Example usage for org.apache.hadoop.mapreduce Job waitForCompletion

List of usage examples for org.apache.hadoop.mapreduce Job waitForCompletion

Introduction

In this page you can find the example usage for org.apache.hadoop.mapreduce Job waitForCompletion.

Prototype

public boolean waitForCompletion(boolean verbose)
        throws IOException, InterruptedException, ClassNotFoundException 

Source Link

Document

Submit the job to the cluster and wait for it to finish.

Usage

From source file:com.cg.mapreduce.fpgrowth.mahout.fpm.PFPGrowth.java

License:Apache License

/**
 * Run the aggregation Job to aggregate the different TopK patterns and group each Pattern by the features
 * present in it and thus calculate the final Top K frequent Patterns for each feature
 *///from w  w w.j av  a  2 s  .  c  o  m
public static void startAggregating(Parameters params, Configuration conf)
        throws IOException, InterruptedException, ClassNotFoundException {

    conf.set(PFP_PARAMETERS, params.toString());
    conf.set("mapred.compress.map.output", "true");
    conf.set("mapred.output.compression.type", "BLOCK");

    Path input = new Path(params.get(OUTPUT), FPGROWTH);
    Job job = new Job(conf, "PFP Aggregator Driver running over input: " + input);
    job.setJarByClass(PFPGrowth.class);

    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(TopKStringPatterns.class);

    FileInputFormat.addInputPath(job, input);
    Path outPath = new Path(params.get(OUTPUT), FREQUENT_PATTERNS);
    FileOutputFormat.setOutputPath(job, outPath);

    job.setInputFormatClass(SequenceFileInputFormat.class);
    job.setMapperClass(AggregatorMapper.class);
    job.setCombinerClass(AggregatorReducer.class);
    job.setReducerClass(AggregatorReducer.class);
    job.setOutputFormatClass(SequenceFileOutputFormat.class);

    HadoopUtil.delete(conf, outPath);
    boolean succeeded = job.waitForCompletion(true);
    if (!succeeded) {
        throw new IllegalStateException("Job failed!");
    }
}

From source file:com.cg.mapreduce.fpgrowth.mahout.fpm.PFPGrowth.java

License:Apache License

/**
 * Count the frequencies of various features in parallel using Map/Reduce
 *//*from  w  w w. ja v a2s . c  om*/
public static void startParallelCounting(Parameters params, Configuration conf)
        throws IOException, InterruptedException, ClassNotFoundException {
    conf.set(PFP_PARAMETERS, params.toString());

    conf.set("mapred.compress.map.output", "true");
    conf.set("mapred.output.compression.type", "BLOCK");

    String input = params.get(INPUT);
    Job job = new Job(conf, "Parallel Counting Driver running over input: " + input);
    job.setJarByClass(PFPGrowth.class);

    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(LongWritable.class);

    FileInputFormat.addInputPath(job, new Path(input));
    Path outPath = new Path(params.get(OUTPUT), PARALLEL_COUNTING);
    FileOutputFormat.setOutputPath(job, outPath);

    HadoopUtil.delete(conf, outPath);

    job.setInputFormatClass(TextInputFormat.class);
    job.setMapperClass(ParallelCountingMapper.class);
    job.setCombinerClass(ParallelCountingReducer.class);
    job.setReducerClass(ParallelCountingReducer.class);
    job.setOutputFormatClass(SequenceFileOutputFormat.class);

    boolean succeeded = job.waitForCompletion(true);
    if (!succeeded) {
        throw new IllegalStateException("Job failed!");
    }

}

From source file:com.cg.mapreduce.fpgrowth.mahout.fpm.PFPGrowth.java

License:Apache License

/**
 * Run the Parallel FPGrowth Map/Reduce Job to calculate the Top K features of group dependent shards
 *//*from  ww  w .j  a  v  a  2  s  .c  om*/
public static void startParallelFPGrowth(Parameters params, Configuration conf)
        throws IOException, InterruptedException, ClassNotFoundException {
    conf.set(PFP_PARAMETERS, params.toString());
    conf.set("mapred.compress.map.output", "true");
    conf.set("mapred.output.compression.type", "BLOCK");
    Path input = new Path(params.get(INPUT));
    Job job = new Job(conf, "PFP Growth Driver running over input" + input);
    job.setJarByClass(PFPGrowth.class);

    job.setMapOutputKeyClass(IntWritable.class);
    job.setMapOutputValueClass(TransactionTree.class);

    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(TopKStringPatterns.class);

    FileInputFormat.addInputPath(job, input);
    Path outPath = new Path(params.get(OUTPUT), FPGROWTH);
    FileOutputFormat.setOutputPath(job, outPath);

