List of usage examples for org.apache.hadoop.mapreduce Job setMapOutputValueClass
public void setMapOutputValueClass(Class<?> theClass) throws IllegalStateException
From source file:com.github.libsml.commons.util.HadoopUtils.java
License:Apache License
/** * Create a map-only Hadoop Job out of the passed in parameters. Does not set the * Job name./* ww w. ja va 2s. c o m*/ * * @see #getCustomJobName(String, JobContext, Class, Class) */ public static Job prepareJob(Path inputPath, Path outputPath, Class<? extends InputFormat> inputFormat, Class<? extends Mapper> mapper, Class<? extends Writable> mapperKey, Class<? extends Writable> mapperValue, Class<? extends OutputFormat> outputFormat, Configuration conf) throws IOException { // Job job = new Job(new Configuration(conf)); Job job = Job.getInstance(conf); Configuration jobConf = job.getConfiguration(); if (mapper.equals(Mapper.class)) { throw new IllegalStateException("Can't figure out the user class jar file from mapper/reducer"); } job.setJarByClass(mapper); job.setInputFormatClass(inputFormat); jobConf.set("mapred.input.dir", inputPath.toString()); job.setMapperClass(mapper); job.setMapOutputKeyClass(mapperKey); job.setMapOutputValueClass(mapperValue); job.setOutputKeyClass(mapperKey); job.setOutputValueClass(mapperValue); jobConf.setBoolean("mapred.compress.map.output", true); job.setNumReduceTasks(0); job.setOutputFormatClass(outputFormat); jobConf.set("mapred.output.dir", outputPath.toString()); return job; }
From source file:com.github.libsml.commons.util.HadoopUtils.java
License:Apache License
/** * * @param inputPaths// w ww.ja v a 2 s. co m * @param outputPath * @param inputFormat * @param inputKey * @param inputValue * @param mapper * @param mapperKey * @param mapperValue * @param combiner * @param reducer * @param outputKey * @param outputValue * @param outputFormat * @param conf * @param overwrite * @param isCompress * @return * @throws IOException */ public static Job prepareAvroJob(String inputPaths, String outputPath, Class<? extends InputFormat> inputFormat, Object inputKey, Object inputValue, Class<? extends Mapper> mapper, Object mapperKey, Object mapperValue, Class<? extends Reducer> combiner, Class<? extends Reducer> reducer, Object outputKey, Object outputValue, Class<? extends OutputFormat> outputFormat, Configuration conf, boolean overwrite, boolean isCompress) throws IOException { Job job = Job.getInstance(conf); Configuration jobConf = job.getConfiguration(); if (inputKey instanceof Schema) { if (inputValue instanceof Schema) { inputFormat = inputFormat == null ? AvroKeyValueInputFormat.class : inputFormat; } inputFormat = inputFormat == null ? AvroKeyInputFormat.class : inputFormat; } if (inputFormat != null) { job.setInputFormatClass(inputFormat); } if (inputKey instanceof Schema) { AvroJob.setInputKeySchema(job, (Schema) inputKey); } if (inputValue instanceof Schema) { AvroJob.setInputValueSchema(job, (Schema) inputValue); } if (outputKey instanceof Schema) { if (outputValue instanceof Schema) { outputFormat = outputFormat == null ? AvroKeyValueOutputFormat.class : outputFormat; } outputFormat = outputFormat == null ? AvroKeyOutputFormat.class : outputFormat; } if (outputFormat != null) { job.setOutputFormatClass(outputFormat); } if (outputKey instanceof Schema) { AvroJob.setOutputKeySchema(job, (Schema) outputKey); } else if (outputKey instanceof Class) { job.setOutputKeyClass((Class) outputKey); } if (outputValue instanceof Schema) { AvroJob.setOutputValueSchema(job, (Schema) outputValue); } else if (outputValue instanceof Class) { job.setOutputValueClass((Class) outputValue); } if (reducer == null) { job.setNumReduceTasks(0); if (mapperKey instanceof Schema) { AvroJob.setMapOutputKeySchema(job, (Schema) mapperKey); } else if (mapperKey instanceof Class) { job.setOutputKeyClass((Class) mapperKey); } if (mapperValue instanceof Schema) { AvroJob.setOutputValueSchema(job, (Schema) mapperValue); } else if (mapperKey instanceof Class) { job.setOutputValueClass((Class) mapperValue); } job.setJarByClass(mapper); } else if (reducer.equals(Reducer.class)) { if (mapper.equals(Mapper.class)) { throw new IllegalStateException("Can't figure out the user class jar file from mapper/reducer"); } job.setJarByClass(mapper); } else { job.setJarByClass(reducer); } FileInputFormat.setInputPaths(job, inputPaths); FileOutputFormat.setOutputPath(job, new Path(outputPath)); if (isCompress) { FileOutputFormat.setCompressOutput(job, true); FileOutputFormat.setOutputCompressorClass(job, DeflateCodec.class); } job.setMapperClass(mapper); if (mapperKey instanceof Schema) { AvroJob.setMapOutputKeySchema(job, (Schema) mapperKey); } else if (mapperKey instanceof Class) { job.setMapOutputKeyClass((Class) mapperKey); } if (mapperValue instanceof Schema) { AvroJob.setMapOutputValueSchema(job, (Schema) mapperValue); } else if (mapperKey instanceof Class) { job.setMapOutputValueClass((Class) mapperValue); } if (reducer != null) { job.setReducerClass(reducer); } if (combiner != null) { job.setCombinerClass(combiner); } if (overwrite) { HadoopUtils.delete(jobConf, new Path(outputPath)); } return job; }
