Example usage for org.apache.hadoop.conf Configuration get

List of usage examples for org.apache.hadoop.conf Configuration get

Introduction

In this page you can find the example usage for org.apache.hadoop.conf Configuration get.

Prototype

public String get(String name) 

Source Link

Document

Get the value of the name property, null if no such property exists.

Usage

From source file:RHHBaseRecorder.java

License:Apache License

@Override
public void setConf(Configuration conf) {
    this.conf = conf;
    RHHBaseRecorder.ValueIsString = conf.get("rhipe_hbase_values_are_string") != null
            && conf.get("rhipe_hbase_values_are_string").equals("TRUE");
    RHHBaseRecorder.SingleCFQ = conf.get("rhipe.hbase.single.cfq") != null
            && conf.get("rhipe.hbase.single.cfq").equals("TRUE");
    String tableName = conf.get(INPUT_TABLE);
    try {// ww w  .  ja v a  2 s  .c om
        setHTable(new HTable(HBaseConfiguration.create(conf), tableName));
    } catch (Exception e) {
        LOG.error(StringUtils.stringifyException(e));
    }
    Scan[] scans = null;
    if (conf.get(RHIPE_COLSPEC) != null) {
        try {
            String[] cols = conf.get(RHIPE_COLSPEC).split(",");
            ArrayList<Pair<String, String>> l = null;
            if (cols.length > 0) {
                l = new ArrayList<Pair<String, String>>(cols.length);
                for (int i = 0; i < cols.length; i++) {
                    String[] x = cols[i].split(":");
                    if (x.length == 1) {
                        l.add(new Pair<String, String>(x[0], null));
                        LOG.info("Added family: " + x[0]);
                    } else {
                        l.add(new Pair<String, String>(x[0], x[1]));
                        LOG.info("Added " + x[0] + ":" + x[1]);
                    }
                }
            }
            String[] x = conf.get("rhipe.hbase.mozilla.cacheblocks").split(":");
            scans = Fun.generateScans(conf.get("rhipe.hbase.rowlim.start"), conf.get("rhipe.hbase.rowlim.end"),
                    l, Integer.parseInt(x[0]), Integer.parseInt(x[1]) == 1 ? true : false);
        } catch (Exception e) {
            LOG.error("An error occurred.", e);
        }
    } else {
        //Scan[] scans = null;
        scans = new Scan[] { new Scan() };
        LOG.info("Start Row Key" + Bytes.toStringBinary(
                org.apache.commons.codec.binary.Base64.decodeBase64(conf.get("rhipe.hbase.rowlim.start"))));
        LOG.info("End Row Key" + Bytes.toStringBinary(
                org.apache.commons.codec.binary.Base64.decodeBase64(conf.get("rhipe.hbase.rowlim.end"))));
        //LOG.info("Filter in   " + Bytes.toStringBinary(org.apache.commons.codec.binary.Base64.decodeBase64(conf.get("rhipe.hbase.filter"))));
        //LOG.info("Filter out  " + conf.get("rhipe.hbase.filter"));
        String[] x = conf.get("rhipe.hbase.mozilla.cacheblocks").split(":");
        LOG.info("cache " + Integer.parseInt(x[0]) + " block " + Integer.parseInt(x[1]));
        scans = Fun.generateScansRows(conf.get("rhipe.hbase.rowlim.start"), conf.get("rhipe.hbase.rowlim.end"),
                Integer.parseInt(x[0]), Integer.parseInt(x[1]) == 1 ? true : false,
                conf.get("rhipe.hbase.filter"), Integer.parseInt(conf.get("rhipe.hbase.set.batch")));
        //scans = getAllColumnQualifier(table);            
    }
    setScans(scans);
}

From source file:TestParascaleFileSystem.java

License:Apache License

public void testInitialize() throws IOException, URISyntaxException {
    final Configuration conf = getConf();
    // comma seperated username + groups
    conf.set("hadoop.job.ugi", "hadoop, hadoop");
    final ParascaleFileSystem fs = new ParascaleFileSystem();
    fs.initialize(new URI(conf.get(FS_DEFAULT_NAME)), conf);
    assertEquals("psdfs://filesystem@10.200.2.10/user/hadoop", fs.getHomeDirectory().toString());
    assertEquals("psdfs://filesystem@10.200.2.10/user/hadoop", fs.getWorkingDirectory().toString());

