Example usage for org.apache.hadoop.fs FileSystem delete

List of usage examples for org.apache.hadoop.fs FileSystem delete

Introduction

In this page you can find the example usage for org.apache.hadoop.fs FileSystem delete.

Prototype

public abstract boolean delete(Path f, boolean recursive) throws IOException;

Source Link

Document

Delete a file.

Usage

From source file:at.illecker.hama.hybrid.examples.onlinecf.OnlineCFHybridBenchmark.java

License:Apache License

@Override
protected void tearDown() throws Exception {

    verify();//from w  w  w . j a va2s  .co  m

    FileSystem fs = FileSystem.get(m_conf);
    fs.delete(CONF_TMP_DIR, true);
}

From source file:at.illecker.hama.hybrid.examples.onlinecf.OnlineCFHybridBenchmark.java

License:Apache License

public static List<double[]> generateRandomInputData(Configuration conf, FileSystem fs, Path in, int numBspTask,
        int numGPUBspTask, int userCount, int itemCount, int percentNonZeroValues, int GPUPercentage,
        int maxTestPrefs) throws IOException {

    // Delete input directory if already exist
    if (fs.exists(in)) {
        fs.delete(in, true);
    }//  w w  w  .java2  s . co  m

    Random rand = new Random(32L);
    Set<Map.Entry<Long, Long>> userItemPairs = new HashSet<Map.Entry<Long, Long>>();
    List<double[]> testItems = new ArrayList<double[]>();

    int possibleUserItemRatings = userCount * itemCount;
    int userItemRatings = possibleUserItemRatings * percentNonZeroValues / 100;
    System.out.println("generateRandomInputData possibleRatings: " + possibleUserItemRatings + " ratings: "
            + userItemRatings);

    // Compute work distributions
    int cpuTaskNum = numBspTask - numGPUBspTask;
    long ratingsPerGPUTask = 0;
    long ratingsPerCPU = 0;
    long ratingsPerCPUTask = 0;
    if ((numGPUBspTask > 0) && (GPUPercentage > 0) && (GPUPercentage <= 100)) {
        ratingsPerGPUTask = (userItemRatings * GPUPercentage) / 100;
        ratingsPerCPU = userItemRatings - ratingsPerGPUTask;
    } else {
        ratingsPerCPU = userItemRatings;
    }
    if (cpuTaskNum > 0) {
        ratingsPerCPUTask = ratingsPerCPU / cpuTaskNum;
    }

    System.out.println("generateRandomInputData ratingsPerGPUTask: " + ratingsPerGPUTask + " ratingsPerCPU: "
            + ratingsPerCPU + " ratingsPerCPUTask: " + ratingsPerCPUTask);

    for (int part = 0; part < numBspTask; part++) {
        Path partIn = new Path(in, "part" + part + ".seq");
        final SequenceFile.Writer dataWriter = SequenceFile.createWriter(fs, conf, partIn, LongWritable.class,
                PipesVectorWritable.class, CompressionType.NONE);

        long interval = 0;
        if (part > cpuTaskNum) {
            interval = ratingsPerGPUTask;
        } else {
            interval = ratingsPerCPUTask;
        }
        long start = interval * part;
        long end = start + interval - 1;
        if ((numBspTask - 1) == part) {
            end = userItemRatings;
        }
        System.out.println("Partition " + part + ": from " + start + " to " + end);

        for (long i = start; i <= end; i++) {

            // Find new user item rating which was not used before
            Map.Entry<Long, Long> userItemPair;
            do {
                long userId = rand.nextInt(userCount);
                long itemId = rand.nextInt(itemCount);
                userItemPair = new AbstractMap.SimpleImmutableEntry<Long, Long>(userId, itemId);
            } while (userItemPairs.contains(userItemPair));

            // Add user item rating
            userItemPairs.add(userItemPair);

            // Generate rating
            int rating = rand.nextInt(5) + 1; // values between 1 and 5

            // Add user item rating to test data
            if (i < maxTestPrefs) {
                testItems.add(new double[] { userItemPair.getKey(), userItemPair.getValue(), rating });
            }

