List of usage examples for org.apache.hadoop.conf Configuration getClass
public Class<?> getClass(String name, Class<?> defaultValue)
name
property as a Class
. From source file:edu.umn.cs.sthadoop.mapreduce.SpatioTemporalInputFormat.java
License:Open Source License
@Override public RecordReader<K, Iterable<V>> createRecordReader(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException { Path path;/*from w w w. ja va 2 s .c o m*/ String extension; if (split instanceof FileSplit) { FileSplit fsplit = (FileSplit) split; extension = FileUtil.getExtensionWithoutCompression(path = fsplit.getPath()); } else if (split instanceof CombineFileSplit) { CombineFileSplit csplit = (CombineFileSplit) split; extension = FileUtil.getExtensionWithoutCompression(path = csplit.getPath(0)); } else { throw new RuntimeException("Cannot process plits of type " + split.getClass()); } // If this extension is for a compression, skip it and take the previous // extension if (extension.equals("hdf")) { // HDF File. Create HDFRecordReader return (RecordReader) new HDFRecordReader(); } if (extension.equals("rtree")) { // File is locally indexed as RTree return (RecordReader) new RTreeRecordReader3<V>(); } // For backward compatibility, check if the file is RTree indexed from // its signature Configuration conf = context != null ? context.getConfiguration() : new Configuration(); if (SpatialSite.isRTree(path.getFileSystem(conf), path)) { return (RecordReader) new RTreeRecordReader3<V>(); } // Check if a custom record reader is configured with this extension Class<?> recordReaderClass = conf.getClass("SpatialInputFormat." + extension + ".recordreader", SpatioTemporalRecordReader.class); try { return (RecordReader<K, Iterable<V>>) recordReaderClass.newInstance(); } catch (InstantiationException e) { } catch (IllegalAccessException e) { } // Use the default SpatioTemporalRecordReader if none of the above worked return (RecordReader) new SpatioTemporalRecordReader<V>(); }
From source file:grakn.core.server.session.computer.GraknSparkComputer.java
License:Open Source License
@SuppressWarnings("PMD.UnusedFormalParameter") private Future<ComputerResult> submitWithExecutor() { jobGroupId = Integer.toString(ThreadLocalRandom.current().nextInt(Integer.MAX_VALUE)); String jobDescription = this.vertexProgram == null ? this.mapReducers.toString() : this.vertexProgram + "+" + this.mapReducers; // Use different output locations this.sparkConfiguration.setProperty(Constants.GREMLIN_HADOOP_OUTPUT_LOCATION, this.sparkConfiguration.getString(Constants.GREMLIN_HADOOP_OUTPUT_LOCATION) + "/" + jobGroupId); updateConfigKeys(sparkConfiguration); final Future<ComputerResult> result = computerService.submit(() -> { final long startTime = System.currentTimeMillis(); ////////////////////////////////////////////////// /////// PROCESS SHIM AND SYSTEM PROPERTIES /////// ////////////////////////////////////////////////// final String shimService = KryoSerializer.class.getCanonicalName() .equals(this.sparkConfiguration.getString(Constants.SPARK_SERIALIZER, null)) ? UnshadedKryoShimService.class.getCanonicalName() : HadoopPoolShimService.class.getCanonicalName(); this.sparkConfiguration.setProperty(KryoShimServiceLoader.KRYO_SHIM_SERVICE, shimService); /////////// final StringBuilder params = new StringBuilder(); this.sparkConfiguration.getKeys().forEachRemaining(key -> { if (KEYS_PASSED_IN_JVM_SYSTEM_PROPERTIES.contains(key)) { params.append(" -D").append("tinkerpop.").append(key).append("=") .append(this.sparkConfiguration.getProperty(key)); System.setProperty("tinkerpop." + key, this.sparkConfiguration.getProperty(key).toString()); }/* www .j a va 2 s.c o m*/ }); if (params.length() > 