List of usage examples for org.apache.mahout.math Vector all
Iterable<Element> all();
From source file:ClassifierHD.java
License:Apache License
public static void main(String[] args) throws Exception { if (args.length < 5) { System.out.println(// w w w.j ava2 s .com "Arguments: [model] [label index] [dictionnary] [document frequency] [postgres table] [hdfs dir] [job_id]"); return; } String modelPath = args[0]; String labelIndexPath = args[1]; String dictionaryPath = args[2]; String documentFrequencyPath = args[3]; String tablename = args[4]; String inputDir = args[5]; Configuration configuration = new Configuration(); // model is a matrix (wordId, labelId) => probability score NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), configuration); StandardNaiveBayesClassifier classifier = new StandardNaiveBayesClassifier(model); // labels is a map label => classId Map<Integer, String> labels = BayesUtils.readLabelIndex(configuration, new Path(labelIndexPath)); Map<String, Integer> dictionary = readDictionnary(configuration, new Path(dictionaryPath)); Map<Integer, Long> documentFrequency = readDocumentFrequency(configuration, new Path(documentFrequencyPath)); // analyzer used to extract word from tweet Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_43); int labelCount = labels.size(); int documentCount = documentFrequency.get(-1).intValue(); System.out.println("Number of labels: " + labelCount); System.out.println("Number of documents in training set: " + documentCount); Connection conn = null; PreparedStatement pstmt = null; try { Class.forName("org.postgresql.Driver"); conn = DriverManager.getConnection("jdbc:postgresql://192.168.50.170:5432/uzeni", "postgres", "dbwpsdkdl"); conn.setAutoCommit(false); String sql = "INSERT INTO " + tablename + " (id,gtime,wtime,target,num,link,body,rep) VALUES (?,?,?,?,?,?,?,?);"; pstmt = conn.prepareStatement(sql); FileSystem fs = FileSystem.get(configuration); FileStatus[] status = fs.listStatus(new Path(inputDir)); BufferedWriter bw = new BufferedWriter( new OutputStreamWriter(fs.create(new Path(inputDir + "/rep.list"), true))); for (int i = 0; i < status.length; i++) { BufferedReader br = new BufferedReader(new InputStreamReader(fs.open(status[i].getPath()))); if (new String(status[i].getPath().getName()).equals("rep.list")) { continue; } int lv_HEAD = 1; int lv_cnt = 0; String lv_gtime = null; String lv_wtime = null; String lv_target = null; BigDecimal lv_num = null; String lv_link = null; String[] lv_args; String lv_line; StringBuilder lv_txt = new StringBuilder(); while ((lv_line = br.readLine()) != null) { if (lv_cnt < lv_HEAD) { lv_args = lv_line.split(","); lv_gtime = lv_args[0]; lv_wtime = lv_args[1]; lv_target = lv_args[2]; lv_num = new BigDecimal(lv_args[3]); lv_link = lv_args[4]; } else { lv_txt.append(lv_line + '\n'); } lv_cnt++; } br.close(); String id = status[i].getPath().getName(); String message = lv_txt.toString(); Multiset<String> words = ConcurrentHashMultiset.create(); TokenStream ts = analyzer.tokenStream("text", new StringReader(message)); CharTermAttribute termAtt = ts.addAttribute(CharTermAttribute.class); ts.reset(); int wordCount = 0; while (ts.incrementToken()) { if (termAtt.length() > 0) { String word = ts.getAttribute(CharTermAttribute.class).toString(); Integer wordId = dictionary.get(word); if (wordId != null) { words.add(word); wordCount++; } } } ts.end(); ts.close(); Vector vector = new RandomAccessSparseVector(10000); TFIDF tfidf = new TFIDF(); for (Multiset.Entry<String> entry : words.entrySet()) { String word = entry.getElement(); int count = entry.getCount(); Integer wordId = dictionary.get(word); Long freq = documentFrequency.get(wordId); double tfIdfValue = tfidf.calculate(count, freq.intValue(), wordCount, documentCount); vector.setQuick(wordId, tfIdfValue); } Vector resultVector = classifier.classifyFull(vector); double bestScore = -Double.MAX_VALUE; int bestCategoryId = -1; for (Element element : resultVector.all()) { int categoryId = element.index(); double score = element.get(); if (score > bestScore) { bestScore = score; bestCategoryId = categoryId; } } //System.out.println(message); //System.out.println(" => "+ lv_gtime + lv_wtime + lv_link + id + ":" + labels.get(bestCategoryId)); pstmt.setString(1, id); pstmt.setString(2, lv_gtime); pstmt.setString(3, lv_wtime); pstmt.setString(4, lv_target); pstmt.setBigDecimal(5, lv_num); pstmt.setString(6, lv_link); pstmt.setString(7, message.substring(1, Math.min(50, message.length()))); pstmt.setString(8, labels.get(bestCategoryId)); pstmt.addBatch(); bw.write(id + "\t" + labels.get(bestCategoryId) + "\n"); } pstmt.executeBatch(); //pstmt.clearParameters(); pstmt.close(); conn.commit(); conn.close(); bw.close(); } catch (Exception e) { System.err.println(e.getClass().getName() + ": " + e.getMessage()); System.exit(0); } analyzer.close(); }
From source file:PostgresClassifier.java
License:Apache License
public static void main(String[] args) throws Exception { if (args.length < 5) { System.out.println(//www . j av a 2 s. co m "Arguments: [model] [label index] [dictionnary] [document frequency] [input postgres table]"); return; } String modelPath = args[0]; String labelIndexPath = args[1]; String dictionaryPath = args[2]; String documentFrequencyPath = args[3]; String tablename = args[4]; Configuration configuration = new Configuration(); // model is a matrix (wordId, labelId) => probability score NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), configuration); StandardNaiveBayesClassifier classifier = new StandardNaiveBayesClassifier(model); // labels is a map label => classId Map<Integer, String> labels = BayesUtils.readLabelIndex(configuration, new Path(labelIndexPath)); Map<String, Integer> dictionary = readDictionnary(configuration, new Path(dictionaryPath)); Map<Integer, Long> documentFrequency = readDocumentFrequency(configuration, new Path(documentFrequencyPath)); // analyzer used to extract word from tweet Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_43); int labelCount = labels.size(); int documentCount = documentFrequency.get(-1).intValue(); System.out.println("Number of labels: " + labelCount); System.out.println("Number of documents in training set: " + documentCount); Connection c = null; Statement stmt = null; Statement stmtU = null; try { Class.forName("org.postgresql.Driver"); c = DriverManager.getConnection("jdbc:postgresql://192.168.50.170:5432/uzeni", "postgres", "dbwpsdkdl"); c.setAutoCommit(false); System.out.println("Opened database successfully"); stmt = c.createStatement(); stmtU = c.createStatement(); ResultSet rs = stmt.executeQuery("SELECT * FROM " + tablename + " WHERE rep is null"); while (rs.next()) { String seq = rs.getString("seq"); //String rep = rs.getString("rep"); String body = rs.getString("body"); //String category = rep; String id = seq; String message = body; //System.out.println("Doc: " + id + "\t" + message); Multiset<String> words = ConcurrentHashMultiset.create(); // extract words from tweet TokenStream ts = analyzer.tokenStream("text", new StringReader(message)); CharTermAttribute termAtt = ts.addAttribute(CharTermAttribute.class); ts.reset(); int wordCount = 0; while (ts.incrementToken()) { if (termAtt.length() > 0) { String word = ts.getAttribute(CharTermAttribute.class).toString(); Integer wordId = dictionary.get(word); // if the word is not in the dictionary, skip it if (wordId != null) { words.add(word); wordCount++; } } } // Mark : Modified ts.end(); ts.close(); // create vector wordId => weight using tfidf Vector vector = new RandomAccessSparseVector(10000); TFIDF tfidf = new TFIDF(); for (Multiset.Entry<String> entry : words.entrySet()) { String word = entry.getElement(); int count = entry.getCount(); Integer wordId = dictionary.get(word); Long freq = documentFrequency.get(wordId); double tfIdfValue = tfidf.calculate(count, freq.intValue(), wordCount, documentCount); vector.setQuick(wordId, tfIdfValue); } // With the classifier, we get one score for each label // The label with the highest score is the one the tweet is more likely to // be associated to Vector resultVector = classifier.classifyFull(vector); double bestScore = -Double.MAX_VALUE; int bestCategoryId = -1; for (Element element : resultVector.all()) { int categoryId = element.index(); double score = element.get(); if (score > bestScore) { bestScore = score; bestCategoryId = categoryId; } //System.out.print(" " + labels.get(categoryId) + ": " + score); } //System.out.println(" => " + labels.get(bestCategoryId)); //System.out.println("UPDATE " + tablename + " SET rep = '" + labels.get(bestCategoryId) + "' WHERE seq = " + id ); stmtU.executeUpdate("UPDATE " + tablename + " SET rep = '" + labels.get(bestCategoryId) + "' WHERE seq = " + id); } rs.close(); stmt.close(); stmtU.close(); c.commit(); c.close(); analyzer.close(); } catch (Exception e) { System.err.println(e.getClass().getName() + ": " + e.getMessage()); System.exit(0); } }
From source file:at.illecker.hama.rootbeer.examples.matrixmultiplication.compositeinput.gpu.MatrixMultiplicationBSPGpu.java
License:Apache License
@Override public void bsp(BSPPeer<IntWritable, TupleWritable, IntWritable, VectorWritable, MatrixRowMessage> peer) throws IOException, SyncException, InterruptedException { IntWritable key = new IntWritable(); TupleWritable value = new TupleWritable(); while (peer.readNext(key, value)) { // Logging if (isDebuggingEnabled) { for (int i = 0; i < value.size(); i++) { Vector vector = ((VectorWritable) value.get(i)).get(); logger.writeChars("bsp,input,key=" + key + ",value=" + vector.toString() + "\n"); }// w w w .j av a 2 s . c om } Vector firstVector = ((VectorWritable) value.get(0)).get(); Vector secondVector = ((VectorWritable) value.get(1)).get(); // outCardinality is resulting column size n // (l x m) * (m x n) = (l x n) boolean firstIsOutFrag = secondVector.size() == outCardinality; // outFrag is Matrix which has the resulting column cardinality // (matrixB) Vector outFrag = firstIsOutFrag ? secondVector : firstVector; // multiplier is Matrix which has the resulting row count // (transposed matrixA) Vector multiplier = firstIsOutFrag ? firstVector : secondVector; if (isDebuggingEnabled) { logger.writeChars("bsp,firstIsOutFrag=" + firstIsOutFrag + "\n"); logger.writeChars("bsp,outFrag=" + outFrag + "\n"); logger.writeChars("bsp,multiplier=" + multiplier + "\n"); } // outFrag to double[] double[] outFragArray = new double[outFrag.size()]; int i = 0; for (Vector.Element e : outFrag.all()) { outFragArray[i] = e.get(); i++; } // One map task consists of multiple kernels within one block // Each kernel computes a scalar multiplication blockSize = multiplier.size(); gridSize++; for (int j = 0; j < blockSize; j++) { kernels.add(new MatrixMultiplicationBSPKernel(j, multiplier.get(j), outFragArray)); } // Run GPU Kernels Rootbeer rootbeer = new Rootbeer(); Context context = rootbeer.createDefaultContext(); Stopwatch watch = new Stopwatch(); watch.start(); // blockSize = rows of Matrix A (multiplier) // gridSize = cols of Matrix B (for each row a scalar multiplication // has to be made) rootbeer.run(kernels, new ThreadConfig(blockSize, gridSize, kernels.size()), context); watch.stop(); List<StatsRow> stats = context.getStats(); for (StatsRow row : stats) { System.out.println(" StatsRow:\n"); System.out.println(" serial time: " + row.getSerializationTime() + "\n"); System.out.println(" exec time: " + row.getExecutionTime() + "\n"); System.out.println(" deserial time: " + row.getDeserializationTime() + "\n"); System.out.println(" num blocks: " + row.getNumBlocks() + "\n"); System.out.println(" num threads: " + row.getNumThreads() + "\n"); } if (isDebuggingEnabled) { logger.writeChars( "bsp,KernelCount=" + kernels.size() + ",GPUTime=" + watch.elapsedTimeMillis() + "ms\n"); logger.writeChars("bps,blockSize=" + blockSize + ",gridSize=" + gridSize + "\n"); logger.flush(); } // Collect results of GPU kernels for (Kernel kernel : kernels) { MatrixMultiplicationBSPKernel bspKernel = (MatrixMultiplicationBSPKernel) kernel; if (isDebuggingEnabled) { logger.writeChars("bsp,thread_idxx=" + bspKernel.thread_idxx + ",multiplier=" + bspKernel.multiplierVal + ",vector=" + Arrays.toString(bspKernel.vectorVal) + "\n"); } peer.send(masterTask, new MatrixRowMessage(bspKernel.row, new VectorWritable(new DenseVector(bspKernel.results)))); if (isDebuggingEnabled) { logger.writeChars("bsp,send,key=" + bspKernel.row + ",value=" + Arrays.toString(bspKernel.results) + "\n"); } } } peer.sync(); }