            // Write out user item rating
            dataWriter.append(new LongWritable(userItemPair.getKey()), new PipesVectorWritable(
                    new DenseDoubleVector(new double[] { userItemPair.getValue(), rating })));
        }
        dataWriter.close();
    }

    return testItems;
}

From source file:at.illecker.hama.hybrid.examples.onlinecf.OnlineCFHybridBenchmark.java

License:Apache License

public static List<double[]> convertInputData(Configuration conf, FileSystem fs, Path in, Path preferencesIn,
        String inputFile, String separator, int maxTestPrefs) throws IOException {

    List<double[]> testItems = new ArrayList<double[]>();

    // Delete input files if already exist
    if (fs.exists(in)) {
        fs.delete(in, true);
    }/*from   ww  w . j  a va  2  s.com*/
    if (fs.exists(preferencesIn)) {
        fs.delete(preferencesIn, true);
    }

    final SequenceFile.Writer prefWriter = SequenceFile.createWriter(fs, conf, preferencesIn,
            LongWritable.class, PipesVectorWritable.class, CompressionType.NONE);

    BufferedReader br = new BufferedReader(new FileReader(inputFile));
    String line;
    while ((line = br.readLine()) != null) {
        String[] values = line.split(separator);
        long userId = Long.parseLong(values[0]);
        long itemId = Long.parseLong(values[1]);
        double rating = Double.parseDouble(values[2]);
        // System.out.println("userId: " + userId + " itemId: " + itemId
        // + " rating: " + rating);

        double vector[] = new double[2];
        vector[0] = itemId;
        vector[1] = rating;
        prefWriter.append(new LongWritable(userId), new PipesVectorWritable(new DenseDoubleVector(vector)));

        // Add test preferences
        maxTestPrefs--;
        if (maxTestPrefs > 0) {
            testItems.add(new double[] { userId, itemId, rating });
        }

    }
    br.close();
    prefWriter.close();

    return testItems;
}

From source file:at.illecker.hama.hybrid.examples.onlinecf.OnlineCFTrainHybridBSP.java

License:Apache License

public static List<Preference<Long, Long>> prepareTestInputData(Configuration conf, FileSystem fs, Path in,
        Path preferencesIn) throws IOException {

    Preference[] train_prefs = { new Preference<Integer, Integer>(1, 0, 4),
            new Preference<Integer, Integer>(1, 1, 2.5), new Preference<Integer, Integer>(1, 2, 3.5),

            new Preference<Integer, Integer>(2, 0, 4), new Preference<Integer, Integer>(2, 1, 2.5),
            new Preference<Integer, Integer>(2, 2, 3.5), new Preference<Integer, Integer>(2, 3, 1),
            new Preference<Integer, Integer>(2, 4, 3.5),

            new Preference<Integer, Integer>(3, 0, 4), new Preference<Integer, Integer>(3, 1, 2.5),
            new Preference<Integer, Integer>(3, 2, 3.5), new Preference<Integer, Integer>(3, 3, 1),
            new Preference<Integer, Integer>(3, 4, 3.5) };

    List<Preference<Long, Long>> test_prefs = new ArrayList<Preference<Long, Long>>();
    test_prefs.add(new Preference<Long, Long>(1l, 0l, 4));
    test_prefs.add(new Preference<Long, Long>(1l, 1l, 2.5));
    test_prefs.add(new Preference<Long, Long>(1l, 2l, 3.5));
    test_prefs.add(new Preference<Long, Long>(1l, 3l, 1));
    test_prefs.add(new Preference<Long, Long>(1l, 4l, 3.5));

