List of usage examples for org.apache.commons.math3.stat.descriptive DescriptiveStatistics getSkewness
public double getSkewness()
From source file:com.github.jessemull.microflexbigdecimal.stat.SkewnessTest.java
/** * Tests the aggregated plate statistics method using the values between the indices of * the collection.//from w ww .j a v a 2 s . c o m */ @Test public void testAggregatedPlateCollectionIndices() { int size = arrayIndices[0].first().size(); int begin = random.nextInt(size - 5); int end = (begin + 4) + random.nextInt(size - (begin + 4) + 1); List<Plate> collection = Arrays.asList(arrayIndices); Map<Plate, BigDecimal> aggregatedReturnedMap = skewness.platesAggregated(collection, begin, end - begin, mc); Map<Plate, BigDecimal> aggregatedResultMap = new TreeMap<Plate, BigDecimal>(); for (Plate plate : collection) { List<BigDecimal> resultList = new ArrayList<BigDecimal>(); for (Well well : plate) { resultList.addAll(well.data().subList(begin, end)); } double[] inputAggregated = new double[resultList.size()]; for (int i = 0; i < resultList.size(); i++) { inputAggregated[i] = resultList.get(i).doubleValue(); } DescriptiveStatistics statAggregated = new DescriptiveStatistics(inputAggregated); double resultAggregatedDouble = statAggregated.getSkewness(); BigDecimal aggregatedResult = new BigDecimal(resultAggregatedDouble); aggregatedResultMap.put(plate, aggregatedResult); } for (Plate plate : collection) { BigDecimal result = aggregatedResultMap.get(plate); BigDecimal returned = aggregatedReturnedMap.get(plate); BigDecimal[] corrected = correctRoundingErrors(result, returned); assertEquals(corrected[0], corrected[1]); } }
From source file:com.github.jessemull.microflexbigdecimal.stat.SkewnessTest.java
/** * Tests the aggregated plate statistics method using a collection. *//*from w w w. ja v a 2 s .c o m*/ @Test public void testAggregatedSetCollection() { List<WellSet> collection = new ArrayList<WellSet>(); for (Plate plate : array) { collection.add(plate.dataSet()); } Map<WellSet, BigDecimal> aggregatedReturnedMap = skewness.setsAggregated(collection, mc); Map<WellSet, BigDecimal> aggregatedResultMap = new TreeMap<WellSet, BigDecimal>(); for (WellSet set : collection) { List<BigDecimal> resultList = new ArrayList<BigDecimal>(); for (Well well : set) { resultList.addAll(well.data()); } double[] inputAggregated = new double[resultList.size()]; for (int i = 0; i < resultList.size(); i++) { inputAggregated[i] = resultList.get(i).doubleValue(); } DescriptiveStatistics statAggregated = new DescriptiveStatistics(inputAggregated); double resultAggregatedDouble = statAggregated.getSkewness(); BigDecimal aggregatedResult = new BigDecimal(resultAggregatedDouble); aggregatedResultMap.put(set, aggregatedResult); } for (WellSet set : collection) { BigDecimal result = aggregatedResultMap.get(set); BigDecimal returned = aggregatedReturnedMap.get(set); BigDecimal[] corrected = correctRoundingErrors(result, returned); assertEquals(corrected[0], corrected[1]); } }
From source file:com.github.jessemull.microflexbiginteger.stat.SkewnessTest.java
/** * Tests the aggregated plate statistics method using the values between the indices of * the array./*from www . java 2s . c o m*/ */ @Test public void testAggregatedPlateArrayIndices() { int size = arrayIndices[0].first().size(); int begin = random.nextInt(size - 5); int end = (begin + 4) + random.nextInt(size - (begin + 4) + 1); Map<Plate, BigDecimal> aggregatedReturnedMap = skewness.platesAggregated(arrayIndices, begin, end - begin, mc); Map<Plate, BigDecimal> aggregatedResultMap = new TreeMap<Plate, BigDecimal>(); for (Plate plate : arrayIndices) { List<BigDecimal> resultList = new ArrayList<BigDecimal>(); for (Well well : plate) { resultList.addAll(well.toBigDecimal().subList(begin, end)); } double[] inputAggregated = new double[resultList.size()]; for (int i = 0; i < resultList.size(); i++) { inputAggregated[i] = resultList.get(i).doubleValue(); } DescriptiveStatistics statAggregated = new DescriptiveStatistics(inputAggregated); double resultAggregatedDouble = statAggregated.getSkewness(); BigDecimal aggregatedResult = new BigDecimal(resultAggregatedDouble); aggregatedResultMap.put(plate, aggregatedResult); } for (Plate plate : arrayIndices) { BigDecimal result = aggregatedResultMap.get(plate); BigDecimal returned = aggregatedReturnedMap.get(plate); BigDecimal[] corrected = correctRoundingErrors(result, returned); assertEquals(corrected[0], corrected[1]); } }
From source file:com.fpuna.preproceso.PreprocesoTS.java
private static void calculoFeatures(Registro[] muestras, String activity) { DescriptiveStatistics stats_x = new DescriptiveStatistics(); DescriptiveStatistics stats_y = new DescriptiveStatistics(); DescriptiveStatistics stats_z = new DescriptiveStatistics(); //DescriptiveStatistics stats_m1 = new DescriptiveStatistics(); //DescriptiveStatistics stats_m2 = new DescriptiveStatistics(); double[] fft_x; double[] fft_y; double[] fft_z; double[] AR_4; for (int i = 0; i < muestras.length; i++) { stats_x.addValue(muestras[i].getValor_x()); stats_y.addValue(muestras[i].getValor_y()); stats_z.addValue(muestras[i].getValor_z()); }/*from w ww . j av a2 s. c om*/ //********* FFT ********* fft_x = Util.transform(stats_x.getValues()); fft_y = Util.transform(stats_y.getValues()); fft_z = Util.transform(stats_z.getValues()); //******************* Eje X *******************// //mean(s) - Arithmetic mean System.out.print(stats_x.getMean() + ","); //std(s) - Standard deviation System.out.print(stats_x.getStandardDeviation() + ","); //mad(s) - Median absolute deviation // //max(s) - Largest values in array System.out.print(stats_x.getMax() + ","); //min(s) - Smallest value in array System.out.print(stats_x.getMin() + ","); //skewness(s) - Frequency signal Skewness System.out.print(stats_x.getSkewness() + ","); //kurtosis(s) - Frequency signal Kurtosis System.out.print(stats_x.getKurtosis() + ","); //energy(s) - Average sum of the squares System.out.print(stats_x.getSumsq() / stats_x.getN() + ","); //entropy(s) - Signal Entropy System.out.print(Util.calculateShannonEntropy(fft_x) + ","); //iqr (s) Interquartile range System.out.print(stats_x.getPercentile(75) - stats_x.getPercentile(25) + ","); try { //autoregression (s) -4th order Burg Autoregression coefficients AR_4 = AutoRegression.calculateARCoefficients(stats_x.getValues(), 4, true); System.out.print(AR_4[0] + ","); System.out.print(AR_4[1] + ","); System.out.print(AR_4[2] + ","); System.out.print(AR_4[3] + ","); } catch (Exception ex) { Logger.getLogger(PreprocesoTS.class.getName()).log(Level.SEVERE, null, ex); } //meanFreq(s) - Frequency signal weighted average System.out.print(Util.meanFreq(fft_x, stats_x.getValues()) + ","); //******************* Eje Y *******************// //mean(s) - Arithmetic mean System.out.print(stats_y.getMean() + ","); //std(s) - Standard deviation System.out.print(stats_y.getStandardDeviation() + ","); //mad(s) - Median absolute deviation // //max(s) - Largest values in array System.out.print(stats_y.getMax() + ","); //min(s) - Smallest value in array System.out.print(stats_y.getMin() + ","); //skewness(s) - Frequency signal Skewness System.out.print(stats_y.getSkewness() + ","); //kurtosis(s) - Frequency signal Kurtosis System.out.print(stats_y.getKurtosis() + ","); //energy(s) - Average sum of the squares System.out.print(stats_y.getSumsq() / stats_y.getN() + ","); //entropy(s) - Signal Entropy System.out.print(Util.calculateShannonEntropy(fft_y) + ","); //iqr (s) Interquartile range System.out.print(stats_y.getPercentile(75) - stats_y.getPercentile(25) + ","); try { //autoregression (s) -4th order Burg Autoregression coefficients AR_4 = AutoRegression.calculateARCoefficients(stats_y.getValues(), 4, true); System.out.print(AR_4[0] + ","); System.out.print(AR_4[1] + ","); System.out.print(AR_4[2] + ","); System.out.print(AR_4[3] + ","); } catch (Exception ex) { Logger.getLogger(PreprocesoTS.class.getName()).log(Level.SEVERE, null, ex); } //meanFreq(s) - Frequency signal weighted average System.out.print(Util.meanFreq(fft_y, stats_y.getValues()) + ","); //******************* Eje Z *******************// //mean(s) - Arithmetic mean System.out.print(stats_z.getMean() + ","); //std(s) - Standard deviation System.out.print(stats_z.getStandardDeviation() + ","); //mad(s) - Median absolute deviation // //max(s) - Largest values in array System.out.print(stats_z.getMax() + ","); //min(s) - Smallest value in array System.out.print(stats_z.getMin() + ","); //skewness(s) - Frequency signal Skewness System.out.print(stats_z.getSkewness() + ","); //kurtosis(s) - Frequency signal Kurtosis System.out.print(stats_z.getKurtosis() + ","); //energy(s) - Average sum of the squares System.out.print(stats_z.getSumsq() / stats_z.getN() + ","); //entropy(s) - Signal Entropy System.out.print(Util.calculateShannonEntropy(fft_z) + ","); //iqr (s) Interquartile range System.out.print(stats_z.getPercentile(75) - stats_z.getPercentile(25) + ","); try { //autoregression (s) -4th order Burg Autoregression coefficients AR_4 = AutoRegression.calculateARCoefficients(stats_z.getValues(), 4, true); System.out.print(AR_4[0] + ","); System.out.print(AR_4[1] + ","); System.out.print(AR_4[2] + ","); System.out.print(AR_4[3] + ","); } catch (Exception ex) { Logger.getLogger(PreprocesoTS.class.getName()).log(Level.SEVERE, null, ex); } //meanFreq(s) - Frequency signal weighted average System.out.print(Util.meanFreq(fft_z, stats_z.getValues()) + ","); //******************* Feature combinados *******************/ //sma(s1; s2; s3) - Signal magnitude area System.out.print(Util.sma(stats_x.getValues(), stats_y.getValues(), stats_z.getValues()) + ","); //correlation(s1; s2) - Pearson Correlation coefficient System.out.print(new PearsonsCorrelation().correlation(stats_x.getValues(), stats_y.getValues()) + ","); System.out.print(new PearsonsCorrelation().correlation(stats_x.getValues(), stats_z.getValues()) + ","); System.out.print(new PearsonsCorrelation().correlation(stats_y.getValues(), stats_z.getValues()) + ","); //******************* Actividad *******************/ System.out.print(activity); System.out.print("\n"); }
From source file:com.github.jessemull.microflex.stat.statbigdecimal.SkewnessBigDecimalTest.java
/** * Tests the aggregated plate statistics method using an array. *//*from ww w . ja v a2 s .c om*/ @Test public void testAggregatedSetArray() { WellSetBigDecimal[] setArray = new WellSetBigDecimal[array.length]; for (int i = 0; i < setArray.length; i++) { setArray[i] = array[i].dataSet(); } Map<WellSetBigDecimal, BigDecimal> aggregatedReturnedMap = skewness.setsAggregated(setArray, mc); Map<WellSetBigDecimal, BigDecimal> aggregatedResultMap = new TreeMap<WellSetBigDecimal, BigDecimal>(); for (WellSetBigDecimal set : setArray) { List<BigDecimal> resultList = new ArrayList<BigDecimal>(); for (WellBigDecimal well : set) { resultList.addAll(well.data()); } double[] inputAggregated = new double[resultList.size()]; for (int i = 0; i < resultList.size(); i++) { inputAggregated[i] = resultList.get(i).doubleValue(); } DescriptiveStatistics statAggregated = new DescriptiveStatistics(inputAggregated); double resultAggregatedDouble = statAggregated.getSkewness(); BigDecimal aggregatedResult = new BigDecimal(resultAggregatedDouble); aggregatedResultMap.put(set, aggregatedResult); } for (WellSetBigDecimal set : setArray) { BigDecimal result = aggregatedResultMap.get(set); BigDecimal returned = aggregatedReturnedMap.get(set); BigDecimal[] corrected = correctRoundingErrors(result, returned); assertEquals(corrected[0], corrected[1]); } }
