Example usage for java.util TreeSet equals

List of usage examples for java.util TreeSet equals

Introduction

In this page you can find the example usage for java.util TreeSet equals.

Prototype

boolean equals(Object o);

Source Link

Document

Compares the specified object with this set for equality.

Usage

From source file:de.tudarmstadt.ukp.dkpro.tc.core.task.uima.ExtractFeaturesConnector.java

@Override
public void collectionProcessComplete() throws AnalysisEngineProcessException {
    super.collectionProcessComplete();

    // apply filters that influence the whole feature store
    // filters are applied in the order that they appear as parameters
    for (String filterString : featureFilters) {
        FeatureStoreFilter filter;//from w  w w  . j a  va 2s.c  o  m
        try {
            filter = (FeatureStoreFilter) Class.forName(filterString).newInstance();
        } catch (InstantiationException | IllegalAccessException | ClassNotFoundException e) {
            throw new AnalysisEngineProcessException(e);
        }

        if (filter.isApplicableForTraining() && !isTesting || filter.isApplicableForTesting() && isTesting) {
            filter.applyFilter(featureStore);
        }
    }

    // write feature names file if in training mode
    if (!isTesting) {
        try {
            FileUtils.writeLines(new File(outputDirectory, Constants.FILENAME_FEATURES),
                    featureStore.getFeatureNames());
        } catch (IOException e) {
            throw new AnalysisEngineProcessException(e);
        }
    }
    // apply the feature names filter
    else {
        File featureNamesFile = new File(outputDirectory, Constants.FILENAME_FEATURES);
        TreeSet<String> trainFeatureNames;
        try {
            trainFeatureNames = new TreeSet<>(FileUtils.readLines(featureNamesFile));
        } catch (IOException e) {
            throw new AnalysisEngineProcessException(e);
        }

        AdaptTestToTrainingFeaturesFilter filter = new AdaptTestToTrainingFeaturesFilter();
        // if feature space from training set and test set differs, apply the filter
        // to keep only features seen during training
        if (!trainFeatureNames.equals(featureStore.getFeatureNames())) {
            filter.setFeatureNames(trainFeatureNames);
            filter.applyFilter(featureStore);
        }
    }

    // FIXME if the feature store now determines whether to use dense or sparse instances, 
    // we might get rid of the corresponding parameter here
    // addInstanceId requires dense instances
    try {
        DataWriter writer = (DataWriter) Class.forName(dataWriterClass).newInstance();
        writer.write(outputDirectory, featureStore, true, learningMode, applyWeighting);
    } catch (Exception e) {
        throw new AnalysisEngineProcessException(e);
    }
}

From source file:org.dkpro.tc.core.task.uima.ExtractFeaturesConnector.java

private void applyFeatureNameFilter() throws AnalysisEngineProcessException {
    File featureNamesFile = new File(outputDirectory, Constants.FILENAME_FEATURES);
    TreeSet<String> trainFeatureNames;
    try {/*  w w  w  . java2 s .  co  m*/
        trainFeatureNames = new TreeSet<>(FileUtils.readLines(featureNamesFile));
    } catch (IOException e) {
        throw new AnalysisEngineProcessException(e);
    }

    AdaptTestToTrainingFeaturesFilter filter = new AdaptTestToTrainingFeaturesFilter();
    // if feature space from training set and test set differs, apply the filter
    // to keep only features seen during training
    if (!trainFeatureNames.equals(featureStore.getFeatureNames())) {
        filter.setFeatureNames(trainFeatureNames);
        filter.applyFilter(featureStore);
    }
}