List of usage examples for java.util ListIterator add
void add(E e);
From source file:com.apptentive.android.sdk.module.engagement.interaction.fragment.MessageCenterFragment.java
private void prepareMessages(final List<MessageCenterListItem> originalItems) { listItems.clear();/*from www. j a v a2 s . c o m*/ unsentMessagesCount = 0; // Loop through each message item retrieved from database for (MessageCenterListItem item : originalItems) { if (item instanceof ApptentiveMessage) { ApptentiveMessage apptentiveMessage = (ApptentiveMessage) item; Double createdAt = apptentiveMessage.getCreatedAt(); if (apptentiveMessage.isOutgoingMessage() && createdAt == null) { unsentMessagesCount++; } /* * Find proper location to insert into the listItems list of the listview. */ ListIterator<MessageCenterListItem> listIterator = listItems.listIterator(); ApptentiveMessage next = null; while (listIterator.hasNext()) { next = (ApptentiveMessage) listIterator.next(); Double nextCreatedAt = next.getCreatedAt(); // For unsent and dropped message, move the iterator to the end, and append there if (createdAt == null || createdAt <= Double.MIN_VALUE) { continue; } // next message has not received by server or received, but has a later created_at time if (nextCreatedAt == null || nextCreatedAt > createdAt) { break; } } if (next == null || next.getCreatedAt() == null || createdAt == null || next.getCreatedAt() <= createdAt || createdAt <= Double.MIN_VALUE) { listIterator.add(item); } else { // Add in front of the message that has later created_at time listIterator.set(item); listIterator.add(next); } } } messagingActionHandler.sendEmptyMessage(MSG_ADD_GREETING); }
From source file:org.trnltk.experiment.morphology.ambiguity.DataDiffUtil.java
/** * Reduce the number of edits by eliminating semantically trivial equalities. * * @param diffs LinkedList of Diff objects. *//*from ww w . j ava 2 s. com*/ public void diff_cleanupSemantic(LinkedList<Diff<T>> diffs) { if (diffs.isEmpty()) { return; } boolean changes = false; Stack<Diff<T>> equalities = new Stack<Diff<T>>(); // Stack of qualities. List<T> lastequality = null; // Always equal to equalities.lastElement().text ListIterator<Diff<T>> pointer = diffs.listIterator(); // Number of characters that changed prior to the equality. int length_insertions1 = 0; int length_deletions1 = 0; // Number of characters that changed after the equality. int length_insertions2 = 0; int length_deletions2 = 0; Diff<T> thisDiff = pointer.next(); while (thisDiff != null) { if (thisDiff.operation == Operation.EQUAL) { // Equality found. equalities.push(thisDiff); length_insertions1 = length_insertions2; length_deletions1 = length_deletions2; length_insertions2 = 0; length_deletions2 = 0; lastequality = thisDiff.text; } else { // An insertion or deletion. if (thisDiff.operation == Operation.INSERT) { length_insertions2 += thisDiff.text.size(); } else { length_deletions2 += thisDiff.text.size(); } // Eliminate an equality that is smaller or equal to the edits on both // sides of it. if (lastequality != null && (lastequality.size() <= Math.max(length_insertions1, length_deletions1)) && (lastequality.size() <= Math.max(length_insertions2, length_deletions2))) { //System.out.println("Splitting: '" + lastequality + "'"); // Walk back to offending equality. while (thisDiff != equalities.lastElement()) { thisDiff = pointer.previous(); } pointer.next(); // Replace equality with a delete. pointer.set(new Diff(Operation.DELETE, lastequality)); // Insert a corresponding an insert. pointer.add(new Diff(Operation.INSERT, lastequality)); equalities.pop(); // Throw away the equality we just deleted. if (!equalities.empty()) { // Throw away the previous equality (it needs to be reevaluated). equalities.pop(); } if (equalities.empty()) { // There are no previous equalities, walk back