}

From source file:ai.grakn.kb.internal.computer.GraknSparkComputer.java

License:Open Source License

@SuppressWarnings("PMD.UnusedFormalParameter")
private Future<ComputerResult> submitWithExecutor() {
    jobGroupId = Integer.toString(ThreadLocalRandom.current().nextInt(Integer.MAX_VALUE));
    String jobDescription = this.vertexProgram == null ? this.mapReducers.toString()
            : this.vertexProgram + "+" + this.mapReducers;

    // Use different output locations
    this.sparkConfiguration.setProperty(Constants.GREMLIN_HADOOP_OUTPUT_LOCATION,
            this.sparkConfiguration.getString(Constants.GREMLIN_HADOOP_OUTPUT_LOCATION) + "/" + jobGroupId);

    updateConfigKeys(sparkConfiguration);

    final Future<ComputerResult> result = computerService.submit(() -> {
        final long startTime = System.currentTimeMillis();

        // apache and hadoop configurations that are used throughout the graph computer computation
        final org.apache.commons.configuration.Configuration graphComputerConfiguration = new HadoopConfiguration(
                this.sparkConfiguration);
        if (!graphComputerConfiguration.containsKey(Constants.SPARK_SERIALIZER)) {
            graphComputerConfiguration.setProperty(Constants.SPARK_SERIALIZER,
                    GryoSerializer.class.getCanonicalName());
        }/*from   w ww. ja v  a  2 s . c  o m*/
        graphComputerConfiguration.setProperty(Constants.GREMLIN_HADOOP_GRAPH_WRITER_HAS_EDGES,
                this.persist.equals(GraphComputer.Persist.EDGES));

        final Configuration hadoopConfiguration = ConfUtil.makeHadoopConfiguration(graphComputerConfiguration);

        final Storage fileSystemStorage = FileSystemStorage.open(hadoopConfiguration);
        final boolean inputFromHDFS = FileInputFormat.class.isAssignableFrom(
                hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_READER, Object.class));
        final boolean inputFromSpark = PersistedInputRDD.class.isAssignableFrom(
                hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_READER, Object.class));
        final boolean outputToHDFS = FileOutputFormat.class.isAssignableFrom(
                hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_WRITER, Object.class));
        final boolean outputToSpark = PersistedOutputRDD.class.isAssignableFrom(
                hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_WRITER, Object.class));
        final boolean skipPartitioner = graphComputerConfiguration
                .getBoolean(Constants.GREMLIN_SPARK_SKIP_PARTITIONER, false);
        final boolean skipPersist = graphComputerConfiguration
                .getBoolean(Constants.GREMLIN_SPARK_SKIP_GRAPH_CACHE, false);

        if (inputFromHDFS) {
            String inputLocation = Constants
                    .getSearchGraphLocation(hadoopConfiguration.get(Constants.GREMLIN_HADOOP_INPUT_LOCATION),
                            fileSystemStorage)
                    .orElse(null);
            if (null != inputLocation) {
                try {
                    graphComputerConfiguration.setProperty(Constants.MAPREDUCE_INPUT_FILEINPUTFORMAT_INPUTDIR,
                            FileSystem.get(hadoopConfiguration).getFileStatus(new Path(inputLocation)).getPath()
                                    .toString());
                    hadoopConfiguration.set(Constants.MAPREDUCE_INPUT_FILEINPUTFORMAT_INPUTDIR,
                            FileSystem.get(hadoopConfiguration).getFileStatus(new Path(inputLocation)).getPath()
                                    .toString());
                } catch (final IOException e) {
                    throw new IllegalStateException(e.getMessage(), e);
                }
            }
        }

        final InputRDD inputRDD;
        final OutputRDD outputRDD;
        final boolean filtered;
        try {
            inputRDD = InputRDD.class.isAssignableFrom(
                    hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_READER, Object.class))
                            ? hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_READER,
                                    InputRDD.class, InputRDD.class).newInstance()
                            : InputFormatRDD.class.newInstance();
            outputRDD = OutputRDD.class.isAssignableFrom(
                    hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_WRITER, Object.class))
                            ? hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_WRITER,
                                    OutputRDD.class, OutputRDD.class).newInstance()
                            : OutputFormatRDD.class.newInstance();