From source file:com.chimpler.example.bayes.Classifier.java
License:Apache License
public static void main(String[] args) throws Exception { if (args.length < 5) { System.out.println("Arguments: [model] [label index] [dictionnary] [document frequency] [tweet file]"); return;//from w w w .jav a 2s.co m } String modelPath = args[0]; String labelIndexPath = args[1]; String dictionaryPath = args[2]; String documentFrequencyPath = args[3]; String tweetsPath = args[4]; Configuration configuration = new Configuration(); // model is a matrix (wordId, labelId) => probability score NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), configuration); StandardNaiveBayesClassifier classifier = new StandardNaiveBayesClassifier(model); // labels is a map label => classId Map<Integer, String> labels = BayesUtils.readLabelIndex(configuration, new Path(labelIndexPath)); Map<String, Integer> dictionary = readDictionnary(configuration, new Path(dictionaryPath)); Map<Integer, Long> documentFrequency = readDocumentFrequency(configuration, new Path(documentFrequencyPath)); // analyzer used to extract word from tweet Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_43); int labelCount = labels.size(); int documentCount = documentFrequency.get(-1).intValue(); System.out.println("Number of labels: " + labelCount); System.out.println("Number of documents in training set: " + documentCount); BufferedReader reader = new BufferedReader(new FileReader(tweetsPath)); while (true) { String line = reader.readLine(); if (line == null) { break; } String[] tokens = line.split("\t", 2); String tweetId = tokens[0]; String tweet = tokens[1]; System.out.println("Tweet: " + tweetId + "\t" + tweet); Multiset<String> words = ConcurrentHashMultiset.create(); // extract words from tweet TokenStream ts = analyzer.tokenStream("text", new StringReader(tweet)); CharTermAttribute termAtt = ts.addAttribute(CharTermAttribute.class); ts.reset(); int wordCount = 0; while (ts.incrementToken()) { if (termAtt.length() > 0) { String word = ts.getAttribute(CharTermAttribute.class).toString(); Integer wordId = dictionary.get(word); // if the word is not in the dictionary, skip it if (wordId != null) { words.add(word); wordCount++; } } } // create vector wordId => weight using tfidf Vector vector = new RandomAccessSparseVector(10000); TFIDF tfidf = new TFIDF(); for (Multiset.Entry<String> entry : words.entrySet()) { String word = entry.getElement(); int count = entry.getCount(); Integer wordId = dictionary.get(word); Long freq = documentFrequency.get(wordId); double tfIdfValue = tfidf.calculate(count, freq.intValue(), wordCount, documentCount); vector.setQuick(wordId, tfIdfValue); } // With the classifier, we get one score for each label // The label with the highest score is the one the tweet is more likely to // be associated to Vector resultVector = classifier.classifyFull(vector); double bestScore = -Double.MAX_VALUE; int bestCategoryId = -1; for (Element element : resultVector.all()) { int categoryId = element.index(); double score = element.get(); if (score > bestScore) { bestScore = score; bestCategoryId = categoryId; } System.out.print(" " + labels.get(categoryId) + ": " + score); } System.out.println(" => " + labels.get(bestCategoryId)); } analyzer.close(); reader.close(); }
From source file:com.innometrics.integration.app.recommender.ml.als.ImplicitFeedbackAlternatingLeastSquaresSolver.java
License:Apache License
private Matrix columnVectorAsMatrix(Vector v) { double[][] matrix = new double[numFeatures][1]; for (Vector.Element e : v.all()) { matrix[e.index()][0] = e.get();// w ww. j av a 2 s. c o m } return new DenseMatrix(matrix, true); }
From source file:edu.rosehulman.mahout.math.VectorWritable.java
License:Apache License