From source file:com.github.libsml.commons.util.HadoopUtils.java
License:Apache License
public static Job prepareAvroJob(String inputPaths, Path outputPath, Schema inputKeySchema, Class<? extends Mapper> mapper, Class<? extends Writable> mapperKey, Class<? extends Writable> mapperValue, Class<? extends Reducer> combiner, Class<? extends Reducer> reducer, Schema outputKeySchema, Class<? extends Writable> outputValue, Configuration conf, boolean overwrite) throws IOException { Job job = Job.getInstance(conf); Configuration jobConf = job.getConfiguration(); if (reducer.equals(Reducer.class)) { if (mapper.equals(Mapper.class)) { throw new IllegalStateException("Can't figure out the user class jar file from mapper/reducer"); }/*w w w .j a va 2 s. c o m*/ job.setJarByClass(mapper); } else { job.setJarByClass(reducer); } FileInputFormat.setInputPaths(job, inputPaths); FileOutputFormat.setOutputPath(job, outputPath); FileOutputFormat.setCompressOutput(job, true); FileOutputFormat.setOutputCompressorClass(job, DeflateCodec.class); job.setInputFormatClass(AvroKeyInputFormat.class); AvroJob.setInputKeySchema(job, inputKeySchema); job.setMapperClass(mapper); if (mapperKey != null) { job.setMapOutputKeyClass(mapperKey); } if (mapperValue != null) { job.setMapOutputValueClass(mapperValue); } if (combiner != null) { job.setCombinerClass(combiner); } job.setOutputFormatClass(AvroKeyOutputFormat.class); job.setReducerClass(reducer); AvroJob.setOutputKeySchema(job, outputKeySchema); job.setOutputValueClass(outputValue); if (overwrite) { HadoopUtils.delete(jobConf, outputPath); } return job; }
From source file:com.github.libsml.commons.util.HadoopUtils.java
License:Apache License
public static Job prepareAvroJob(String inputPaths, Path outputPath, Schema inputKeySchema, Class<? extends Mapper> mapper, Class<? extends Writable> mapperKey, Class<? extends Writable> mapperValue, Class<? extends Reducer> combiner, Class<? extends Reducer> reducer, Class<? extends Writable> outputKey, Class<? extends Writable> outputValue, Configuration conf, boolean overwrite) throws IOException { Job job = Job.getInstance(conf); Configuration jobConf = job.getConfiguration(); if (reducer.equals(Reducer.class)) { if (mapper.equals(Mapper.class)) { throw new IllegalStateException("Can't figure out the user class jar file from mapper/reducer"); }/*from www . j a v a2s.co m*/ job.setJarByClass(mapper); } else { job.setJarByClass(reducer); } FileInputFormat.setInputPaths(job, inputPaths); FileOutputFormat.setOutputPath(job, outputPath); // FileOutputFormat.setCompressOutput(job, true); // FileOutputFormat.setOutputCompressorClass(job, DeflateCodec.class); job.setInputFormatClass(AvroKeyInputFormat.class); AvroJob.setInputKeySchema(job, inputKeySchema); job.setMapperClass(mapper); if (mapperKey != null) { job.setMapOutputKeyClass(mapperKey); } if (mapperValue != null) { job.setMapOutputValueClass(mapperValue); } if (combiner != null) { job.setCombinerClass(combiner); } job.setReducerClass(reducer); job.setOutputKeyClass(outputKey); job.setOutputValueClass(outputValue); if (overwrite) { HadoopUtils.delete(jobConf, outputPath); } return job; }
From source file:com.github.libsml.commons.util.HadoopUtils.java
License:Apache License