From source file:com.github.jessemull.microflex.stat.statbiginteger.SkewnessBigIntegerTest.java
/** * Tests the aggregated plate statistics method using the values between the indices of * the array.//w ww . j a v a2 s. co m */ @Test public void testAggregatedPlateArrayIndices() { int size = arrayIndices[0].first().size(); int begin = random.nextInt(size - 5); int end = (begin + 4) + random.nextInt(size - (begin + 4) + 1); Map<PlateBigInteger, BigDecimal> aggregatedReturnedMap = skewness.platesAggregated(arrayIndices, begin, end - begin, mc); Map<PlateBigInteger, BigDecimal> aggregatedResultMap = new TreeMap<PlateBigInteger, BigDecimal>(); for (PlateBigInteger plate : arrayIndices) { List<BigDecimal> resultList = new ArrayList<BigDecimal>(); for (WellBigInteger well : plate) { resultList.addAll(well.toBigDecimal().subList(begin, end)); } double[] inputAggregated = new double[resultList.size()]; for (int i = 0; i < resultList.size(); i++) { inputAggregated[i] = resultList.get(i).doubleValue(); } DescriptiveStatistics statAggregated = new DescriptiveStatistics(inputAggregated); double resultAggregatedDouble = statAggregated.getSkewness(); BigDecimal aggregatedResult = new BigDecimal(resultAggregatedDouble); aggregatedResultMap.put(plate, aggregatedResult); } for (PlateBigInteger plate : arrayIndices) { BigDecimal result = aggregatedResultMap.get(plate); BigDecimal returned = aggregatedReturnedMap.get(plate); BigDecimal[] corrected = correctRoundingErrors(result, returned); assertEquals(corrected[0], corrected[1]); } }
From source file:com.github.jessemull.microflexbigdecimal.stat.SkewnessTest.java
/** * Tests the aggregated plate statistics method using an array. *///from w w w. j av a 2 s . c o m @Test public void testAggregatedSetArray() { WellSet[] setArray = new WellSet[array.length]; for (int i = 0; i < setArray.length; i++) { setArray[i] = array[i].dataSet(); } Map<WellSet, BigDecimal> aggregatedReturnedMap = skewness.setsAggregated(setArray, mc); Map<WellSet, BigDecimal> aggregatedResultMap = new TreeMap<WellSet, BigDecimal>(); for (WellSet set : setArray) { List<BigDecimal> resultList = new ArrayList<BigDecimal>(); for (Well well : set) { resultList.addAll(well.data()); } double[] inputAggregated = new double[resultList.size()]; for (int i = 0; i < resultList.size(); i++) { inputAggregated[i] = resultList.get(i).doubleValue(); } DescriptiveStatistics statAggregated = new DescriptiveStatistics(inputAggregated); double resultAggregatedDouble = statAggregated.getSkewness(); BigDecimal aggregatedResult = new BigDecimal(resultAggregatedDouble); aggregatedResultMap.put(set, aggregatedResult); } for (WellSet set : setArray) { BigDecimal result = aggregatedResultMap.get(set); BigDecimal returned = aggregatedReturnedMap.get(set); BigDecimal[] corrected = correctRoundingErrors(result, returned); assertEquals(corrected[0], corrected[1]); } }
From source file:com.github.jessemull.microflexbiginteger.stat.SkewnessTest.java
/** * Tests the aggregated plate statistics method using the values between the indices of * the collection.