            // if the input class can filter on load, then set the filters
            if (inputRDD instanceof InputFormatRDD
                    && GraphFilterAware.class.isAssignableFrom(hadoopConfiguration.getClass(
                            Constants.GREMLIN_HADOOP_GRAPH_READER, InputFormat.class, InputFormat.class))) {
                GraphFilterAware.storeGraphFilter(graphComputerConfiguration, hadoopConfiguration,
                        this.graphFilter);
                filtered = false;
            } else if (inputRDD instanceof GraphFilterAware) {
                ((GraphFilterAware) inputRDD).setGraphFilter(this.graphFilter);
                filtered = false;
            } else
                filtered = this.graphFilter.hasFilter();
        } catch (final InstantiationException | IllegalAccessException e) {
            throw new IllegalStateException(e.getMessage(), e);
        }

        // create the spark context from the graph computer configuration
        final JavaSparkContext sparkContext = new JavaSparkContext(Spark.create(hadoopConfiguration));
        final Storage sparkContextStorage = SparkContextStorage.open();

        sparkContext.setJobGroup(jobGroupId, jobDescription);

        GraknSparkMemory memory = null;
        // delete output location
        final String outputLocation = hadoopConfiguration.get(Constants.GREMLIN_HADOOP_OUTPUT_LOCATION, null);
        if (null != outputLocation) {
            if (outputToHDFS && fileSystemStorage.exists(outputLocation)) {
                fileSystemStorage.rm(outputLocation);
            }
            if (outputToSpark && sparkContextStorage.exists(outputLocation)) {
                sparkContextStorage.rm(outputLocation);
            }
        }

        // the Spark application name will always be set by SparkContextStorage,
        // thus, INFO the name to make it easier to debug
        logger.debug(Constants.GREMLIN_HADOOP_SPARK_JOB_PREFIX
                + (null == this.vertexProgram ? "No VertexProgram" : this.vertexProgram) + "["
                + this.mapReducers + "]");

        // add the project jars to the cluster
        this.loadJars(hadoopConfiguration, sparkContext);
        updateLocalConfiguration(sparkContext, hadoopConfiguration);

        // create a message-passing friendly rdd from the input rdd
        boolean partitioned = false;
        JavaPairRDD<Object, VertexWritable> loadedGraphRDD = inputRDD.readGraphRDD(graphComputerConfiguration,
                sparkContext);

        // if there are vertex or edge filters, filter the loaded graph rdd prior to partitioning and persisting
        if (filtered) {
            this.logger.debug("Filtering the loaded graphRDD: " + this.graphFilter);
            loadedGraphRDD = GraknSparkExecutor.applyGraphFilter(loadedGraphRDD, this.graphFilter);
        }
        // if the loaded graph RDD is already partitioned use that partitioner,
        // else partition it with HashPartitioner
        if (loadedGraphRDD.partitioner().isPresent()) {
            this.logger.debug("Using the existing partitioner associated with the loaded graphRDD: "
                    + loadedGraphRDD.partitioner().get());
        } else {
            if (!skipPartitioner) {
                final Partitioner partitioner = new HashPartitioner(
                        this.workersSet ? this.workers : loadedGraphRDD.partitions().size());
                this.logger.debug("Partitioning the loaded graphRDD: " + partitioner);
                loadedGraphRDD = loadedGraphRDD.partitionBy(partitioner);
                partitioned = true;
                assert loadedGraphRDD.partitioner().isPresent();
            } else {
                // no easy way to test this with a test case
                assert skipPartitioner == !loadedGraphRDD.partitioner().isPresent();