to the start. while (pointer.hasPrevious()) { pointer.previous(); } } else { // There is a safe equality we can fall back to. thisDiff = equalities.lastElement(); while (thisDiff != pointer.previous()) { // Intentionally empty loop. } } length_insertions1 = 0; // Reset the counters. length_insertions2 = 0; length_deletions1 = 0; length_deletions2 = 0; lastequality = null; changes = true; } } thisDiff = pointer.hasNext() ? pointer.next() : null; } // Normalize the diff. if (changes) { diff_cleanupMerge(diffs); } diff_cleanupSemanticLossless(diffs); // Find any overlaps between deletions and insertions. // e.g: <del>abcxxx</del><ins>xxxdef</ins> // -> <del>abc</del>xxx<ins>def</ins> // e.g: <del>xxxabc</del><ins>defxxx</ins> // -> <ins>def</ins>xxx<del>abc</del> // Only extract an overlap if it is as big as the edit ahead or behind it. pointer = diffs.listIterator(); Diff<T> prevDiff = null; thisDiff = null; if (pointer.hasNext()) { prevDiff = pointer.next(); if (pointer.hasNext()) { thisDiff = pointer.next(); } } while (thisDiff != null) { if (prevDiff.operation == Operation.DELETE && thisDiff.operation == Operation.INSERT) { List<T> deletion = prevDiff.text; List<T> insertion = thisDiff.text; int overlap_length1 = this.diff_commonOverlap(deletion, insertion); int overlap_length2 = this.diff_commonOverlap(insertion, deletion); if (overlap_length1 >= overlap_length2) { if (overlap_length1 >= deletion.size() / 2.0 || overlap_length1 >= insertion.size() / 2.0) { // Overlap found. Insert an equality and trim the surrounding edits. pointer.previous(); pointer.add(new Diff<T>(Operation.EQUAL, insertion.subList(0, overlap_length1))); prevDiff.text = deletion.subList(0, deletion.size() - overlap_length1); thisDiff.text = insertion.subList(overlap_length1, insertion.size()); // pointer.add inserts the element before the cursor, so there is // no need to step past the new element. } } else { if (overlap_length2 >= deletion.size() / 2.0 || overlap_length2 >= insertion.size() / 2.0) { // Reverse overlap found. // Insert an equality and swap and trim the surrounding edits. pointer.previous(); pointer.add(new Diff<T>(Operation.EQUAL, deletion.subList(0, overlap_length2))); prevDiff.operation = Operation.INSERT; prevDiff.text = insertion.subList(0, insertion.size() - overlap_length2); thisDiff.operation = Operation.DELETE; thisDiff.text = deletion.subList(overlap_length2, deletion.size()); // pointer.add inserts the element before the cursor, so there is // no need to step past the new element. } } thisDiff = pointer.hasNext() ? pointer.next() : null; } prevDiff = thisDiff; thisDiff = pointer.hasNext() ? pointer.next() : null; } }
From source file:org.kuali.kfs.module.bc.document.service.impl.BudgetDocumentServiceImpl.java
/** * Reloads benefits target accounting lines. Usually called right after an annual benefits calculation and the display needs * updated with a fresh copy from the database. All old row versions are removed and database row versions are inserted in the * list in the correct order./*from w ww . ja v a2 s.com*/ * * @param bcDoc */ @Transactional protected void reloadBenefitsLines(BudgetConstructionDocument bcDoc) { // get list of potential fringe objects to use as an in query param Map<String, Object> fieldValues = new HashMap<String, Object>(); fieldValues.put(KFSPropertyConstants.UNIVERSITY_FISCAL_YEAR, bcDoc.getUniversityFiscalYear()); fieldValues.put(KFSPropertyConstants.CHART_OF_ACCOUNTS_CODE, bcDoc.getChartOfAccountsCode()); List<LaborLedgerBenefitsCalculation> benefitsCalculation = kualiModuleService .getResponsibleModuleService(LaborLedgerBenefitsCalculation.class) .getExternalizableBusinessObjectsList(LaborLedgerBenefitsCalculation.class, fieldValues); List<String> fringeObjects = new ArrayList<String>(); for (LaborLedgerBenefitsCalculation element : benefitsCalculation) { fringeObjects.add(element.getPositionFringeBenefitObjectCode()); } List<PendingBudgetConstructionGeneralLedger> dbPBGLFringeLines = budgetConstructionDao .getDocumentPBGLFringeLines(bcDoc.getDocumentNumber(), fringeObjects); List<PendingBudgetConstructionGeneralLedger> docPBGLExpLines = bcDoc .getPendingBudgetConstructionGeneralLedgerExpenditureLines(); // holds the request sums of removed, added records and used to adjust the document expenditure request total KualiInteger docRequestTotals = KualiInteger.ZERO; KualiInteger dbRequestTotals = KualiInteger.ZERO; // remove the current set of fringe lines ListIterator docLines = docPBGLExpLines.listIterator(); while (docLines.hasNext()) { PendingBudgetConstructionGeneralLedger docLine = (PendingBudgetConstructionGeneralLedger) docLines .next(); if (fringeObjects.contains(docLine.getFinancialObjectCode())) { docRequestTotals = docRequestTotals.add(docLine.getAccountLineAnnualBalanceAmount()); docLines.remove(); } } // add the dbset of fringe lines, if any if (dbPBGLFringeLines != null && !dbPBGLFringeLines.isEmpty()) { if (docPBGLExpLines == null || docPBGLExpLines.isEmpty()) { docPBGLExpLines.addAll(dbPBGLFringeLines); } else { ListIterator dbLines = dbPBGLFringeLines.listIterator(); docLines = docPBGLExpLines.listIterator(); PendingBudgetConstructionGeneralLedger dbLine = (PendingBudgetConstructionGeneralLedger) dbLines .next(); PendingBudgetConstructionGeneralLedger docLine = (PendingBudgetConstructionGeneralLedger) docLines .next(); boolean dbDone = false; boolean docDone = false; while (!dbDone) { if (docDone || docLine.getFinancialObjectCode() .compareToIgnoreCase(dbLine.getFinancialObjectCode()) > 0) { if (!docDone) { docLine = (PendingBudgetConstructionGeneralLedger) docLines.previous(); } dbRequestTotals = dbRequestTotals.add(dbLine.getAccountLineAnnualBalanceAmount()); dbLine.setPersistedAccountLineAnnualBalanceAmount( dbLine.getAccountLineAnnualBalanceAmount()); this.populatePBGLLine(dbLine); docLines.add(dbLine); if (!docDone) { docLine = (PendingBudgetConstructionGeneralLedger) docLines.next(); } if (dbLines.hasNext()) { dbLine = (PendingBudgetConstructionGeneralLedger) dbLines.next(); } else { dbDone = true; } } else { if (docLines.hasNext()) { docLine = (PendingBudgetConstructionGeneralLedger) docLines.next(); } else { docDone = true; } } } } } // adjust the request total for the removed and added recs bcDoc.setExpenditureAccountLineAnnualBalanceAmountTotal( bcDoc.getExpenditureAccountLineAnnualBalanceAmountTotal() .add(dbRequestTotals.subtract(docRequestTotals))); }
From source file:org.trnltk.experiment.morphology.ambiguity.DataDiffUtil.java
/** * Reorder and merge like edit sections. Merge equalities. * Any edit section can move as long as it doesn't cross an equality. * * @param diffs LinkedList of Diff objects. *///from w w w . ja va2 s. c om public void diff_cleanupMerge(LinkedList<Diff<T>> diffs) { diffs.add(new Diff<T>(Operation.EQUAL, new ArrayList<T>())); // Add a dummy entry at the end. ListIterator<Diff<T>> pointer = diffs.listIterator(); int count_delete = 0; int count_insert = 0; List<T> text_delete = new ArrayList<T>(); List<T> text_insert = new ArrayList<T>(); Diff thisDiff = pointer.next(); Diff prevEqual = null; int commonlength; while (thisDiff != null) { switch (thisDiff.operation) { case INSERT: count_insert++; text_insert = ListUtils.union(text_insert, thisDiff.text); prevEqual = null; break; case DELETE: count_delete++; text_delete = ListUtils.union(text_delete, thisDiff.text); prevEqual = null; break; case EQUAL: if (count_delete + count_insert > 1) { boolean both_types = count_delete != 0 && count_insert != 0; // Delete the offending records. pointer.previous(); // Reverse direction. while (count_delete-- > 0) { pointer.previous(); pointer.remove(); } while (count_insert-- > 0) { pointer.previous(); pointer.remove(); } if (both_types) { // Factor out any common prefixies. commonlength = diff_commonPrefix(text_insert, text_delete); if (commonlength != 0) { if (pointer.hasPrevious()) { thisDiff = pointer.previous(); assert thisDiff.operation == Operation.EQUAL : "Previous diff should have been an equality."; thisDiff.text = ListUtils.union(thisDiff.text, text_insert.subList(0, commonlength)); pointer.next(); } else { pointer.add(new Diff(Operation.EQUAL, text_insert.subList(0, commonlength))); } text_insert = text_insert.subList(commonlength, text_insert.size()); text_delete = text_delete.subList(commonlength, text_delete.size()); } // Factor out any common suffixies. commonlength = diff_commonSuffix(text_insert, text_delete); if (commonlength != 0) { thisDiff = pointer.next(); thisDiff.text = ListUtils.union( text_insert.subList(text_insert.size() - commonlength, text_insert.size()), thisDiff.text); text_insert = text_insert.subList(0, text_insert.size() - commonlength); text_delete = text_delete.subList(0, text_delete.size() - commonlength); pointer.previous(); } } // Insert the merged records. if (text_delete.size() != 0) { pointer.add(new Diff(Operation.DELETE, text_delete)); } if (text_insert.size() != 0) { pointer.add(new Diff(Operation.INSERT, text_insert)); } // Step forward to the equality. thisDiff = pointer.hasNext() ? pointer.next() : null; } else if (prevEqual != null) { // Merge this equality with the previous one. prevEqual.text = ListUtils.union(prevEqual.text, thisDiff.text); pointer.remove(); thisDiff = pointer.previous(); pointer.next(); // Forward direction } count_insert = 0; count_delete = 0; text_delete = new ArrayList<T>(); text_insert = new ArrayList<T>(); prevEqual = thisDiff; break; } thisDiff = pointer.hasNext() ? pointer.next() : null; } if (diffs.getLast().text.size() == 0) { diffs.removeLast(); // Remove the dummy entry at the end. } /* * Second pass: look for single edits surrounded on both sides by equalities * which can be shifted sideways to eliminate an equality. * e.g: A<ins>BA</ins>C -> <ins>AB</ins>AC */ boolean changes = false; // Create a new iterator at the start. // (As opposed to walking the current one back.) pointer = diffs.listIterator(); Diff<T> prevDiff = pointer.hasNext() ? pointer.next() : null; thisDiff = pointer.hasNext() ? pointer.next() : null; Diff nextDiff = pointer.hasNext() ? pointer.next() : null; // Intentionally ignore the first and last element (don't need checking). while (nextDiff != null) { if (prevDiff.operation == Operation.EQUAL && nextDiff.operation == Operation.EQUAL) { // This is a single edit surrounded by equalities. if (endsWith(thisDiff.text, prevDiff.text)) { // Shift the edit over the previous equality. thisDiff.text = ListUtils.union(prevDiff.text, thisDiff.text.subList(0, thisDiff.text.size() - prevDiff.text.size())); nextDiff.text = ListUtils.union(prevDiff.text, nextDiff.text); pointer.previous(); // Walk past nextDiff. pointer.previous(); // Walk past thisDiff. pointer.previous(); // Walk past prevDiff. pointer.remove(); // Delete prevDiff. pointer.next(); // Walk past thisDiff. thisDiff = pointer.next(); // Walk past nextDiff. nextDiff = pointer.hasNext() ? pointer.next() : null; changes = true; } else if (startsWith(thisDiff.text, nextDiff.text)) { // Shift the edit over the next equality. prevDiff.text = ListUtils.union(prevDiff.text, nextDiff.text); thisDiff.text = ListUtils.union( thisDiff.text.subList(nextDiff.text.size(), thisDiff.text.size()), nextDiff.text); pointer.remove(); // Delete nextDiff. nextDiff = pointer.hasNext() ? pointer.next() : null; changes = true; } } prevDiff = thisDiff; thisDiff = nextDiff; nextDiff = pointer.hasNext() ? pointer.next() : null; } // If shifts were made, the diff needs reordering and another shift sweep. if (changes) { diff_cleanupMerge(diffs); } }
