Example usage for opennlp.tools.sentdetect SentenceDetectorME sentPosDetect

List of usage examples for opennlp.tools.sentdetect SentenceDetectorME sentPosDetect

Introduction

In this page you can find the example usage for opennlp.tools.sentdetect SentenceDetectorME sentPosDetect.

Prototype

public Span[] sentPosDetect(String s) 

Source Link

Document

Detect the position of the first words of sentences in a String.

Usage

From source file:org.apache.stanbol.enhancer.engines.opennlp.impl.NEREngineCore.java

protected Map<String, List<NameOccurrence>> extractNameOccurrences(TokenNameFinderModel nameFinderModel,
        String text, String language) {
    // version with explicit sentence endings to reflect heading / paragraph
    // structure of an HTML or PDF document converted to text
    String textWithDots = text.replaceAll("\\n\\n", ".\n");
    text = removeNonUtf8CompliantCharacters(text);

    SentenceDetectorME sentenceDetector = new SentenceDetectorME(getSentenceModel("en"));

    Span[] sentenceSpans = sentenceDetector.sentPosDetect(textWithDots);

    NameFinderME finder = new NameFinderME(nameFinderModel);
    Tokenizer tokenizer = openNLP.getTokenizer(language);
    Map<String, List<NameOccurrence>> nameOccurrences = new LinkedHashMap<String, List<NameOccurrence>>();
    for (int i = 0; i < sentenceSpans.length; i++) {
        String sentence = sentenceSpans[i].getCoveredText(text).toString().trim();

        // build a context by concatenating three sentences to be used for
        // similarity ranking / disambiguation + contextual snippet in the
        // extraction structure
        List<String> contextElements = new ArrayList<String>();
        if (i > 0) {
            CharSequence previousSentence = sentenceSpans[i - 1].getCoveredText(text);
            contextElements.add(previousSentence.toString().trim());
        }//from   w  w w  .  j a v  a  2s.  com
        contextElements.add(sentence.trim());
        if (i + 1 < sentenceSpans.length) {
            CharSequence nextSentence = sentenceSpans[i + 1].getCoveredText(text);
            contextElements.add(nextSentence.toString().trim());
        }
        String context = StringUtils.join(contextElements, " ");

        // extract the names in the current sentence and
        // keep them store them with the current context
        Span[] tokenSpans = tokenizer.tokenizePos(sentence);
        String[] tokens = Span.spansToStrings(tokenSpans, sentence);
        Span[] nameSpans = finder.find(tokens);
        double[] probs = finder.probs();
        //int lastStartPosition = 0;
        for (int j = 0; j < nameSpans.length; j++) {
            String name = sentence.substring(tokenSpans[nameSpans[j].getStart()].getStart(),
                    tokenSpans[nameSpans[j].getEnd() - 1].getEnd());
            //NOTE: With OpenNLP 1.6 the probability is now stored in the span
            double prob = nameSpans[j].getProb();
            //prob == 0.0 := unspecified
            Double confidence = prob != 0.0 ? Double.valueOf(prob) : null;
            if (confidence == null) { //fall back to the old if it is not set.
                for (int k = nameSpans[j].getStart(); k < nameSpans[j].getEnd(); k++) {
                    prob *= probs[k];
                }
                confidence = Double.valueOf(prob);
            } else if (confidence < 0.5d) {
                //It looks like as if preceptron based models do return
                //invalid probabilities. As it is expected the Named Entities
                //with a probability < 50% are not even returned by finder.find(..)
                //we will just ignore confidence values < 0.5 here
                confidence = null;
            }
            int start = tokenSpans[nameSpans[j].getStart()].getStart();
            int absoluteStart = sentenceSpans[i].getStart() + start;
            int absoluteEnd = absoluteStart + name.length();
            NerTag nerTag = config.getNerTag(nameSpans[j].getType());
            NameOccurrence occurrence = new NameOccurrence(name, absoluteStart, absoluteEnd, nerTag.getType(),
                    context, confidence);

            List<NameOccurrence> occurrences = nameOccurrences.get(name);
            if (occurrences == null) {
                occurrences = new ArrayList<NameOccurrence>();
            }
            occurrences.add(occurrence);
            nameOccurrences.put(name, occurrences);
        }
    }
    finder.clearAdaptiveData();
    log.debug("{} name occurrences found: {}", nameOccurrences.size(), nameOccurrences);
    return nameOccurrences;
}

From source file:org.dbpedia.spotlight.spot.NESpotter.java

protected List<SurfaceFormOccurrence> extractNameOccurrences(BaseModel nameFinderModel, Text text, URI oType) {
    String intext = text.text();/*from w w  w  .j a v  a  2 s .  c  o m*/
    SentenceDetectorME sentenceDetector = new SentenceDetectorME((SentenceModel) sentenceModel);
    String[] sentences = sentenceDetector.sentDetect(intext);
    Span[] sentenceEndings = sentenceDetector.sentPosDetect(intext);
    int[] sentencePositions = new int[sentences.length + 1];
    for (int k = 0; k < sentenceEndings.length; k++) {
        sentencePositions[k] = sentenceEndings[k].getStart();
    }