0) { this.sparkConfiguration.setProperty(SparkLauncher.EXECUTOR_EXTRA_JAVA_OPTIONS, (this.sparkConfiguration.getString(SparkLauncher.EXECUTOR_EXTRA_JAVA_OPTIONS, "") + params.toString()).trim()); this.sparkConfiguration.setProperty(SparkLauncher.DRIVER_EXTRA_JAVA_OPTIONS, (this.sparkConfiguration.getString(SparkLauncher.DRIVER_EXTRA_JAVA_OPTIONS, "") + params.toString()).trim()); } KryoShimServiceLoader.applyConfiguration(this.sparkConfiguration); ////////////////////////////////////////////////// ////////////////////////////////////////////////// ////////////////////////////////////////////////// // apache and hadoop configurations that are used throughout the graph computer computation final org.apache.commons.configuration.Configuration graphComputerConfiguration = new HadoopConfiguration( this.sparkConfiguration); if (!graphComputerConfiguration.containsKey(Constants.SPARK_SERIALIZER)) { graphComputerConfiguration.setProperty(Constants.SPARK_SERIALIZER, KryoSerializer.class.getCanonicalName()); if (!graphComputerConfiguration.containsKey(Constants.SPARK_KRYO_REGISTRATOR)) { graphComputerConfiguration.setProperty(Constants.SPARK_KRYO_REGISTRATOR, GryoRegistrator.class.getCanonicalName()); } } graphComputerConfiguration.setProperty(Constants.GREMLIN_HADOOP_GRAPH_WRITER_HAS_EDGES, this.persist.equals(GraphComputer.Persist.EDGES)); final Configuration hadoopConfiguration = ConfUtil.makeHadoopConfiguration(graphComputerConfiguration); final Storage fileSystemStorage = FileSystemStorage.open(hadoopConfiguration); final boolean inputFromHDFS = FileInputFormat.class.isAssignableFrom( hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_READER, Object.class)); final boolean inputFromSpark = PersistedInputRDD.class.isAssignableFrom( hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_READER, Object.class)); final boolean outputToHDFS = FileOutputFormat.class.isAssignableFrom( hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_WRITER, Object.class)); final boolean outputToSpark = PersistedOutputRDD.class.isAssignableFrom( hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_WRITER, Object.class)); final boolean skipPartitioner = graphComputerConfiguration .getBoolean(Constants.GREMLIN_SPARK_SKIP_PARTITIONER, false); final boolean skipPersist = graphComputerConfiguration .getBoolean(Constants.GREMLIN_SPARK_SKIP_GRAPH_CACHE, false); if (inputFromHDFS) { String inputLocation = Constants .getSearchGraphLocation(hadoopConfiguration.get(Constants.GREMLIN_HADOOP_INPUT_LOCATION), fileSystemStorage) .orElse(null); if (null != inputLocation) { try { graphComputerConfiguration.setProperty(Constants.MAPREDUCE_INPUT_FILEINPUTFORMAT_INPUTDIR, FileSystem.get(hadoopConfiguration).getFileStatus(new Path(inputLocation)).getPath() .toString()); hadoopConfiguration.set(Constants.MAPREDUCE_INPUT_FILEINPUTFORMAT_INPUTDIR, FileSystem.get(hadoopConfiguration).getFileStatus(new Path(inputLocation)).getPath() .toString()); } catch (final IOException e) { throw new IllegalStateException(e.getMessage(), e); } } } final InputRDD inputRDD; final OutputRDD outputRDD; final boolean filtered; try { inputRDD = InputRDD.class.isAssignableFrom( hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_READER, Object.class)) ? hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_READER, InputRDD.class, InputRDD.class).newInstance() : InputFormatRDD.class.newInstance(); outputRDD = OutputRDD.class.isAssignableFrom( hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_WRITER, Object.class)) ? hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_WRITER, OutputRDD.class, OutputRDD.class).newInstance() : OutputFormatRDD.class.newInstance(); // if the input class can filter on load, then set the filters if (inputRDD instanceof InputFormatRDD && GraphFilterAware.class.isAssignableFrom(hadoopConfiguration.getClass( Constants.GREMLIN_HADOOP_GRAPH_READER, InputFormat.class, InputFormat.class))) { GraphFilterAware.storeGraphFilter(graphComputerConfiguration, hadoopConfiguration, this.graphFilter); filtered = false; } else if (inputRDD instanceof GraphFilterAware) { ((GraphFilterAware) inputRDD).setGraphFilter(this.graphFilter); filtered = false; } else filtered = this.graphFilter.hasFilter(); } catch (final InstantiationException | IllegalAccessException e) { throw new IllegalStateException(e.getMessage(), e); } // create the spark context from the graph computer configuration final JavaSparkContext sparkContext = new JavaSparkContext(Spark.create(hadoopConfiguration)); final Storage sparkContextStorage = SparkContextStorage.open(); sparkContext.setJobGroup(jobGroupId, jobDescription); GraknSparkMemory memory = null; // delete output location final String outputLocation = hadoopConfiguration.get(Constants.GREMLIN_HADOOP_OUTPUT_LOCATION, null); if (null != outputLocation) { if (outputToHDFS && fileSystemStorage.exists(outputLocation)) { fileSystemStorage.rm(outputLocation); } if (outputToSpark && sparkContextStorage.exists(outputLocation)) { sparkContextStorage.rm(outputLocation); } } // the Spark application name will always be set by SparkContextStorage, // thus, INFO the name to make it easier to debug logger.debug(Constants.GREMLIN_HADOOP_SPARK_JOB_PREFIX + (null == this.vertexProgram ? "No VertexProgram" : this.vertexProgram) + "[" + this.mapReducers + "]"); // add the project jars to the cluster this.loadJars(hadoopConfiguration, sparkContext); updateLocalConfiguration(sparkContext, hadoopConfiguration); // create a message-passing friendly rdd from the input rdd boolean partitioned = false; JavaPairRDD<Object, VertexWritable> loadedGraphRDD = inputRDD.readGraphRDD(graphComputerConfiguration, sparkContext); // if there are vertex or edge filters, filter the loaded graph rdd prior to partitioning and persisting if (filtered) { this.logger.debug("Filtering the loaded graphRDD: " + this.graphFilter); loadedGraphRDD = GraknSparkExecutor.applyGraphFilter(loadedGraphRDD, this.graphFilter); } // if the loaded graph RDD is already partitioned use that partitioner, // else partition it with HashPartitioner if (loadedGraphRDD.partitioner().isPresent()) { this.logger.debug("Using the existing partitioner associated with the loaded graphRDD: " + loadedGraphRDD.partitioner().get()); } else { if (!skipPartitioner) { final Partitioner partitioner = new HashPartitioner( this.workersSet ? this.workers : loadedGraphRDD.partitions().size()); this.logger.debug("Partitioning the loaded graphRDD: " + partitioner); loadedGraphRDD = loadedGraphRDD.partitionBy(partitioner); partitioned = true; assert loadedGraphRDD.partitioner().isPresent(); } else { // no easy way to test this with a test case assert skipPartitioner == !loadedGraphRDD.partitioner().isPresent(); this.logger.debug("Partitioning has been skipped for the loaded graphRDD via " + Constants.GREMLIN_SPARK_SKIP_PARTITIONER); } } // if the loaded graphRDD was already partitioned previous, // then this coalesce/repartition will not take place if (this.workersSet) { // ensures that the loaded graphRDD does not have more partitions than workers if (loadedGraphRDD.partitions().size() > this.workers) { loadedGraphRDD = loadedGraphRDD.coalesce(this.workers); } else { // ensures that the loaded graphRDD does not have less partitions than workers if (loadedGraphRDD.partitions().size() < this.workers) { loadedGraphRDD = loadedGraphRDD.repartition(this.workers); } } } // persist the vertex program loaded graph as specified by configuration // or else use default cache() which is MEMORY_ONLY if (!skipPersist && (!inputFromSpark || partitioned || filtered)) { loadedGraphRDD = loadedGraphRDD.persist(StorageLevel.fromString( hadoopConfiguration.get(Constants.GREMLIN_SPARK_GRAPH_STORAGE_LEVEL, "MEMORY_ONLY"))); } // final graph with view // (for persisting and/or mapReducing -- may be null and thus, possible to save space/time) JavaPairRDD<Object, VertexWritable> computedGraphRDD = null; try { //////////////////////////////// // process the vertex program // //////////////////////////////// if (null != this.vertexProgram) { memory = new GraknSparkMemory(this.vertexProgram, this.mapReducers, sparkContext); ///////////////// // if there is a registered VertexProgramInterceptor, use it to bypass the GraphComputer semantics if (graphComputerConfiguration .containsKey(Constants.GREMLIN_HADOOP_VERTEX_PROGRAM_INTERCEPTOR)) { try { final GraknSparkVertexProgramInterceptor<VertexProgram> interceptor = (GraknSparkVertexProgramInterceptor) Class .forName(graphComputerConfiguration .getString(Constants.GREMLIN_HADOOP_VERTEX_PROGRAM_INTERCEPTOR)) .newInstance(); computedGraphRDD = interceptor.apply(this.vertexProgram, loadedGraphRDD, memory); } catch (final ClassNotFoundException | IllegalAccessException | InstantiationException e) { throw new IllegalStateException(e.getMessage()); } } else { // standard GraphComputer semantics // get a configuration that will be propagated to all workers final HadoopConfiguration vertexProgramConfiguration = new HadoopConfiguration(); this.vertexProgram.storeState(vertexProgramConfiguration); // set up the vertex program and wire up configurations this.vertexProgram.setup(memory); JavaPairRDD<Object, ViewIncomingPayload<Object>> viewIncomingRDD = null; memory.broadcastMemory(sparkContext); // execute the vertex program while (true) { if (Thread.interrupted()) { sparkContext.cancelAllJobs(); throw new TraversalInterruptedException(); } memory.setInExecute(true); viewIncomingRDD = GraknSparkExecutor.executeVertexProgramIteration(loadedGraphRDD, viewIncomingRDD, memory, graphComputerConfiguration, vertexProgramConfiguration); memory.setInExecute(false); if (this.vertexProgram.terminate(memory)) { break; } else { memory.incrIteration(); memory.broadcastMemory(sparkContext); } } // if the graph will be continued to be used (persisted or mapreduced), // then generate a view+graph if ((null != outputRDD && !this.persist.equals(Persist.NOTHING)) || !this.mapReducers.isEmpty()) { computedGraphRDD = GraknSparkExecutor.prepareFinalGraphRDD(loadedGraphRDD, viewIncomingRDD, this.vertexProgram.getVertexComputeKeys()); assert null != computedGraphRDD && computedGraphRDD != loadedGraphRDD; } else { // ensure that the computedGraphRDD was not created assert null == computedGraphRDD; } } ///////////////// memory.complete(); // drop all transient memory keys // write the computed graph to the respective output (rdd or output format) if (null != outputRDD && !this.persist.equals(Persist.NOTHING)) { // the logic holds that a computeGraphRDD must be created at this point assert null != computedGraphRDD; outputRDD.writeGraphRDD(graphComputerConfiguration, computedGraphRDD); } } final boolean computedGraphCreated = computedGraphRDD != null && computedGraphRDD != loadedGraphRDD; if (!computedGraphCreated) { computedGraphRDD = loadedGraphRDD; } final Memory.Admin finalMemory = null == memory ? new MapMemory() : new MapMemory(memory); ////////////////////////////// // process the map reducers // ////////////////////////////// if (!this.mapReducers.isEmpty()) { // create a mapReduceRDD for executing the map reduce jobs on JavaPairRDD<Object, VertexWritable> mapReduceRDD = computedGraphRDD; if (computedGraphCreated && !outputToSpark) { // drop all the edges of the graph as they are not