From source file:com.datatorrent.stram.StreamingContainerManager.java
@SuppressWarnings("StatementWithEmptyBody") void addCheckpoint(PTOperator node, Checkpoint checkpoint) { synchronized (node.checkpoints) { if (!node.checkpoints.isEmpty()) { Checkpoint lastCheckpoint = node.checkpoints.getLast(); // skip unless checkpoint moves if (lastCheckpoint.windowId != checkpoint.windowId) { if (lastCheckpoint.windowId > checkpoint.windowId) { // list needs to have max windowId last LOG.warn("Out of sequence checkpoint {} last {} (operator {})", checkpoint, lastCheckpoint, node);/* w w w. ja v a2 s.c o m*/ ListIterator<Checkpoint> li = node.checkpoints.listIterator(); while (li.hasNext() && li.next().windowId < checkpoint.windowId) { //continue; } if (li.previous().windowId != checkpoint.windowId) { li.add(checkpoint); } } else { node.checkpoints.add(checkpoint); } } } else { node.checkpoints.add(checkpoint); } } }
From source file:org.trnltk.experiment.morphology.ambiguity.DataDiffUtil.java
/** * Reduce the number of edits by eliminating operationally trivial equalities. * * @param diffs LinkedList of Diff objects. *//*from w w w.j a v a2 s. co m*/ public void diff_cleanupEfficiency(LinkedList<Diff<T>> diffs) { if (diffs.isEmpty()) { return; } boolean changes = false; Stack<Diff> equalities = new Stack<Diff>(); // Stack of equalities. List<T> lastequality = null; // Always equal to equalities.lastElement().text ListIterator<Diff<T>> pointer = diffs.listIterator(); // Is there an insertion operation before the last equality. boolean pre_ins = false; // Is there a deletion operation before the last equality. boolean pre_del = false; // Is there an insertion operation after the last equality. boolean post_ins = false; // Is there a deletion operation after the last equality. boolean post_del = false; Diff<T> thisDiff = pointer.next(); Diff<T> safeDiff = thisDiff; // The last Diff that is known to be unsplitable. while (thisDiff != null) { if (thisDiff.operation == Operation.EQUAL) { // Equality found. if (thisDiff.text.size() < Diff_EditCost && (post_ins || post_del)) { // Candidate found. equalities.push(thisDiff); pre_ins = post_ins; pre_del = post_del; lastequality = thisDiff.text; } else { // Not a candidate, and can never become one. equalities.clear(); lastequality = null; safeDiff = thisDiff; } post_ins = post_del = false; } else { // An insertion or deletion. if (thisDiff.operation == Operation.DELETE) { post_del = true; } else { post_ins = true; } /* * Five types to be split: * <ins>A</ins><del>B</del>XY<ins>C</ins><del>D</del> * <ins>A</ins>X<ins>C</ins><del>D</del> * <ins>A</ins><del>B</del>X<ins>C</ins> * <ins>A</del>X<ins>C</ins><del>D</del> * <ins>A</ins><del>B</del>X<del>C</del> */ if (lastequality != null && ((pre_ins && pre_del && post_ins && post_del) || ((lastequality.size() < Diff_EditCost / 2) && ((pre_ins ? 1 : 0) + (pre_del ? 1 : 0) + (post_ins ? 1 : 0) + (post_del ? 1 : 0)) == 3))) { //System.out.println("Splitting: '" + lastequality + "'"); // Walk back to offending equality. while (thisDiff != equalities.lastElement()) { thisDiff = pointer.previous(); } pointer.next(); // Replace equality with a delete. pointer.set(new Diff(Operation.DELETE, lastequality)); // Insert a corresponding an insert. pointer.add(thisDiff = new Diff(Operation.INSERT, lastequality)); equalities.pop(); // Throw away the equality we just deleted. lastequality = null; if (pre_ins && pre_del) { // No changes made which could affect previous entry, keep going. post_ins = post_del = true; equalities.clear(); safeDiff = thisDiff; } else { if (!equalities.empty()) { // Throw away the previous equality (it needs to be reevaluated). equalities.pop(); } if (equalities.empty()) { // There are no previous questionable equalities, // walk back to the last known safe diff. thisDiff = safeDiff; } else { // There is an equality we can fall back to. thisDiff = equalities.lastElement(); } while (thisDiff != pointer.previous()) { // Intentionally empty loop. } post_ins = post_del = false; } changes = true; } } thisDiff = pointer.hasNext() ? pointer.next() : null; } if (changes) { diff_cleanupMerge(diffs); } }
