCtC = PCACommon.trace(centralCtC); log.info("TTTTTTTTTTTTTTTTT " + traceSx + " " + traceX + " " + traceSumXtX + " " + traceC + " " + traceCtC + " " + 0); // objective = N*D + N*(D*log(ss) +PCACommon.trace(Sx)-log(det(Sx)) ) // +PCACommon.trace(SumXtX) -missing*log(ss_old); double objective = nRows * nCols + nRows * (nCols * Math.log(ss) + PCACommon.trace(centralSx) - Math.log(centralSx.determinant())) + PCACommon.trace(centralSumXtX); double rel_ch = Math.abs(1 - objective / old); old = objective; count++; if (rel_ch < threshold && count > 5) count = 0; System.out.printf("Objective: %.6f relative change: %.6f \n", objective, rel_ch); } double norm1Y = centralY.aggregateColumns(new VectorNorm1()).maxValue(); log.info("Norm1 of Y is: " + norm1Y); Matrix newYerror = centralY.minus(centralX.times(centralC.transpose())); double norm1Err = newYerror.aggregateColumns(new VectorNorm1()).maxValue(); log.info("Norm1 of the reconstruction error is: " + norm1Err); initVal.C = centralC; initVal.ss = ss; return norm1Err / norm1Y; }