used in mapReduce processing mapReduceRDD = computedGraphRDD.mapValues(vertexWritable -> { vertexWritable.get().dropEdges(Direction.BOTH); return vertexWritable; }); // if there is only one MapReduce to execute, don't bother wasting the clock cycles. if (this.mapReducers.size() > 1) { mapReduceRDD = mapReduceRDD.persist(StorageLevel.fromString(hadoopConfiguration .get(Constants.GREMLIN_SPARK_GRAPH_STORAGE_LEVEL, "MEMORY_ONLY"))); } } for (final MapReduce mapReduce : this.mapReducers) { // execute the map reduce job final HadoopConfiguration newApacheConfiguration = new HadoopConfiguration( graphComputerConfiguration); mapReduce.storeState(newApacheConfiguration); // map final JavaPairRDD mapRDD = GraknSparkExecutor.executeMap(mapReduceRDD, mapReduce, newApacheConfiguration); // combine final JavaPairRDD combineRDD = mapReduce.doStage(MapReduce.Stage.COMBINE) ? GraknSparkExecutor.executeCombine(mapRDD, newApacheConfiguration) : mapRDD; // reduce final JavaPairRDD reduceRDD = mapReduce.doStage(MapReduce.Stage.REDUCE) ? GraknSparkExecutor.executeReduce(combineRDD, mapReduce, newApacheConfiguration) : combineRDD; // write the map reduce output back to disk and computer result memory if (null != outputRDD) { mapReduce.addResultToMemory(finalMemory, outputRDD.writeMemoryRDD( graphComputerConfiguration, mapReduce.getMemoryKey(), reduceRDD)); } } // if the mapReduceRDD is not simply the computed graph, unpersist the mapReduceRDD if (computedGraphCreated && !outputToSpark) { assert loadedGraphRDD != computedGraphRDD; assert mapReduceRDD != computedGraphRDD; mapReduceRDD.unpersist(); } else { assert mapReduceRDD == computedGraphRDD; } } // unpersist the loaded graph if it will not be used again (no PersistedInputRDD) // if the graphRDD was loaded from Spark, but then partitioned or filtered, its a different RDD if (!inputFromSpark || partitioned || filtered) { loadedGraphRDD.unpersist(); } // unpersist the computed graph if it will not be used again (no PersistedOutputRDD) // if the computed graph is the loadedGraphRDD because it was not mutated and not-unpersisted, // then don't unpersist the computedGraphRDD/loadedGraphRDD if ((!outputToSpark || this.persist.equals(GraphComputer.Persist.NOTHING)) && computedGraphCreated) { computedGraphRDD.unpersist(); } // delete any file system or rdd data if persist nothing if (null != outputLocation && this.persist.equals(GraphComputer.Persist.NOTHING)) { if (outputToHDFS) { fileSystemStorage.rm(outputLocation); } if (outputToSpark) { sparkContextStorage.rm(outputLocation); } } // update runtime and return the newly computed graph finalMemory.setRuntime(System.currentTimeMillis() - startTime); // clear properties that should not be propagated in an OLAP chain graphComputerConfiguration.clearProperty(Constants.GREMLIN_HADOOP_GRAPH_FILTER); graphComputerConfiguration.clearProperty(Constants.GREMLIN_HADOOP_VERTEX_PROGRAM_INTERCEPTOR); graphComputerConfiguration.clearProperty(Constants.GREMLIN_SPARK_SKIP_GRAPH_CACHE); graphComputerConfiguration.clearProperty(Constants.GREMLIN_SPARK_SKIP_PARTITIONER); return new DefaultComputerResult(InputOutputHelper.getOutputGraph(graphComputerConfiguration, this.resultGraph, this.persist), finalMemory.asImmutable()); } catch (Exception e) { // So it throws the same exception as tinker does throw new RuntimeException(e); } }); computerService.shutdown(); return result; }
From source file:io.hops.erasure_coding.Codec.java
License:Apache License
public ErasureCode createErasureCode(Configuration conf) { // Create the scheduler Class<?> erasureCode = null; try {//from w w w . j a v a2 s. c om erasureCode = conf.getClass(ERASURE_CODE_KEY_PREFIX + this.id, conf.getClassByName(this.erasureCodeClass)); } catch (ClassNotFoundException e) { throw new RuntimeException(e); } ErasureCode code = (ErasureCode) ReflectionUtils.newInstance(erasureCode, conf); code.init(this); return code; }