public static void writeVector(DataOutput out, Vector vector, boolean laxPrecision) throws IOException { boolean dense = vector.isDense(); boolean sequential = vector.isSequentialAccess(); boolean named = vector instanceof NamedVector; out.writeByte((dense ? FLAG_DENSE : 0) | (sequential ? FLAG_SEQUENTIAL : 0) | (named ? FLAG_NAMED : 0) | (laxPrecision ? FLAG_LAX_PRECISION : 0)); Varint.writeUnsignedVarInt(vector.size(), out); if (dense) {//from w w w.j av a 2 s . co m for (Vector.Element element : vector.all()) { if (laxPrecision) { out.writeFloat((float) element.get()); } else { out.writeDouble(element.get()); } } } else { Varint.writeUnsignedVarInt(vector.getNumNonZeroElements(), out); Iterator<Element> iter = vector.nonZeroes().iterator(); if (sequential) { int lastIndex = 0; while (iter.hasNext()) { Vector.Element element = iter.next(); if (element.get() == 0) { continue; } int thisIndex = element.index(); // Delta-code indices: Varint.writeUnsignedVarInt(thisIndex - lastIndex, out); lastIndex = thisIndex; if (laxPrecision) { out.writeFloat((float) element.get()); } else { out.writeDouble(element.get()); } } } else { while (iter.hasNext()) { Vector.Element element = iter.next(); if (element.get() == 0) { // TODO(robinanil): Fix the damn iterator for the zero element. continue; } Varint.writeUnsignedVarInt(element.index(), out); if (laxPrecision) { out.writeFloat((float) element.get()); } else { out.writeDouble(element.get()); } } } } if (named) { String name = ((NamedVector) vector).getName(); out.writeUTF(name == null ? "" : name); } }
From source file:edu.stanford.rad.naivebayes.ClassifyLines.java
License:Apache License
public static void main(String[] args) throws Exception { // if (args.length < 5) { // System.out.println("Arguments: [model] [label index] [dictionnary] [document frequency] [tweet file]"); // return; // }/* www. j ava2 s .c o m*/ // String modelPath = args[0]; // String labelIndexPath = args[1]; // String dictionaryPath = args[2]; // String documentFrequencyPath = args[3]; // String tweetsPath = args[4]; String modelPath = "/Users/saeedhp/Dropbox/Stanford/Code/NER/files/stride/ectopicPregnancy/classification/nb"; String labelIndexPath = "/Users/saeedhp/Dropbox/Stanford/Code/NER/files/stride/ectopicPregnancy/classification/nb/labelindex"; String dictionaryPath = "/Users/saeedhp/Dropbox/Stanford/Code/NER/files/stride/ectopicPregnancy/vectors/TFIDFsparseSeqdir/dictionary.file-0"; String documentFrequencyPath = "/Users/saeedhp/Dropbox/Stanford/Code/NER/files/stride/ectopicPregnancy/vectors/TFIDFsparseSeqdir/df-count/part-r-00000"; String tweetsPath = "/Users/saeedhp/Desktop/tweet/tweet.txt"; Configuration configuration = new Configuration(); // model is a matrix (wordId, labelId) => probability score NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), configuration); StandardNaiveBayesClassifier classifier = new StandardNaiveBayesClassifier(model); // labels is a map label => classId Map<Integer, String> labels = BayesUtils.readLabelIndex(configuration, new Path(labelIndexPath)); Map<String, Integer> dictionary = readDictionnary(configuration, new Path(dictionaryPath)); Map<Integer, Long> documentFrequency = readDocumentFrequency(configuration, new Path(documentFrequencyPath)); // analyzer used to extract word from tweet Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_46); int labelCount = labels.size(); int documentCount = documentFrequency.get(-1).intValue(); System.out.println("Number of labels: " + labelCount); System.out.println("Number of documents in training set: " + documentCount); BufferedReader reader = new BufferedReader(new FileReader(tweetsPath)); while (true) { String line = reader.readLine(); if (line == null) { break; } String[] tokens = line.split("\t", 2); String tweetId = tokens[0]; String tweet = tokens[1]; System.out.println("Tweet: " + tweetId + "\t" + tweet); Multiset<String> words = ConcurrentHashMultiset.create(); // extract words from tweet TokenStream ts = analyzer.tokenStream("text", new StringReader(tweet)); CharTermAttribute termAtt = ts.addAttribute(CharTermAttribute.class); ts.reset(); int wordCount = 0; while (ts.incrementToken()) { if (termAtt.length() > 0) { String word = ts.getAttribute(CharTermAttribute.class).toString(); Integer wordId = dictionary.get(word); // if the word is not in the dictionary, skip it if (wordId != null) { words.add(word); wordCount++; } } } // Fixed error : close ts:TokenStream ts.end(); ts.close(); // create vector wordId => weight using tfidf Vector vector = new