    // Delete input files if already exist
    if (fs.exists(in)) {
        fs.delete(in, true);
    }/*from  w  w w.jav a  2 s  . c  o m*/
    if (fs.exists(preferencesIn)) {
        fs.delete(preferencesIn, true);
    }

    final SequenceFile.Writer prefWriter = SequenceFile.createWriter(fs, conf, preferencesIn,
            LongWritable.class, PipesVectorWritable.class, CompressionType.NONE);

    for (Preference<Integer, Integer> taste : train_prefs) {
        double values[] = new double[2];
        values[0] = taste.getItemId();
        values[1] = taste.getValue().get();
        prefWriter.append(new LongWritable(taste.getUserId()),
                new PipesVectorWritable(new DenseDoubleVector(values)));
    }
    prefWriter.close();

    return test_prefs;
}

From source file:at.illecker.hama.hybrid.examples.onlinecf.OnlineCFTrainHybridBSP.java

License:Apache License

public static List<Preference<Long, Long>> generateRandomInputData(Configuration conf, FileSystem fs, Path in,
        int numBspTask, int numGPUBspTask, int userCount, int itemCount, int percentNonZeroValues,
        int GPUPercentage, int maxTestPrefs) throws IOException {

    // Delete input directory if already exist
    if (fs.exists(in)) {
        fs.delete(in, true);
    }//from ww  w  .ja  va 2s . c o m

    Random rand = new Random(32L);
    Set<Map.Entry<Long, Long>> userItemPairs = new HashSet<Map.Entry<Long, Long>>();
    List<Preference<Long, Long>> testItems = new ArrayList<Preference<Long, Long>>();

    int possibleUserItemRatings = userCount * itemCount;
    int userItemRatings = possibleUserItemRatings * percentNonZeroValues / 100;
    System.out.println("generateRandomInputData possibleRatings: " + possibleUserItemRatings + " ratings: "
            + userItemRatings);

    // Compute work distributions
    int cpuTaskNum = numBspTask - numGPUBspTask;
    long ratingsPerGPUTask = 0;
    long ratingsPerCPU = 0;
    long ratingsPerCPUTask = 0;
    if ((numGPUBspTask > 0) && (GPUPercentage > 0) && (GPUPercentage <= 100)) {
        ratingsPerGPUTask = (userItemRatings * GPUPercentage) / 100;
        ratingsPerCPU = userItemRatings - ratingsPerGPUTask;
    } else {
        ratingsPerCPU = userItemRatings;
    }
    if (cpuTaskNum > 0) {
        ratingsPerCPUTask = ratingsPerCPU / cpuTaskNum;
    }

    System.out.println("generateRandomInputData ratingsPerGPUTask: " + ratingsPerGPUTask + " ratingsPerCPU: "
            + ratingsPerCPU + " ratingsPerCPUTask: " + ratingsPerCPUTask);

    for (int part = 0; part < numBspTask; part++) {
        Path partIn = new Path(in, "part" + part + ".seq");
        final SequenceFile.Writer dataWriter = SequenceFile.createWriter(fs, conf, partIn, LongWritable.class,
                PipesVectorWritable.class, CompressionType.NONE);

        long interval = 0;
        if (part > cpuTaskNum) {
            interval = ratingsPerGPUTask;
        } else {
            interval = ratingsPerCPUTask;
        }
        long start = interval * part;
        long end = start + interval - 1;
        if ((numBspTask - 1) == part) {
            end = userItemRatings;
        }
        LOG.info("Partition " + part + ": from " + start + " to " + end);

        for (long i = start; i <= end; i++) {

            // Find new user item rating which was not used before
            Map.Entry<Long, Long> userItemPair;
            do {
                long userId = rand.nextInt(userCount);
                long itemId = rand.nextInt(itemCount);
                userItemPair = new AbstractMap.SimpleImmutableEntry<Long, Long>(userId, itemId);
            } while (userItemPairs.contains(userItemPair));

            // Add user item rating
            userItemPairs.add(userItemPair);

            // Generate rating
            int rating = rand.nextInt(5) + 1; // values between 1 and 5

            // Add user item rating to test data
            if (i < maxTestPrefs) {
                testItems.add(
                        new Preference<Long, Long>(userItemPair.getKey(), userItemPair.getValue(), rating));
            }