    HadoopUtil.delete(conf, outPath);

    job.setInputFormatClass(TextInputFormat.class);
    job.setMapperClass(ParallelFPGrowthMapper.class);
    job.setCombinerClass(ParallelFPGrowthCombiner.class);
    job.setReducerClass(ParallelFPGrowthReducer.class);
    job.setOutputFormatClass(SequenceFileOutputFormat.class);

    boolean succeeded = job.waitForCompletion(true);
    if (!succeeded) {
        throw new IllegalStateException("Job failed!");
    }
}

From source file:com.cg.mapreduce.myfpgrowth.PFPGrowth.java

License:Apache License

/**
 * Count the frequencies of various features in parallel using Map/Reduce
 *///from   www .  ja va 2  s. c  om
public static void startParallelCounting(Parameters params, Configuration conf)
        throws IOException, InterruptedException, ClassNotFoundException {
    conf.set(PFP_PARAMETERS, params.toString());
    conf.set("mapred.compress.map.output", "true");
    conf.set("mapred.output.compression.type", "BLOCK");

    String input = params.get(INPUT);
    Job job = new Job(conf, "Parallel Counting Driver running over input: " + input);
    job.setJarByClass(PFPGrowth.class);

    //    Job job = initJob(conf);  
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(LongWritable.class);

    FileInputFormat.addInputPath(job, new Path(input));
    Path outPath = new Path(params.get(OUTPUT), PARALLEL_COUNTING);
    FileOutputFormat.setOutputPath(job, outPath);

    HadoopUtil.delete(conf, outPath);

    job.setInputFormatClass(TextInputFormat.class);
    job.setMapperClass(ParallelCountingMapper.class);
    job.setCombinerClass(ParallelCountingReducer.class);
    job.setReducerClass(ParallelCountingReducer.class);
    job.setOutputFormatClass(SequenceFileOutputFormat.class);

    boolean succeeded = job.waitForCompletion(true);
    if (!succeeded) {
        throw new IllegalStateException("Job failed!");
    }

}

From source file:com.cg.mapreduce.myfpgrowth.PFPGrowth.java

License:Apache License

/**
 * Run the Parallel FPGrowth Map/Reduce Job to calculate the Top K features of group dependent shards
 *//*from   ww w.  java 2s.c o  m*/
public static void startParallelFPGrowth(Parameters params, Configuration conf)
        throws IOException, InterruptedException, ClassNotFoundException {
    conf.set(PFP_PARAMETERS, params.toString());
    conf.set("mapred.compress.map.output", "true");
    conf.set("mapred.output.compression.type", "BLOCK");

    Path input = new Path(params.get(INPUT));
    Job job = new Job(conf, "PFP Growth Driver running over input" + input);
    job.setJarByClass(PFPGrowth.class);
    //    Job job = initJob(conf);

    job.setMapOutputKeyClass(IntWritable.class);
    job.setMapOutputValueClass(ArrayList.class);

    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(LongWritable.class);

    FileInputFormat.addInputPath(job, input);
    Path outPath = new Path(params.get(OUTPUT), FPGROWTH);
    FileOutputFormat.setOutputPath(job, outPath);

    HadoopUtil.delete(conf, outPath);

    job.setInputFormatClass(TextInputFormat.class);
    job.setMapperClass(ParallelFPGrowthMapper.class);
    //job.setCombinerClass(ParallelFPGrowthCombiner.class);
    job.setReducerClass(ParallelFPGrowthReducer.class);
    job.setOutputFormatClass(SequenceFileOutputFormat.class);

    boolean succeeded = job.waitForCompletion(true);
    if (!succeeded) {
        throw new IllegalStateException("Job failed!");
    }
}

From source file:com.ckelsel.hadoop.mapreduce.WordCount.WordCount.java

License:Open Source License

public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
    if (otherArgs.length < 2) {
        System.err.println("Usage: EventCount <in> <out>");
        System.exit(2);//www . jav a 2 s.c  om
    }
    Job job = Job.getInstance(conf, "event count");
    job.setJarByClass(WordCount.class);
    job.setMapperClass(MyMapper.class);
    job.setCombinerClass(MyReducer.class);
    job.setReducerClass(MyReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));

    // delete output if exists
    Path outPath = new Path(otherArgs[1]);
    outPath.getFileSystem(conf).delete(outPath, true);
    FileOutputFormat.setOutputPath(job, outPath);
    System.exit(job.waitForCompletion(true) ? 0 : 1);
}

From source file:com.ckelsel.hadoop.MaxTemperature.App.java

License:Open Source License

public static void main(String[] args) {
    if (args.length != 2) {
        System.err.println("Usage: MaxTemperature <input path> <output path>");
        System.exit(-1);//  ww  w . j av  a 2 s  . c om
    }

