List of usage examples for org.apache.hadoop.conf Configuration setInt
public void setInt(String name, int value)
name
property to an int
. From source file:com.mellanox.r4h.TestHFlush.java
License:Apache License
/** * The test calls//from w w w .j a va 2s .c o m * {@link #doTheJob(Configuration, String, long, short, boolean, EnumSet)} * while requiring the semantic of {@link SyncFlag#UPDATE_LENGTH}. * Similar with {@link #hFlush_03()} , it writes a file with a custom block * size so the writes will be happening across block's and checksum' * boundaries. */ @Test public void hSyncUpdateLength_03() throws IOException { Configuration conf = new HdfsConfiguration(); int customPerChecksumSize = 400; int customBlockSize = customPerChecksumSize * 3; // Modify defaul filesystem settings conf.setInt(DFSConfigKeys.DFS_BYTES_PER_CHECKSUM_KEY, customPerChecksumSize); conf.setLong(DFSConfigKeys.DFS_BLOCK_SIZE_KEY, customBlockSize); doTheJob(conf, fName, customBlockSize, (short) 2, true, EnumSet.of(SyncFlag.UPDATE_LENGTH)); }
From source file:com.mellanox.r4h.TestHFlush.java
License:Apache License
/** This creates a slow writer and check to see * if pipeline heartbeats work fine//ww w .ja v a 2 s. c o m */ @Test public void testPipelineHeartbeat() throws Exception { final int DATANODE_NUM = 2; final int fileLen = 6; Configuration conf = new HdfsConfiguration(); final int timeout = 2000; conf.setInt(DFSConfigKeys.DFS_CLIENT_SOCKET_TIMEOUT_KEY, timeout); final Path p = new Path("/pipelineHeartbeat/foo"); System.out.println("p=" + p); MiniDFSCluster cluster = new MiniDFSCluster.Builder(conf).numDataNodes(DATANODE_NUM).build(); try { DistributedFileSystem fs = (DistributedFileSystem) cluster.getFileSystem(); byte[] fileContents = AppendTestUtil.initBuffer(fileLen); // create a new file. FSDataOutputStream stm = AppendTestUtil.createFile(fs, p, DATANODE_NUM); stm.write(fileContents, 0, 1); Thread.sleep(timeout); stm.hflush(); System.out.println("Wrote 1 byte and hflush " + p); // write another byte Thread.sleep(timeout); stm.write(fileContents, 1, 1); stm.hflush(); stm.write(fileContents, 2, 1); Thread.sleep(timeout); stm.hflush(); stm.write(fileContents, 3, 1); Thread.sleep(timeout); stm.write(fileContents, 4, 1); stm.hflush(); stm.write(fileContents, 5, 1); Thread.sleep(timeout); stm.close(); // verify that entire file is good AppendTestUtil.checkFullFile(fs, p, fileLen, fileContents, "Failed to slowly write to a file"); } finally { cluster.shutdown(); } }
From source file:com.ML_Hadoop.K_meansClustering.K_meansClusteringMapReduce.java
public static void main(String[] args) throws Exception { int iteration = 0, num_of_iteration = 30; int feature_size = 2; FileSystem fs;/* ww w.j a va 2 s . c o m*/ int number_of_clusters = 2; do { Configuration conf = new Configuration(); fs = FileSystem.get(conf); Job job = new Job(conf, "K_meansClusteringMapReduce"); job.setJarByClass(K_meansClusteringMapReduce.class); conf = job.getConfiguration(); // This line is mandatory. job.setOutputKeyClass(LongWritable.class); job.setOutputValueClass(FloatArrayWritable.class); job.setMapperClass(K_meansClusteringMap.class); job.setReducerClass(K_meansClusteringReduce.class); job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); job.setNumReduceTasks(1); // set number of reducers to one. FileInputFormat.addInputPath(job, new Path(args[0])); Path out = new Path(args[1]); if (fs.exists(out)) fs.delete(out, true); FileOutputFormat.setOutputPath(job, out); number_of_clusters = Integer.parseInt(args[2]); num_of_iteration = Integer.parseInt(args[3]); feature_size = Integer.parseInt(args[4]); conf.setInt("number_of_clusters", number_of_clusters); conf.setInt("feature_size", feature_size); conf.setInt("current_iteration_num", iteration); try { job.waitForCompletion(true); iteration++; } catch (IOException e) { e.printStackTrace(); } } while (iteration < num_of_iteration); }
From source file:com.ML_Hadoop.MultipleLinearRegression.MultipleLinearRegressionMapReduce.java
public static void main(String[] args) throws Exception { String[] theta;/*w ww .j a v a 2 s . co m*/ int iteration = 0, num_of_iteration = 1; int feature_size = 0, input_data_size = 0; FileSystem fs; Float alpha = 0.1f; do { Configuration conf = new Configuration(); fs = FileSystem.get(conf); Job job = new Job(conf, "LinearRegressionMapReduce"); job.setJarByClass(MultipleLinearRegressionMapReduce.class); // the following two lines are needed for propagating "theta" conf = job.getConfiguration(); job.setOutputKeyClass(LongWritable.class); job.setOutputValueClass(FloatWritable.class); job.setMapperClass(MultipleLinearRegressionMap.class); job.setReducerClass(MultipleLinearRegressionReduce.class); job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); job.setNumReduceTasks(1); // set mapred.reduce.tasks = 1 (only one reducer) FileInputFormat.addInputPath(job, new Path(args[0])); Path out = new Path(args[1]); if (fs.exists(out)) fs.delete(out, true); FileOutputFormat.setOutputPath(job, out); alpha = Float.parseFloat(args[2]); num_of_iteration = Integer.parseInt(args[3]); feature_size = Integer.parseInt(args[4]); input_data_size = Integer.parseInt(args[5]); conf.setFloat("alpha", alpha); conf.setInt("feature_size", feature_size); conf.setInt("input_data_size", input_data_size); conf.setInt("iteration", iteration); theta = new String[feature_size]; if (iteration == 0) { // first iteration for (int i = 0; i < theta.length; i++) theta[i] = "0.0"; conf.setStrings("theta", theta); } else { try { String uri = "/user/hduser/theta.txt"; fs = FileSystem.get(conf); //FSDataInputStream in = fs.open(new Path(uri)); BufferedReader br = new BufferedReader(new InputStreamReader(fs.open(new Path(uri)))); theta = br.readLine().split(","); } catch (Exception e) { } conf.setStrings("theta", theta); } for (int i = 0; i < theta.length; i++) System.out.println("In MapRedce main function: theta[ " + i + " ]" + theta[i]); try { job.waitForCompletion(true); iteration++; } catch (IOException e) { e.printStackTrace(); } } while (iteration < num_of_iteration); }
From source file:com.ML_Hadoop.NaiveBayesClassifier_Continuous_Features.NaiveBayesClassifierMapReduce_Continuous_Features.java
/** * @param args// ww w. jav a2s .c om * @throws IOException * @throws ClassNotFoundException * @throws InterruptedException */ public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException { int number_of_classes = 1; int number_of_features = 1; Configuration conf = new Configuration(); FileSystem fs = FileSystem.get(conf); Job job = new Job(conf, "NaiveBayesClassifierMapReduce_Continuous_Features"); job.setJarByClass(NaiveBayesClassifierMapReduce_Continuous_Features.class); conf = job.getConfiguration(); // This line is mandatory. job.setOutputKeyClass(LongWritable.class); job.setOutputValueClass(FloatArrayWritable.class); job.setMapOutputKeyClass(LongWritable.class); job.setMapOutputValueClass(MapArrayWritable.class); job.setMapperClass(NaiveBayesClassifierMap_Continuous_Features.class); job.setReducerClass(NaiveBayesClassifierReduce_Continuous_Features.class); job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); job.setNumReduceTasks(1); FileInputFormat.addInputPath(job, new Path(args[0])); Path out = new Path(args[1]); if (fs.exists(out)) fs.delete(out, true); FileOutputFormat.setOutputPath(job, out); number_of_classes = Integer.parseInt(args[2]); number_of_features = Integer.parseInt(args[3]); conf.setInt("number_of_classes", number_of_classes); conf.setInt("number_of_features", number_of_features); try { job.waitForCompletion(true); } catch (IOException e) { e.printStackTrace(); } }
From source file:com.mongodb.hadoop.util.MapredMongoConfigUtil.java
License:Apache License
public static void setLimit(final Configuration conf, final int limit) { conf.setInt(INPUT_LIMIT, limit); }
From source file:com.mongodb.hadoop.util.MapredMongoConfigUtil.java
License:Apache License
public static void setSkip(final Configuration conf, final int skip) { conf.setInt(INPUT_SKIP, skip); }
From source file:com.mongodb.hadoop.util.MapredMongoConfigUtil.java
License:Apache License
public static void setSplitSize(final Configuration conf, final int value) { conf.setInt(INPUT_SPLIT_SIZE, value); }
From source file:com.mongodb.hadoop.util.MapredMongoConfigUtil.java
License:Apache License
public static Configuration buildConfiguration(final Map<String, Object> data) { Configuration newConf = new Configuration(); for (Map.Entry<String, Object> entry : data.entrySet()) { String key = entry.getKey(); Object val = entry.getValue(); if (val instanceof String) { newConf.set(key, (String) val); } else if (val instanceof Boolean) { newConf.setBoolean(key, (Boolean) val); } else if (val instanceof Integer) { newConf.setInt(key, (Integer) val); } else if (val instanceof Float) { newConf.setFloat(key, (Float) val); } else if (val instanceof DBObject) { setDBObject(newConf, key, (DBObject) val); } else {/*from w ww . j ava 2 s. com*/ throw new RuntimeException("can't convert " + val.getClass() + " into any type for Configuration"); } } return newConf; }
From source file:com.moz.fiji.hadoop.configurator.TestHadoopConfigurator.java
License:Apache License
@Test public void testConfigure() { Configuration conf = new Configuration(); conf.setBoolean("my.boolean.value", true); conf.setFloat("my.float.value", 3.1f); conf.setFloat("my.double.value", 1.9f); conf.setInt("my.int.value", 12); conf.set("my.string.value", "bar"); conf.setStrings("my.string.collection", "apple", "banana"); conf.setStrings("my.string.array", "red", "green", "blue"); conf.setBoolean("your.boolean.value", true); conf.setFloat("your.float.value", 1.0f); conf.setFloat("your.double.value", 2.0f); conf.setInt("your.int.value", 1); conf.setLong("your.long.value", 2L); conf.set("your.string.value", "asdf"); MyConfiguredClass instance = ReflectionUtils.newInstance(MyConfiguredClass.class, conf); assertEquals(true, instance.getBooleanValue()); assertEquals(3.1f, instance.getFloatValue(), 1e-6f); assertEquals(1.9, instance.getDoubleValue(), 1e-6); assertEquals(12, instance.getIntValue()); assertEquals(456L, instance.getLongValue()); assertEquals("bar", instance.getStringValue()); assertEquals(true, instance.getYourBoolean()); assertEquals(1.0f, instance.getYourFloat(), 1e-6f); assertEquals(2.0, instance.getYourDouble(), 1e-6); assertEquals(1, instance.getYourInt()); assertEquals(2L, instance.getYourLong()); }