                this.logger.debug("Partitioning has been skipped for the loaded graphRDD via "
                        + Constants.GREMLIN_SPARK_SKIP_PARTITIONER);
            }
        }
        // if the loaded graphRDD was already partitioned previous,
        // then this coalesce/repartition will not take place
        if (this.workersSet) {
            // ensures that the loaded graphRDD does not have more partitions than workers
            if (loadedGraphRDD.partitions().size() > this.workers) {
                loadedGraphRDD = loadedGraphRDD.coalesce(this.workers);
            } else {
                // ensures that the loaded graphRDD does not have less partitions than workers
                if (loadedGraphRDD.partitions().size() < this.workers) {
                    loadedGraphRDD = loadedGraphRDD.repartition(this.workers);
                }
            }
        }
        // persist the vertex program loaded graph as specified by configuration
        // or else use default cache() which is MEMORY_ONLY
        if (!skipPersist && (!inputFromSpark || partitioned || filtered)) {
            loadedGraphRDD = loadedGraphRDD.persist(StorageLevel.fromString(
                    hadoopConfiguration.get(Constants.GREMLIN_SPARK_GRAPH_STORAGE_LEVEL, "MEMORY_ONLY")));
        }
        // final graph with view
        // (for persisting and/or mapReducing -- may be null and thus, possible to save space/time)
        JavaPairRDD<Object, VertexWritable> computedGraphRDD = null;
        try {
            ////////////////////////////////
            // process the vertex program //
            ////////////////////////////////
            if (null != this.vertexProgram) {
                memory = new GraknSparkMemory(this.vertexProgram, this.mapReducers, sparkContext);
                /////////////////
                // if there is a registered VertexProgramInterceptor, use it to bypass the GraphComputer semantics
                if (graphComputerConfiguration
                        .containsKey(Constants.GREMLIN_HADOOP_VERTEX_PROGRAM_INTERCEPTOR)) {
                    try {
                        final GraknSparkVertexProgramInterceptor<VertexProgram> interceptor = (GraknSparkVertexProgramInterceptor) Class
                                .forName(graphComputerConfiguration
                                        .getString(Constants.GREMLIN_HADOOP_VERTEX_PROGRAM_INTERCEPTOR))
                                .newInstance();
                        computedGraphRDD = interceptor.apply(this.vertexProgram, loadedGraphRDD, memory);
                    } catch (final ClassNotFoundException | IllegalAccessException | InstantiationException e) {
                        throw new IllegalStateException(e.getMessage());
                    }
                } else {
                    // standard GraphComputer semantics
                    // get a configuration that will be propagated to all workers
                    final HadoopConfiguration vertexProgramConfiguration = new HadoopConfiguration();
                    this.vertexProgram.storeState(vertexProgramConfiguration);
                    // set up the vertex program and wire up configurations
                    this.vertexProgram.setup(memory);
                    JavaPairRDD<Object, ViewIncomingPayload<Object>> viewIncomingRDD = null;
                    memory.broadcastMemory(sparkContext);
                    // execute the vertex program
                    while (true) {
                        if (Thread.interrupted()) {
                            sparkContext.cancelAllJobs();
                            throw new TraversalInterruptedException();
                        }
                        memory.setInExecute(true);
                        viewIncomingRDD = GraknSparkExecutor.executeVertexProgramIteration(loadedGraphRDD,
                                viewIncomingRDD, memory, graphComputerConfiguration,
                                vertexProgramConfiguration);
                        memory.setInExecute(false);
                        if (this.vertexProgram.terminate(memory)) {
                            break;
                        } else {
                            memory.incrIteration();
                            memory.broadcastMemory(sparkContext);
                        }
                    }
                    // if the graph will be continued to be used (persisted or mapreduced),
                    // then generate a view+graph
                    if ((null != outputRDD && !this.persist.equals(Persist.NOTHING))
                            || !this.mapReducers.isEmpty()) {
                        computedGraphRDD = GraknSparkExecutor.prepareFinalGraphRDD(loadedGraphRDD,
                                viewIncomingRDD, this.vertexProgram.getVertexComputeKeys());
                        assert null != computedGraphRDD && computedGraphRDD != loadedGraphRDD;
                    } else {
                        // ensure that the computedGraphRDD was not created
                        assert null == computedGraphRDD;
                    }
                }
                /////////////////
                memory.complete(); // drop all transient memory keys
                // write the computed graph to the respective output (rdd or output format)
                if (null != outputRDD && !this.persist.equals(Persist.NOTHING)) {
                    // the logic holds that a computeGraphRDD must be created at this point
                    assert null != computedGraphRDD;

                    outputRDD.writeGraphRDD(graphComputerConfiguration, computedGraphRDD);
                }
            }

            final boolean computedGraphCreated = computedGraphRDD != null && computedGraphRDD != loadedGraphRDD;
            if (!computedGraphCreated) {
                computedGraphRDD = loadedGraphRDD;
            }

            final Memory.Admin finalMemory = null == memory ? new MapMemory() : new MapMemory(memory);