            // Write out user item rating
            dataWriter.append(new LongWritable(userItemPair.getKey()), new PipesVectorWritable(
                    new DenseDoubleVector(new double[] { userItemPair.getValue(), rating })));
        }
        dataWriter.close();
    }

    return testItems;
}

From source file:at.illecker.hama.hybrid.examples.onlinecf.OnlineCFTrainHybridBSP.java

License:Apache License

public static List<Preference<Long, Long>> convertInputData(Configuration conf, FileSystem fs, Path in,
        Path preferencesIn, String inputFile, String separator, int maxTestPrefs) throws IOException {

    List<Preference<Long, Long>> test_prefs = new ArrayList<Preference<Long, Long>>();

    // Delete input files if already exist
    if (fs.exists(in)) {
        fs.delete(in, true);
    }/*from   ww  w .  j ava  2s . c  o m*/
    if (fs.exists(preferencesIn)) {
        fs.delete(preferencesIn, true);
    }

    final SequenceFile.Writer prefWriter = SequenceFile.createWriter(fs, conf, preferencesIn,
            LongWritable.class, PipesVectorWritable.class, CompressionType.NONE);

    BufferedReader br = new BufferedReader(new FileReader(inputFile));
    String line;
    while ((line = br.readLine()) != null) {
        String[] values = line.split(separator);
        long userId = Long.parseLong(values[0]);
        long itemId = Long.parseLong(values[1]);
        double rating = Double.parseDouble(values[2]);
        // System.out.println("userId: " + userId + " itemId: " + itemId
        // + " rating: " + rating);

        double vector[] = new double[2];
        vector[0] = itemId;
        vector[1] = rating;
        prefWriter.append(new LongWritable(userId), new PipesVectorWritable(new DenseDoubleVector(vector)));

        // Add test preferences
        maxTestPrefs--;
        if (maxTestPrefs > 0) {
            test_prefs.add(new Preference<Long, Long>(userId, itemId, rating));
        }

    }
    br.close();
    prefWriter.close();

    return test_prefs;
}

From source file:at.illecker.hama.hybrid.examples.piestimator.PiEstimatorHybridBenchmark.java

License:Apache License

@Override
protected void tearDown() throws Exception {

    // printOutput(m_conf, CONF_OUTPUT_DIR);

    // Cleanup/*w  ww  . j a v a 2s  . c om*/
    FileSystem fs = FileSystem.get(m_conf);
    fs.delete(CONF_TMP_DIR, true);
}

From source file:at.illecker.hama.rootbeer.examples.piestimator.PiEstimatorBenchmark.java

License:Apache License

@Override
protected void tearDown() throws Exception {

    printOutput(m_conf, m_OUTPUT_DIR_PATH);

    // Cleanup//ww w. jav a  2  s.co  m
    FileSystem fs = FileSystem.get(m_conf);
    fs.delete(m_OUTPUT_DIR_PATH, true);
}

From source file:audr.text.utils.FileUtils.java

License:Open Source License

/**
 * HDFSpath/*from w  w  w . j a v  a2  s. c  o  m*/
 * 
 * @param path
 */
public static void deleteFileFromHDFS(String path) {
    try {
        Configuration conf = new Configuration();
        FileSystem dst = FileSystem.get(conf);
        Path dstpath = new Path(path);
        dst.delete(dstpath, true);
    } catch (Exception e) {
        e.printStackTrace();
    }

}

From source file:avro.HadoopAvro.java

License:Open Source License

private void createAvroFile() throws IOException {
    Path inputPath = new Path(INPUT_PATH);
    FileSystem fs = FileSystem.get(new Configuration());
    fs.delete(inputPath, true);

    DataFileWriter<User> fileWriter = new DataFileWriter<>(new GenericDatumWriter<User>(User.SCHEMA));

    fileWriter.create(User.SCHEMA, fs.create(new Path(inputPath, "file.avro")));
    IntStream.range(0, 100).mapToObj(i -> new User("name" + i, "pass" + i, i, i % 2 == 0))
            .forEach(user -> Util.uncheckRun(() -> fileWriter.append(user)));
    fileWriter.close();//ww  w .  j  ava2s .  c  om
    fs.close();
}