RandomAccessSparseVector(10000); TFIDF tfidf = new TFIDF(); for (Multiset.Entry<String> entry : words.entrySet()) { String word = entry.getElement(); int count = entry.getCount(); Integer wordId = dictionary.get(word); Long freq = documentFrequency.get(wordId); double tfIdfValue = tfidf.calculate(count, freq.intValue(), wordCount, documentCount); vector.setQuick(wordId, tfIdfValue); } // With the classifier, we get one score for each label // The label with the highest score is the one the tweet is more likely to // be associated to Vector resultVector = classifier.classifyFull(vector); double bestScore = -Double.MAX_VALUE; int bestCategoryId = -1; for (Element element : resultVector.all()) { int categoryId = element.index(); double score = element.get(); if (score > bestScore) { bestScore = score; bestCategoryId = categoryId; } System.out.print(" " + labels.get(categoryId) + ": " + score); } System.out.println(" => " + labels.get(bestCategoryId)); } analyzer.close(); reader.close(); }
From source file:mahout.classifier.Classifier.java
License:Apache License
public static void main(String[] args) throws Exception { if (args.length < 5) { System.out.println("Arguments: [model] [label index] [dictionnary] [document frequency] [tweet file]"); return;/*w w w. jav a 2 s .com*/ } String modelPath = args[0]; String labelIndexPath = args[1]; String dictionaryPath = args[2]; String documentFrequencyPath = args[3]; String tweetsPath = args[4]; Configuration configuration = new Configuration(); // model is a matrix (wordId, labelId) => probability score NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), configuration); StandardNaiveBayesClassifier classifier = new StandardNaiveBayesClassifier(model); // labels is a map label => classId Map<Integer, String> labels = BayesUtils.readLabelIndex(configuration, new Path(labelIndexPath)); Map<String, Integer> dictionary = readDictionnary(configuration, new Path(dictionaryPath)); Map<Integer, Long> documentFrequency = readDocumentFrequency(configuration, new Path(documentFrequencyPath)); // analyzer used to extract word from tweet Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_43); int labelCount = labels.size(); int documentCount = documentFrequency.get(-1).intValue(); System.out.println("Number of labels: " + labelCount); System.out.println("Number of documents in training set: " + documentCount); BufferedReader reader = new BufferedReader(new FileReader(tweetsPath)); while (true) { String line = reader.readLine(); if (line == null) { break; } String[] tokens = line.split("\t", 2); String tweetId = tokens[0]; String tweet = tokens[1]; Multiset<String> words = ConcurrentHashMultiset.create(); // extract words from tweet TokenStream ts = analyzer.tokenStream("text", new StringReader(tweet)); CharTermAttribute termAtt = ts.addAttribute(CharTermAttribute.class); ts.reset(); int wordCount = 0; while (ts.incrementToken()) { if (termAtt.length() > 0) { String word = ts.getAttribute(CharTermAttribute.class).toString(); Integer wordId = dictionary.get(word); // if the word is not in the dictionary, skip it if (wordId != null) { words.add(word); wordCount++; } } } // create vector wordId => weight using tfidf Vector vector = new RandomAccessSparseVector(10000); TFIDF tfidf = new TFIDF(); for (Multiset.Entry<String> entry : words.entrySet()) { String word = entry.getElement(); int count = entry.getCount(); Integer wordId = dictionary.get(word); Long freq = documentFrequency.get(wordId); double tfIdfValue = tfidf.calculate(count, freq.intValue(), wordCount, documentCount); vector.setQuick(wordId, tfIdfValue); } // With the classifier, we get one score for each label // The label with the highest score is the one the tweet is more likely to // be associated to Vector resultVector = classifier.classifyFull(vector); double bestScore = -Double.MAX_VALUE; int bestCategoryId = -1; for (Element element : resultVector.all()) { int categoryId = element.index(); double score = element.get(); if (score > bestScore) { bestScore = score; bestCategoryId = categoryId; } } System.out.println(labels.get(bestCategoryId) + "\t" + tweet); } analyzer.close(); reader.close(); }