            //////////////////////////////
            // process the map reducers //
            //////////////////////////////
            if (!this.mapReducers.isEmpty()) {
                // create a mapReduceRDD for executing the map reduce jobs on
                JavaPairRDD<Object, VertexWritable> mapReduceRDD = computedGraphRDD;
                if (computedGraphCreated && !outputToSpark) {
                    // drop all the edges of the graph as they are not used in mapReduce processing
                    mapReduceRDD = computedGraphRDD.mapValues(vertexWritable -> {
                        vertexWritable.get().dropEdges(Direction.BOTH);
                        return vertexWritable;
                    });
                    // if there is only one MapReduce to execute, don't bother wasting the clock cycles.
                    if (this.mapReducers.size() > 1) {
                        mapReduceRDD = mapReduceRDD.persist(StorageLevel.fromString(hadoopConfiguration
                                .get(Constants.GREMLIN_SPARK_GRAPH_STORAGE_LEVEL, "MEMORY_ONLY")));
                    }
                }

                for (final MapReduce mapReduce : this.mapReducers) {
                    // execute the map reduce job
                    final HadoopConfiguration newApacheConfiguration = new HadoopConfiguration(
                            graphComputerConfiguration);
                    mapReduce.storeState(newApacheConfiguration);
                    // map
                    final JavaPairRDD mapRDD = GraknSparkExecutor.executeMap(mapReduceRDD, mapReduce,
                            newApacheConfiguration);
                    // combine
                    final JavaPairRDD combineRDD = mapReduce.doStage(MapReduce.Stage.COMBINE)
                            ? GraknSparkExecutor.executeCombine(mapRDD, newApacheConfiguration)
                            : mapRDD;
                    // reduce
                    final JavaPairRDD reduceRDD = mapReduce.doStage(MapReduce.Stage.REDUCE)
                            ? GraknSparkExecutor.executeReduce(combineRDD, mapReduce, newApacheConfiguration)
                            : combineRDD;
                    // write the map reduce output back to disk and computer result memory
                    if (null != outputRDD) {
                        mapReduce.addResultToMemory(finalMemory, outputRDD.writeMemoryRDD(
                                graphComputerConfiguration, mapReduce.getMemoryKey(), reduceRDD));
                    }
                }
                // if the mapReduceRDD is not simply the computed graph, unpersist the mapReduceRDD
                if (computedGraphCreated && !outputToSpark) {
                    assert loadedGraphRDD != computedGraphRDD;
                    assert mapReduceRDD != computedGraphRDD;
                    mapReduceRDD.unpersist();
                } else {
                    assert mapReduceRDD == computedGraphRDD;
                }
            }

            // unpersist the loaded graph if it will not be used again (no PersistedInputRDD)
            // if the graphRDD was loaded from Spark, but then partitioned or filtered, its a different RDD
            if (!inputFromSpark || partitioned || filtered) {
                loadedGraphRDD.unpersist();
            }
            // unpersist the computed graph if it will not be used again (no PersistedOutputRDD)
            // if the computed graph is the loadedGraphRDD because it was not mutated and not-unpersisted,
            // then don't unpersist the computedGraphRDD/loadedGraphRDD
            if ((!outputToSpark || this.persist.equals(GraphComputer.Persist.NOTHING))
                    && computedGraphCreated) {
                computedGraphRDD.unpersist();
            }
            // delete any file system or rdd data if persist nothing
            if (null != outputLocation && this.persist.equals(GraphComputer.Persist.NOTHING)) {
                if (outputToHDFS) {
                    fileSystemStorage.rm(outputLocation);
                }
                if (outputToSpark) {
                    sparkContextStorage.rm(outputLocation);
                }
            }
            // update runtime and return the newly computed graph
            finalMemory.setRuntime(System.currentTimeMillis() - startTime);
            // clear properties that should not be propagated in an OLAP chain
            graphComputerConfiguration.clearProperty(Constants.GREMLIN_HADOOP_GRAPH_FILTER);
            graphComputerConfiguration.clearProperty(Constants.GREMLIN_HADOOP_VERTEX_PROGRAM_INTERCEPTOR);
            graphComputerConfiguration.clearProperty(Constants.GREMLIN_SPARK_SKIP_GRAPH_CACHE);
            graphComputerConfiguration.clearProperty(Constants.GREMLIN_SPARK_SKIP_PARTITIONER);
            return new DefaultComputerResult(InputOutputHelper.getOutputGraph(graphComputerConfiguration,
                    this.resultGraph, this.persist), finalMemory.asImmutable());
        } catch (Exception e) {
            // So it throws the same exception as tinker does
            throw new RuntimeException(e);
        }
    });
    computerService.shutdown();
    return result;
}