public static Job prepareJob(String inputPath, String outputPath, Class<? extends InputFormat> inputFormat, Class<? extends Mapper> mapper, Class<? extends Writable> mapperKey, Class<? extends Writable> mapperValue, Class<? extends Reducer> reducer, Class<? extends Writable> reducerKey, Class<? extends Writable> reducerValue, Class<? extends OutputFormat> outputFormat, Configuration conf) throws IOException { // Job job = new Job(new Configuration(conf)); Job job = Job.getInstance(conf); Configuration jobConf = job.getConfiguration(); if (reducer.equals(Reducer.class)) { if (mapper.equals(Mapper.class)) { throw new IllegalStateException("Can't figure out the user class jar file from mapper/reducer"); }//from www .j a v a 2 s .c om job.setJarByClass(mapper); } else { job.setJarByClass(reducer); } job.setInputFormatClass(inputFormat); jobConf.set("mapred.input.dir", inputPath); job.setMapperClass(mapper); if (mapperKey != null) { job.setMapOutputKeyClass(mapperKey); } if (mapperValue != null) { job.setMapOutputValueClass(mapperValue); } jobConf.setBoolean("mapred.compress.map.output", true); job.setReducerClass(reducer); job.setOutputKeyClass(reducerKey); job.setOutputValueClass(reducerValue); job.setOutputFormatClass(outputFormat); jobConf.set("mapred.output.dir", outputPath); return job; }
From source file:com.github.sandgorgon.parmr.Main.java
License:Open Source License
@Override public int run(String[] args) throws Exception { if (args.length < 2) { System.err.println("Usage: parmr <input file> <output path>"); return -1; }/*from w w w . j ava 2 s . c o m*/ Configuration conf = super.getConf(); conf.set("mapreduce.job.queuename", "prod"); Job job = Job.getInstance(conf); job.setJobName(jobName); job.setJarByClass(Main.class); // Parquet Schema // Read from the input file itself the schema that we will be assuming Path infile = new Path(args[0]); List<Footer> footers = ParquetFileReader.readFooters(conf, infile.getFileSystem(conf).getFileStatus(infile), true); MessageType schema = footers.get(0).getParquetMetadata().getFileMetaData().getSchema(); // Avro Schema // Convert the Parquet schema to an Avro schema AvroSchemaConverter avroSchemaConverter = new AvroSchemaConverter(); Schema avroSchema = avroSchemaConverter.convert(schema); // Set the Mapper job.setMapperClass(UserMapper.class); // This works for predicate pushdown on record assembly read. AvroParquetInputFormat.setUnboundRecordFilter(job, UserRecordFilter.class); AvroParquetInputFormat.addInputPath(job, new Path(args[0])); AvroParquetInputFormat.setAvroReadSchema(job, avroSchema); job.setInputFormatClass(AvroParquetInputFormat.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(Text.class); // If you needed to return an avro object from the mapper, refer to this... //job.setMapOutputValueClass(AvroValue.class); //AvroJob.setMapOutputValueSchema(job, avroSchema); // Reducer job.setReducerClass(UserReducer.class); // Output job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); FileOutputFormat.setOutputPath(job, new Path(args[1])); // If we need to return an avro class again, refer to this... //job.setOutputFormatClass(AvroParquetOutputFormat.class); //AvroParquetOutputFormat.setOutputPath(job, new Path(args[1])); //AvroParquetOutputFormat.setSchema(job, avroSchema); //job.setOutputKeyClass(Void.class); //job.setOutputValueClass(GenericRecord.class); // Rough way of testing the projection side of things. AvroParquetInputFormat.setRequestedProjection(job, Schema.parse("{\"namespace\": \"com.github.sandgorgon.parmr.avro\",\n" + " \"type\": \"record\",\n" + " \"name\": \"User\",\n" + " \"fields\": [\n" + " {\"name\": \"name\", \"type\": \"string\"},\n" + " {\"name\": \"favorite_number\", \"type\": [\"int\", \"null\"]}\n" + // " {\"name\": \"favorite_color\", \"type\": [\"string\", \"null\"]}\n" + " ]\n" + "}\n" + "")); // Do the deed! int completion = job.waitForCompletion(true) ? 0 : 1; return completion; }
From source file:com.github.ygf.pagerank.InLinks.java
License:Apache License
private void summarizeResults(Configuration conf, Path outputDir) throws Exception { int topResults = Integer.parseInt(conf.get("inlinks.top_results")); Job job = Job.getInstance(conf, "InLinks:TopN"); job.setJarByClass(InLinks.class); job.setInputFormatClass(SequenceFileInputFormat.class); job.setMapperClass(InLinksTopNMapper.class); job.setMapOutputKeyClass(IntWritable.class); job.setMapOutputValueClass(IntWritable.class); job.setReducerClass(InLinksTopNReducer.class); job.setOutputFormatClass(TextOutputFormat.class); job.setOutputKeyClass(IntWritable.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(outputDir, "inlinks")); FileOutputFormat.setOutputPath(job, new Path(outputDir, "inlinks-top" + topResults)); job.setNumReduceTasks(1);/* w w w . ja va 2 s. com*/ job.waitForCompletion(true); }
From source file:com.github.ygf.pagerank.PageRank.java
License:Apache License