From source file:org.apache.blur.server.TableContext.java
License:Apache License
private static TableContext createInternal(TableDescriptor tableDescriptor, boolean remote, Iface client, String name, String tableUri) { TableContext tableContext;/*from w w w . ja v a2s .com*/ LOG.info("Creating table context for table [{0}]", name); Configuration configuration = getSystemConfiguration(); BlurConfiguration blurConfiguration = getSystemBlurConfiguration(); Map<String, String> tableProperties = tableDescriptor.getTableProperties(); if (tableProperties != null) { for (Entry<String, String> prop : tableProperties.entrySet()) { configuration.set(prop.getKey(), prop.getValue()); blurConfiguration.set(prop.getKey(), prop.getValue()); } } tableContext = new TableContext(); tableContext._configuration = configuration; tableContext._blurConfiguration = blurConfiguration; tableContext._tablePath = new Path(tableUri); tableContext._defaultFieldName = SUPER; tableContext._table = name; tableContext._descriptor = tableDescriptor; tableContext._timeBetweenCommits = configuration.getLong(BLUR_SHARD_TIME_BETWEEN_COMMITS, 60000); tableContext._timeBetweenRefreshs = configuration.getLong(BLUR_SHARD_TIME_BETWEEN_REFRESHS, 5000); tableContext._defaultPrimeDocTerm = new Term(BlurConstants.PRIME_DOC, BlurConstants.PRIME_DOC_VALUE); tableContext._defaultScoreType = ScoreType.SUPER; // TODO make configurable tableContext._discoverableFields = new HashSet<String>( Arrays.asList(BlurConstants.ROW_ID, BlurConstants.RECORD_ID, BlurConstants.FAMILY)); // TODO make configurable tableContext._accessControlFactory = new FilterAccessControlFactory(); boolean strict = tableDescriptor.isStrictTypes(); String defaultMissingFieldType = tableDescriptor.getDefaultMissingFieldType(); boolean defaultMissingFieldLessIndexing = tableDescriptor.isDefaultMissingFieldLessIndexing(); Map<String, String> defaultMissingFieldProps = emptyIfNull(tableDescriptor.getDefaultMissingFieldProps()); Path storagePath = new Path(tableContext._tablePath, TYPES); try { FieldManager fieldManager; if (remote) { fieldManager = new ThriftFieldManager(SUPER, new NoStopWordStandardAnalyzer(), strict, defaultMissingFieldType, defaultMissingFieldLessIndexing, defaultMissingFieldProps, configuration, client, name); } else { fieldManager = new HdfsFieldManager(SUPER, new NoStopWordStandardAnalyzer(), storagePath, configuration, strict, defaultMissingFieldType, defaultMissingFieldLessIndexing, defaultMissingFieldProps); } loadCustomTypes(tableContext, blurConfiguration, fieldManager); fieldManager.loadFromStorage(); tableContext._fieldManager = fieldManager; } catch (IOException e) { throw new RuntimeException(e); } Class<?> c1 = configuration.getClass(BLUR_SHARD_INDEX_DELETION_POLICY_MAXAGE, KeepOnlyLastCommitDeletionPolicy.class); tableContext._indexDeletionPolicy = (IndexDeletionPolicy) configure( ReflectionUtils.newInstance(c1, configuration), tableContext); Class<?> c2 = configuration.getClass(BLUR_SHARD_INDEX_SIMILARITY, FairSimilarity.class); tableContext._similarity = (Similarity) configure(ReflectionUtils.newInstance(c2, configuration), tableContext); String readInterceptorClass = blurConfiguration.get(BLUR_SHARD_READ_INTERCEPTOR); if (readInterceptorClass == null || readInterceptorClass.trim().isEmpty()) { tableContext._readInterceptor = DEFAULT_INTERCEPTOR; } else { try { @SuppressWarnings("unchecked") Class<? extends ReadInterceptor> clazz = (Class<? extends ReadInterceptor>) Class .forName(readInterceptorClass); Constructor<? extends ReadInterceptor> constructor = clazz .getConstructor(new Class[] { BlurConfiguration.class }); tableContext._readInterceptor = constructor.newInstance(blurConfiguration); } catch (Exception e) { throw new RuntimeException(e); } } tableContext._similarity = (Similarity) configure(ReflectionUtils.newInstance(c2, configuration), tableContext); // DEFAULT_INTERCEPTOR _cache.put(name, tableContext); return tableContext.clone(); }