From source file:ai.grakn.kb.internal.computer.GraknSparkComputer.java

License:Open Source License

/**
 * When using a persistent context the running Context's configuration will override a passed
 * in configuration. Spark allows us to override these inherited properties via
 * SparkContext.setLocalProperty//from ww w  . j  a  v a  2 s . co  m
 */
private static void updateLocalConfiguration(final JavaSparkContext sparkContext,
        final Configuration configuration) {
    /*
     * While we could enumerate over the entire SparkConfiguration and copy into the Thread
     * Local properties of the Spark Context this could cause adverse effects with future
     * versions of Spark. Since the api for setting multiple local properties at once is
     * restricted as private, we will only set those properties we know can effect SparkGraphComputer
     * Execution rather than applying the entire configuration.
     */

    final String[] validPropertyNames = { "spark.job.description", "spark.jobGroup.id",
            "spark.job.interruptOnCancel", "spark.scheduler.pool" };

    for (String propertyName : validPropertyNames) {
        String propertyValue = configuration.get(propertyName);
        if (propertyValue != null) {
            LOGGER.info("Setting Thread Local SparkContext Property - " + propertyName + " : " + propertyValue);
            sparkContext.setLocalProperty(propertyName, configuration.get(propertyName));
        }
    }
}

From source file:alluxio.checker.MapReduceIntegrationChecker.java

License:Apache License

/**
 * Creates the HDFS filesystem to store output files.
 *
 * @param conf Hadoop configuration//from  w ww .j  a v a 2s . c  o  m
 */
private void createHdfsFilesystem(Configuration conf) throws Exception {
    // Inits HDFS file system object
    mFileSystem = FileSystem.get(URI.create(conf.get("fs.defaultFS")), conf);
    mOutputFilePath = new Path("./MapReduceOutputFile");
    if (mFileSystem.exists(mOutputFilePath)) {
        mFileSystem.delete(mOutputFilePath, true);
    }
}

From source file:alluxio.hadoop.HadoopUtils.java

License:Apache License

/**
 * Set the System property into Hadoop configuration.
 *
 * This method won't override existing property even if it is set as System property.
 *
 * @param configuration Hadoop configuration
 * @param propertyName the property to be set
 *//*from   w w  w  .j a  v a2  s . c  o  m*/
private static void setConfigurationFromSystemProperty(Configuration configuration, String propertyName) {
    String propertyValue = System.getProperty(propertyName);
    if (propertyValue != null && configuration.get(propertyName) == null) {
        configuration.set(propertyName, propertyValue);
    }
}

From source file:alluxio.underfs.hdfs.HdfsUnderFileSystemTest.java

License:Apache License

/**
 * Tests the {@link HdfsUnderFileSystem#prepareConfiguration} method.
 *
 * Checks the hdfs implements class and alluxio underfs config setting
 *//*from   ww  w. ja  v a 2 s.c o m*/
@Test
public void prepareConfiguration() throws Exception {
    org.apache.hadoop.conf.Configuration conf = new org.apache.hadoop.conf.Configuration();
    mMockHdfsUnderFileSystem.prepareConfiguration("", conf);
    Assert.assertEquals("org.apache.hadoop.hdfs.DistributedFileSystem", conf.get("fs.hdfs.impl"));
    Assert.assertFalse(conf.getBoolean("fs.hdfs.impl.disable.cache", false));
    Assert.assertNotNull(conf.get(PropertyKey.UNDERFS_HDFS_CONFIGURATION.toString()));
}

From source file:andromache.config.CassandraConfigHelper.java

License:Apache License

public static String getInputKeyspacePassword(Configuration conf) {
    return conf.get(INPUT_KEYSPACE_PASSWD_CONFIG);
}

From source file:andromache.config.CassandraConfigHelper.java

License:Apache License

/** may be null if unset */
public static KeyRange getInputKeyRange(Configuration conf) {
    String str = conf.get(INPUT_KEYRANGE_CONFIG);
    return null != str ? keyRangeFromString(str) : null;
}

From source file:andromache.config.CassandraConfigHelper.java

License:Apache License

public static IPartitioner getInputPartitioner(Configuration conf) {
    try {/*  w w  w  . j  a  va 2  s.co  m*/
        return FBUtilities.newPartitioner(conf.get(INPUT_PARTITIONER_CONFIG));
    } catch (ConfigurationException e) {
        throw new RuntimeException(e);
    }
}