// www. j a v a 2 s . c o m */ @Test public void testAggregatedPlateCollectionIndices() { int size = arrayIndices[0].first().size(); int begin = random.nextInt(size - 5); int end = (begin + 4) + random.nextInt(size - (begin + 4) + 1); List<Plate> collection = Arrays.asList(arrayIndices); Map<Plate, BigDecimal> aggregatedReturnedMap = skewness.platesAggregated(collection, begin, end - begin, mc); Map<Plate, BigDecimal> aggregatedResultMap = new TreeMap<Plate, BigDecimal>(); for (Plate plate : collection) { List<BigDecimal> resultList = new ArrayList<BigDecimal>(); for (Well well : plate) { resultList.addAll(well.toBigDecimal().subList(begin, end)); } double[] inputAggregated = new double[resultList.size()]; for (int i = 0; i < resultList.size(); i++) { inputAggregated[i] = resultList.get(i).doubleValue(); } DescriptiveStatistics statAggregated = new DescriptiveStatistics(inputAggregated); double resultAggregatedDouble = statAggregated.getSkewness(); BigDecimal aggregatedResult = new BigDecimal(resultAggregatedDouble); aggregatedResultMap.put(plate, aggregatedResult); } for (Plate plate : collection) { BigDecimal result = aggregatedResultMap.get(plate); BigDecimal returned = aggregatedReturnedMap.get(plate); BigDecimal[] corrected = correctRoundingErrors(result, returned); assertEquals(corrected[0], corrected[1]); } }
From source file:com.github.jessemull.microflexbiginteger.stat.SkewnessTest.java
/** * Tests the aggregated plate statistics method using a collection. *//*from w w w. j av a 2s . c om*/ @Test public void testAggregatedSetCollection() { List<WellSet> collection = new ArrayList<WellSet>(); for (Plate plate : array) { collection.add(plate.dataSet()); } Map<WellSet, BigDecimal> aggregatedReturnedMap = skewness.setsAggregated(collection, mc); Map<WellSet, BigDecimal> aggregatedResultMap = new TreeMap<WellSet, BigDecimal>(); for (WellSet set : collection) { List<BigDecimal> resultList = new ArrayList<BigDecimal>(); for (Well well : set) { resultList.addAll(well.toBigDecimal()); } double[] inputAggregated = new double[resultList.size()]; for (int i = 0; i < resultList.size(); i++) { inputAggregated[i] = resultList.get(i).doubleValue(); } DescriptiveStatistics statAggregated = new DescriptiveStatistics(inputAggregated); double resultAggregatedDouble = statAggregated.getSkewness(); BigDecimal aggregatedResult = new BigDecimal(resultAggregatedDouble); aggregatedResultMap.put(set, aggregatedResult); } for (WellSet set : collection) { BigDecimal result = aggregatedResultMap.get(set); BigDecimal returned = aggregatedReturnedMap.get(set); BigDecimal[] corrected = correctRoundingErrors(result, returned); assertEquals(corrected[0], corrected[1]); } }
From source file:com.github.jessemull.microflex.stat.statbiginteger.SkewnessBigIntegerTest.java
/** * Tests the aggregated plate statistics method using the values between the indices of * the collection.// w ww. j av a 2 s .c o m */ @Test public void testAggregatedPlateCollectionIndices() { int size = arrayIndices[0].first().size(); int begin = random.nextInt(size - 5); int end = (begin + 4) + random.nextInt(size - (begin + 4) + 1); List<PlateBigInteger> collection = Arrays.asList(arrayIndices); Map<PlateBigInteger, BigDecimal> aggregatedReturnedMap = skewness.platesAggregated(collection, begin, end - begin, mc); Map<PlateBigInteger, BigDecimal> aggregatedResultMap = new TreeMap<PlateBigInteger, BigDecimal>(); for (PlateBigInteger plate : collection) { List<BigDecimal> resultList = new ArrayList<BigDecimal>(); for (WellBigInteger well : plate) { resultList.addAll(well.toBigDecimal().subList(begin, end)); } double[] inputAggregated = new double[resultList.size()]; for (int i = 0; i < resultList.size(); i++) { inputAggregated[i] = resultList.get(i).doubleValue(); } DescriptiveStatistics statAggregated = new DescriptiveStatistics(inputAggregated); double resultAggregatedDouble = statAggregated.getSkewness(); BigDecimal aggregatedResult = new BigDecimal(resultAggregatedDouble); aggregatedResultMap.put(plate, aggregatedResult); } for (PlateBigInteger plate : collection) { BigDecimal result = aggregatedResultMap.get(plate); BigDecimal returned = aggregatedReturnedMap.get(plate); BigDecimal[] corrected = correctRoundingErrors(result, returned); assertEquals(corrected[0], corrected[1]); } }