From source file:org.apache.crunch.types.avro.AvroMode.java
License:Apache License
@SuppressWarnings("unchecked") void setFromConfiguration(Configuration conf) { // although the shuffle and input/output use different properties for mode, // this is shared - only one ReaderWriterFactory can be used. Class<?> factoryClass = conf.getClass(propName, this.getClass()); if (factoryClass != this.getClass()) { this.factory = (ReaderWriterFactory) ReflectionUtils.newInstance(factoryClass, conf); }/* w ww.ja va2s . co m*/ }
From source file:org.apache.crunch.types.avro.SafeAvroSerialization.java
License:Apache License
/** * Returns the specified map output deserializer. Defaults to the final output * deserializer if no map output schema was specified. *//*from ww w .j a v a 2s. c o m*/ public Deserializer<AvroWrapper<T>> getDeserializer(Class<AvroWrapper<T>> c) { boolean isKey = AvroKey.class.isAssignableFrom(c); Configuration conf = getConf(); Schema schema = isKey ? Pair.getKeySchema(AvroJob.getMapOutputSchema(conf)) : Pair.getValueSchema(AvroJob.getMapOutputSchema(conf)); DatumReader<T> datumReader = null; if (conf.getBoolean(AvroJob.MAP_OUTPUT_IS_REFLECT, false)) { ReflectDataFactory factory = (ReflectDataFactory) ReflectionUtils .newInstance(conf.getClass("crunch.reflectdatafactory", ReflectDataFactory.class), conf); datumReader = factory.getReader(schema); } else { datumReader = new SpecificDatumReader<T>(schema); } return new AvroWrapperDeserializer(datumReader, isKey); }
From source file:org.apache.giraph.graph.BspUtils.java
License:Apache License
/** * Get the user's subclassed vertex index class. * * @param <I> Vertex id/*ww w . j ava2 s.c o m*/ * @param conf Configuration to check * @return User's vertex index class */ @SuppressWarnings("unchecked") public static <I extends Writable> Class<I> getVertexIndexClass(Configuration conf) { return (Class<I>) conf.getClass(GiraphJob.VERTEX_INDEX_CLASS, WritableComparable.class); }
From source file:org.apache.giraph.graph.BspUtils.java
License:Apache License
/** * Get the user's subclassed vertex value class. * * @param <V> Vertex data/*from w ww . j a va 2 s.c o m*/ * @param conf Configuration to check * @return User's vertex value class */ @SuppressWarnings("unchecked") public static <V extends Writable> Class<V> getVertexValueClass(Configuration conf) { return (Class<V>) conf.getClass(GiraphJob.VERTEX_VALUE_CLASS, Writable.class); }
From source file:org.apache.giraph.graph.BspUtils.java
License:Apache License
/** * Get the user's subclassed edge value class. * * @param <E> Edge data/*from w ww . jav a2s . c o m*/ * @param conf Configuration to check * @return User's vertex edge value class */ @SuppressWarnings("unchecked") public static <E extends Writable> Class<E> getEdgeValueClass(Configuration conf) { return (Class<E>) conf.getClass(GiraphJob.EDGE_VALUE_CLASS, Writable.class); }
From source file:org.apache.giraph.graph.BspUtils.java
License:Apache License
/** * Get the user's subclassed vertex message value class. * * @param <M> Message data/*from w w w . j a v a 2s. com*/ * @param conf Configuration to check * @return User's vertex message value class */ @SuppressWarnings("unchecked") public static <M extends Writable> Class<M> getMessageValueClass(Configuration conf) { return (Class<M>) conf.getClass(GiraphJob.MESSAGE_VALUE_CLASS, Writable.class); }