    System.out.println(args[0]);
    System.out.println(args[1]);

    try {
        Configuration conf = new Configuration();
        conf.set("mapred.job.tracker", "localhost:9001");

        Job job = Job.getInstance(conf);

        job.setJarByClass(App.class);
        job.setJobName("Max temperature");

        FileInputFormat.addInputPath(job, new Path(args[0]));

        // delete output if exists
        Path outPath = new Path(args[1]);
        outPath.getFileSystem(conf).delete(outPath, true);

        FileOutputFormat.setOutputPath(job, outPath);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        System.exit(job.waitForCompletion(true) ? 0 : -1);
    } catch (IOException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    } catch (ClassNotFoundException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    } catch (InterruptedException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }
}

From source file:com.cloudera.accumulo.upgrade.compatibility.DataCompatibilityLoad.java

License:Open Source License

@Override
public int run(String[] args) throws Exception {
    final String jobName = this.getClass().getName();
    options.parseArgs(jobName, args);//from w ww.  j ava 2  s  . c  o  m
    final Job job = new Job(getConf(), jobName);

    if (-1 == options.test.numRows) {
        options.test.numRows = job.getConfiguration().getInt("mapred.map.tasks",
                DataCompatibilityTestCli.DEFAULT_NUM_ROWS);
    }

    job.setJarByClass(this.getClass());

    job.setInputFormatClass(DataLoadInputFormat.class);
    DataLoadInputFormat.setTabletServers(job,
            options.connection.getConnector().instanceOperations().getTabletServers());
    DataLoadInputFormat.setNumRows(job, options.test.numRows);
    DataLoadInputFormat.setNumQualifiersPerFamily(job, options.test.qualifiers);

    job.getConfiguration().set(VISIBILITY, new String(options.visibility.visibility.getExpression(), "UTF-8"));

    final TableOperations ops = options.connection.getConnector().tableOperations();

    final List<String> names = options.test.getTableNamesAndConfigureThem(ops);
    for (String name : names) {
        final int numSplits = ops.getSplits(name, options.test.numRows).size();
        if (options.test.numRows > numSplits) {
            log.info("adding splits to table '" + name + "', to bring it from " + numSplits + " to "
                    + options.test.numRows + ".");
            final SortedSet<Text> splits = new TreeSet<Text>();
            // for cases where we're adding way more splits than there are currently possible servers to handle them, do a pre-pre-split
            //   N.B. If we've just created this table, there will be 0 splits because we'll just have the initial tablet.
            if (0 == numSplits || options.test.numRows / numSplits > 10) {
                log.info("splitting in two waves due to the number of splits we need to add.");
                // TODO turtles all the way down.
                final int prepre = options.test.numRows / (0 == numSplits ? 10 : numSplits * 10);
                for (int i = 0; i < prepre; i++) {
                    splits.add(new Text(new StringBuilder(Long.toString(i)).reverse().toString()));
                }
                ops.addSplits(name, splits);
                log.debug("delay 30s for splits to get assigned off host.");
                try {
                    Thread.currentThread().sleep(30 * 1000);
                } catch (InterruptedException exception) {
                    log.warn("interrupted from sleep early.");
                }
                splits.clear();
            }
            for (int i = 0; i < options.test.numRows; i++) {
                splits.add(new Text(new StringBuilder(Long.toString(i)).reverse().toString()));
            }
            ops.addSplits(name, splits);
        }
    }
    log.debug("delay 30s for splits to get assigned off host.");
    try {
        Thread.currentThread().sleep(30 * 1000);
    } catch (InterruptedException exception) {
        log.warn("interrupted from sleep early.");
    }

    job.getConfiguration().setStrings(OUTPUT_TABLE_NAMES, names.toArray(new String[0]));

    job.setMapperClass(DataLoadMapper.class);
    job.setMapOutputKeyClass(Text.class);
    job.setMapOutputValueClass(Mutation.class);

    job.setNumReduceTasks(0);

    log.info("launching map-only job to insert " + options.test.numRows + " rows of "
            + (FAMILIES.length * options.test.qualifiers) + " cells each into each of the tables " + names);
    options.output.useAccumuloOutputFormat(job);

    job.waitForCompletion(true);
    return job.isSuccessful() ? 0 : 1;
}

From source file:com.cloudera.accumulo.upgrade.compatibility.DataCompatibilityVerify.java