private void createTransitionMatrix(Configuration conf, Path linksFile, Path outputDir) throws Exception { // This job reads the links-simple-sorted.txt input file and generates // the corresponding transition matrix. The matrix is divided into // square blocks and each block is represented by the nonzero entries. // See Section 5.2 (and 5.2.3 in particular) of Mining of Massive Datasets // (http://infolab.stanford.edu/~ullman/mmds.html) for details. // The output is written to the "M" subdir in the output dir. Job job = Job.getInstance(conf, "PageRank:Matrix"); job.setJarByClass(PageRank.class); job.setInputFormatClass(TextInputFormat.class); job.setMapperClass(PageRankMatrixMapper.class); job.getConfiguration().setBoolean("mapreduce.map.output.compress", true); job.getConfiguration().setClass("mapreduce.map.output.compress.codec", DefaultCodec.class, CompressionCodec.class); job.setMapOutputKeyClass(ShortArrayWritable.class); job.setMapOutputValueClass(ShortArrayWritable.class); job.setReducerClass(PageRankMatrixReducer.class); SequenceFileOutputFormat.setCompressOutput(job, true); SequenceFileOutputFormat.setOutputCompressionType(job, CompressionType.BLOCK); SequenceFileOutputFormat.setOutputCompressorClass(job, DefaultCodec.class); job.setOutputFormatClass(SequenceFileOutputFormat.class); job.setOutputKeyClass(ShortArrayWritable.class); job.setOutputValueClass(MatrixBlockWritable.class); FileInputFormat.addInputPath(job, linksFile); FileOutputFormat.setOutputPath(job, new Path(outputDir, "M")); job.waitForCompletion(true);//from w w w. j a v a 2 s.c o m }
From source file:com.github.ygf.pagerank.PageRank.java
License:Apache License
private void pageRankIteration(int iter, Configuration conf, Path outputDir) throws Exception { // This job performs an iteration of the power iteration method to // compute PageRank. The map task processes each block M_{i,j}, loads // the corresponding stripe j of the vector v_{k-1} and produces the // partial result of the stripe i of the vector v_k. The reduce task // sums all the partial results of v_k and adds the teleportation factor // (the combiner only sums all the partial results). See Section 5.2 // (and 5.2.3 in particular) of Mining of Massive Datasets // (http://infolab.stanford.edu/~ullman/mmds.html) for details. The // output is written in a "vk" subdir of the output dir, where k is the // iteration number. MapFileOutputFormat is used to keep an array of the // stripes of v. Job job = Job.getInstance(conf, "PageRank:Iteration"); job.setJarByClass(PageRank.class); job.setInputFormatClass(SequenceFileInputFormat.class); job.setMapperClass(PageRankIterationMapper.class); job.setMapOutputKeyClass(ShortWritable.class); job.setMapOutputValueClass(FloatArrayWritable.class); job.setCombinerClass(PageRankIterationCombiner.class); job.setReducerClass(PageRankIterationReducer.class); job.setOutputFormatClass(MapFileOutputFormat.class); job.setOutputKeyClass(ShortWritable.class); job.setOutputValueClass(FloatArrayWritable.class); FileInputFormat.addInputPath(job, new Path(outputDir, "M")); FileOutputFormat.setOutputPath(job, new Path(outputDir, "v" + iter)); job.waitForCompletion(true);//from w w w .j a v a2s . c o m }
From source file:com.github.ygf.pagerank.PageRank.java
License:Apache License
private void summarizeResults(int iter, Configuration conf, Path outputDir) throws Exception { // This job creates a plain text file with the top N PageRanks and the // titles of the pages. Each map task emits the top N PageRanks it // receives, and the reduce task merges the partial results into the // global top N PageRanks. A single reducer is used in the job in order // to have access to all the individual top N PageRanks from the // mappers. The reducer looks up the titles in the index built by // TitleIndex. This job was designed considering that N is small. int topResults = Integer.parseInt(conf.get("pagerank.top_results")); Job job = Job.getInstance(conf, "PageRank:TopN"); job.setJarByClass(PageRank.class); job.setInputFormatClass(SequenceFileInputFormat.class); job.setMapperClass(PageRankTopNMapper.class); job.setMapOutputKeyClass(FloatWritable.class); job.setMapOutputValueClass(IntWritable.class); job.setReducerClass(PageRankTopNReducer.class); job.setOutputFormatClass(TextOutputFormat.class); job.setOutputKeyClass(FloatWritable.class); job.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job, new Path(outputDir, "v" + iter)); FileOutputFormat.setOutputPath(job, new Path(outputDir, "v" + iter + "-top" + topResults)); job.setNumReduceTasks(1);/* ww w .j a v a 2 s .c o m*/ job.waitForCompletion(true); }