    NameFinderME finder = new NameFinderME((TokenNameFinderModel) nameFinderModel);

    List<SurfaceFormOccurrence> sfOccurrences = new ArrayList<SurfaceFormOccurrence>();
    Tokenizer tokenizer = new SimpleTokenizer();
    for (int i = 0; i < sentences.length; i++) {
        String sentence = sentences[i];
        //LOG.debug("Sentence: " + sentence);

        // extract the names in the current sentence
        String[] tokens = tokenizer.tokenize(sentence);
        Span[] tokenspan = tokenizer.tokenizePos(sentence);
        Span[] nameSpans = finder.find(tokens);
        double[] probs = finder.probs();

        if (nameSpans != null && nameSpans.length > 0) {
            //System.out.println("Tokens: " +(new ArrayList(Arrays.asList(tokens))).toString());
            //System.out.println("NameSpans: " +(new ArrayList(Arrays.asList(nameSpans))).toString());
            for (Span span : nameSpans) {
                StringBuilder buf = new StringBuilder();
                //System.out.println("StartSpan: " + span.getStart() + " EndSpan: " + span.getEnd());
                for (int j = span.getStart(); j < span.getEnd(); j++) {
                    //System.out.println(tokens[i] + " appended to " + buf.toString());
                    buf.append(tokens[j]);
                    if (j < span.getEnd() - 1)
                        buf.append(" ");
                }
                String surfaceFormStr = buf.toString().trim();
                if (surfaceFormStr.contains(".")) {
                    surfaceFormStr = correctPhrase(surfaceFormStr, sentence);
                }

                int entStart = sentencePositions[i] + tokenspan[span.getStart()].getStart();
                int entEnd = sentencePositions[i] + tokenspan[span.getEnd() - 1].getEnd();

                /*
                System.out.println("\n\nRR-NE Found = " + buf.toString());
                System.out.println("Start = " + entStart);
                System.out.println("End = " + entEnd);
                System.out.println("Sentence = " + sentence);
                System.out.println("Text = " + text);
                */

                SurfaceForm surfaceForm = new SurfaceForm(surfaceFormStr);
                SurfaceFormOccurrence sfocc = new SurfaceFormOccurrence(surfaceForm, text, entStart);
                sfocc.features().put("type", new Feature("type", oType.toString()));
                sfOccurrences.add(sfocc);
            }
        }

    }
    finder.clearAdaptiveData();

    if (LOG.isDebugEnabled()) {
        LOG.debug("Occurrences found: " + StringUtils.join(sfOccurrences, ", "));
    }
    return sfOccurrences;
}

From source file:org.dbpedia.spotlight.spot.OpenNLPNGramSpotter.java

/**Extracts noun-phrase n-grams from the given piece of input text. 
 * @param text  A Text object containing the input from where to extract NP n-grams
 * @return A list of SurfaceFormOccurrence objects.
 *///from  w w  w.  j  a  v  a 2 s. co  m
protected List<SurfaceFormOccurrence> extractNPNGrams(Text text) {
    String intext = text.text();
    //System.out.println("\n\nRR- nextractNPNGrams(...) method called! with text: " + intext + "\n\n");
    List<SurfaceFormOccurrence> npNgramSFLst = new ArrayList<SurfaceFormOccurrence>();
    SentenceDetectorME sentenceDetector = new SentenceDetectorME((SentenceModel) sentenceModel);
    TokenizerME tokenizer = new TokenizerME((TokenizerModel) tokenModel);
    POSTaggerME posTagger = new POSTaggerME((POSModel) posModel);
    ChunkerME chunker = new ChunkerME((ChunkerModel) chunkModel);

    Span[] sentSpans = sentenceDetector.sentPosDetect(intext);
    for (Span sentSpan : sentSpans) {
        String sentence = sentSpan.getCoveredText(intext).toString();
        int start = sentSpan.getStart();
        Span[] tokSpans = tokenizer.tokenizePos(sentence);
        String[] tokens = new String[tokSpans.length];
        // System.out.println("\n\nTokens:");
        for (int i = 0; i < tokens.length; i++) {
            tokens[i] = tokSpans[i].getCoveredText(sentence).toString();
            // System.out.println(tokens[i]);
        }
        String[] tags = posTagger.tag(tokens);
        Span[] chunks = chunker.chunkAsSpans(tokens, tags);
        for (Span chunk : chunks) {
            if ("NP".equals(chunk.getType())) {
                //Note: getStart()/getEnd() methods of Chunk spans only give the start and end token indexes of the chunk.
                //The actual Start/End positions of the chunk in the sentence need to be extracted from POS sentenceSpans.
                //They are offsets from the begining of the sentence in question. Need to add the start postion of the sentence
                //to compute the actual start/end offsets from the begining of the input text.
                int begin = tokSpans[chunk.getStart()].getStart();
                int end = tokSpans[chunk.getEnd() - 1].getEnd();
                List<Map<String, Integer>> ngrampos = extractNGramPos(chunk.getStart(), chunk.getEnd() + -1);
                extractNGrams(ngrampos, start, text, tokSpans, npNgramSFLst);
            }
        }
    }
    return npNgramSFLst;
}