License:Open Source License

@Override
public int run(String[] args) throws Exception {
    final String jobName = this.getClass().getName();
    options.parseArgs(jobName, args);//from   w  w  w.  j ava2  s.c  om
    try {
        final int totalMapSlots = getConf().getInt("mapred.map.tasks",
                DataCompatibilityTestCli.DEFAULT_NUM_ROWS);
        if (-1 == options.test.numRows) {
            options.test.numRows = totalMapSlots;
        }
        final TableOperations ops = options.connection.getConnector().tableOperations();
        final List<String> names = options.test.getTableNames(ops);
        int totalReduceSlots = getConf().getInt("mapred.reduce.tasks", 0);
        if (-1 != options.test.numReduceSlots) {
            totalReduceSlots = options.test.numReduceSlots;
        }
        if (0 == totalReduceSlots) {
            totalReduceSlots = names.size();
        }
        final int reducesPerJob = Math.max(1, totalReduceSlots / names.size());

        final List<Job> jobs = new ArrayList();
        for (String name : names) {
            final Job job = new Job(getConf(), jobName + " " + name);
            job.setJarByClass(this.getClass());
            options.input.useAccumuloInputFormat(job, name);
            job.setMapperClass(DataVerifyMapper.class);
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(LongWritable.class);
            job.setReducerClass(LongSumReducer.class);
            job.setCombinerClass(LongSumReducer.class);
            job.setOutputFormatClass(TextOutputFormat.class);
            TextOutputFormat.setOutputPath(job, new Path(options.test.output, name));
            job.setNumReduceTasks(reducesPerJob);
            job.submit();
            jobs.add(job);
        }

        boolean success = true;
        final long numCellsPerRow = options.test.qualifiers * DataCompatibilityLoad.FAMILIES.length;
        final long numCellsPerFamily = options.test.qualifiers * options.test.numRows;
        for (Job job : jobs) {
            success &= job.waitForCompletion(true);
            final CounterGroup group = job.getCounters().getGroup(DataVerifyMapper.class.getName());
            if (null == group) {
                log.error("Job '" + job.getJobName() + "' doesn't have counters for the verification mapper.");
                success = false;
            } else {
                final Counter badCounter = group.findCounter(BAD_COUNTER);
                if (null != badCounter && 0 < badCounter.getValue()) {
                    log.error("Job '" + job.getJobName() + "' has " + badCounter.getValue()
                            + " entries with bad checksums.");
                    success = false;
                }
                int numRows = 0;
                int numFamilies = 0;
                for (Counter counter : group) {
                    if (counter.getName().startsWith(ROW_COUNTER_PREFIX)) {
                        numRows++;
                        if (numCellsPerRow != counter.getValue()) {
                            log.error("Job '" + job.getJobName() + "', counter '" + counter.getName()
                                    + "' should have " + numCellsPerRow + " cells, but instead has "
                                    + counter.getValue());
                            success = false;
                        }
                    } else if (counter.getName().startsWith(FAMILY_COUNTER_PREFIX)) {
                        numFamilies++;
                        if (numCellsPerFamily != counter.getValue()) {
                            log.error("Job '" + job.getJobName() + "', counter '" + counter.getName()
                                    + "' should have " + numCellsPerFamily + " cells, but instead has "
                                    + counter.getValue());
                            success = false;
                        }
                    }
                }
                if (options.test.numRows != numRows) {
                    log.error("Job '" + job.getJobName() + "' is supposed to have " + options.test.numRows
                            + " rows, but has " + numRows);
                    success = false;
                }
                if (DataCompatibilityLoad.FAMILIES.length != numFamilies) {
                    log.error("Job '" + job.getJobName() + "' is supposed to have "
                            + DataCompatibilityLoad.FAMILIES.length + " families, but has " + numFamilies);
                    success = false;
                }
            }
        }
        if (success) {
            log.info("All internal checks passed.");
        } else {
            log.info("Some checks failed. see log.");
        }
        return success ? 0 : 1;
    } finally {
        options.input.close();
    }
}

From source file:com.cloudera.avro.MapReduceAvroWordCount.java

License:Apache License

public int run(String[] args) throws Exception {
    if (args.length != 2) {
        System.err.println("Usage: AvroWordCount <input path> <output path>");
        return -1;
    }//  w  w  w.ja v  a2 s . c o m

    Job job = new Job(getConf());
    job.setJarByClass(MapReduceAvroWordCount.class);
    job.setJobName("wordcount");

    // We call setOutputSchema first so we can override the configuration
    // parameters it sets
    AvroJob.setOutputKeySchema(job, Pair.getPairSchema(Schema.create(Type.STRING), Schema.create(Type.INT)));
    job.setOutputValueClass(NullWritable.class);

    job.setMapperClass(Map.class);
    job.setReducerClass(Reduce.class);

    job.setInputFormatClass(TextInputFormat.class);

    job.setMapOutputKeyClass(Text.class);
    job.setMapOutputValueClass(IntWritable.class);
    job.setSortComparatorClass(Text.Comparator.class);

    FileInputFormat.setInputPaths(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));

    job.waitForCompletion(true);

    return 0;
}