From source file:hudson.plugins.project_inheritance.projects.InheritanceProject.java
/** * Wrapper for {@link #getAllParentReferences(SELECTOR)}, but will add * a reference to this project too, if needed. * //w w w . j av a 2 s.c om * @param sortKey the key specifying the order in which projects are returned. * @param addSelf if true, add a self-reference in the correct spot * @return a list of all parent references, including a self-reference if * addSelf is true. */ public List<AbstractProjectReference> getAllParentReferences(ProjectReference.PrioComparator.SELECTOR sortKey, boolean addSelf) { List<AbstractProjectReference> lst = this.getAllParentReferences(sortKey); if (addSelf) { boolean hasAddedSelf = false; ListIterator<AbstractProjectReference> iter = lst.listIterator(); while (iter.hasNext()) { AbstractProjectReference ref = iter.next(); int prio; if (ref instanceof ProjectReference) { prio = PrioComparator.getPriorityFor(ref, sortKey); } else { //An anonymous ref is always at priority 0 prio = 0; } if (!hasAddedSelf && prio > 0) { hasAddedSelf = true; iter.add(new SimpleProjectReference(this.getFullName())); } } //Check if we were able to add a self-reference at all if (!hasAddedSelf) { lst.add(new SimpleProjectReference(this.getFullName())); } } return lst; }
From source file:marytts.modules.phonemiser.AllophoneSet.java
/** * Syllabify a string of allophones. If stress markers are provided, they are preserved; otherwise, primary stress will be * assigned to the initial syllable./* ww w .j av a 2 s . c o m*/ * <p> * The syllabification algorithm itself follows the <i>Core Syllabification Principle (CSP)</i> from <blockquote>G.N. Clements * (1990) "The role of the sonority cycle in core syllabification." In: J. Kingston & M.E. Beckman (Eds.), * <em>Papers in Laboratory Phonology I: Between the Grammar and Physics of Speech</em>, Ch. 17, pp. 283-333, Cambridge * University Press.</blockquote> * * @param phoneString * phoneString * @return a syllabified string; individual allophones are separated by spaces, and syllables, by dashes. * @throws IllegalArgumentException * if the <b>phoneString</b> is empty or contains a symbol that satisfies none of the following conditions: * <ol> * <li>the symbol corresponds to an Allophone, or</li> <li>the symbol is a stress symbol (cf. {@link Stress}), or * </li> <li>the symbol is a syllable boundary (<code>-</code>)</li> * </ol> * */ public String syllabify(String phoneString) throws IllegalArgumentException { // Before we process, a sanity check: if (phoneString.trim().isEmpty()) { throw new IllegalArgumentException("Cannot syllabify empty phone string"); } // First, split phoneString into a List of allophone Strings... List<String> allophoneStrings = splitIntoAllophoneList(phoneString, true); // ...and create from it a List of generic Objects List<Object> phonesAndSyllables = new ArrayList<Object>(allophoneStrings); // Create an iterator ListIterator<Object> iterator = phonesAndSyllables.listIterator(); // First iteration (left-to-right): // CSP (a): Associate each [+syllabic] segment to a syllable node. Syllable currentSyllable = null; while (iterator.hasNext()) { String phone = (String) iterator.next(); try { // either it's an Allophone Allophone allophone = getAllophone(phone); if (allophone.isSyllabic()) { // if /6/ immediately follows a non-diphthong vowel, it should be appended instead of forming its own syllable boolean appendR = false; if (allophone.getFeature("ctype").equals("r")) { // it's an /6/ if (iterator.previousIndex() > 1) { Object previousPhoneOrSyllable = phonesAndSyllables.get(iterator.previousIndex() - 1); if (previousPhoneOrSyllable == currentSyllable) { // the /6/ immediately follows the current syllable if (!currentSyllable.getLastAllophone().isDiphthong()) { // the vowel immediately preceding the /6/ is not a diphthong appendR = true; } } } } if (appendR) { iterator.remove(); currentSyllable.appendAllophone(allophone); } else { currentSyllable = new Syllable(allophone); iterator.set(currentSyllable); } } } catch (IllegalArgumentException e) { // or a stress or boundary marker if (!getIgnoreChars().contains(phone)) { throw e; } } } // Second iteration (right-to-left): // CSP (b): Given P (an unsyllabified segment) preceding Q (a syllabified segment), adjoin P to the syllable containing Q // iff P has lower sonority rank than Q (iterative). currentSyllable = null; boolean foundPrimaryStress = false; iterator = phonesAndSyllables.listIterator(phonesAndSyllables.size()); while (iterator.hasPrevious()) { Object phoneOrSyllable = iterator.previous(); if (phoneOrSyllable instanceof Syllable) { currentSyllable = (Syllable) phoneOrSyllable; } else if (currentSyllable == null) { // haven't seen a Syllable yet in this iteration continue; } else { String phone = (String) phoneOrSyllable; try { // it's an Allophone -- prepend to the Syllable Allophone allophone = getAllophone(phone); if (allophone.sonority() < currentSyllable.getFirstAllophone().sonority()) { iterator.remove(); currentSyllable.prependAllophone(allophone); } } catch (IllegalArgumentException e) { // it's a provided stress marker -- assign it to the Syllable switch (phone) { case Stress.PRIMARY: iterator.remove(); currentSyllable.setStress(Stress.PRIMARY); foundPrimaryStress = true; break; case Stress.SECONDARY: iterator.remove(); currentSyllable.setStress(Stress.SECONDARY); break; case "-": iterator.remove(); // TODO handle syllable boundaries break; default: throw e; } } } } // Third iteration (left-to-right): // CSP (c): Given Q (a syllabified segment) followed by R (an unsyllabified segment), adjoin R to the syllable containing // Q iff has a lower sonority rank than Q (iterative). Syllable initialSyllable = currentSyllable; currentSyllable = null; iterator = phonesAndSyllables.listIterator(); while (iterator.hasNext()) { Object phoneOrSyllable = iterator.next(); if (phoneOrSyllable instanceof Syllable) { currentSyllable = (Syllable) phoneOrSyllable; } else { String phone = (String) phoneOrSyllable; try { // it's an Allophone -- append to the Syllable Allophone allophone; try { allophone = getAllophone(phone); } catch (IllegalArgumentException e) { // or a stress or boundary marker -- remove if (getIgnoreChars().contains(phone)) { iterator.remove(); continue; } else { throw e; } } if (currentSyllable == null) { // haven't seen a Syllable yet in this iteration iterator.remove(); if (initialSyllable == null) { // haven't seen any syllable at all initialSyllable = new Syllable(allophone); iterator.add(initialSyllable); } else { initialSyllable.prependAllophone(allophone); } } else { // append it to the last seen Syllable iterator.remove(); currentSyllable.appendAllophone(allophone); } } catch (IllegalArgumentException e) { throw e; } } } // if primary stress was not provided, assign it to initial syllable if (!foundPrimaryStress) { initialSyllable.setStress(Stress.PRIMARY); } // join Syllables with dashes and return the String return StringUtils.join(phonesAndSyllables, " - "); }
From source file:pku.sei.checkedcoverage.tracer.instrumentation.TracingMethodInstrumenter.java
@SuppressWarnings("unchecked") public void transform(final ListIterator<MethodNode> methodIt) { // do not modify abstract or native methods if ((this.methodNode.access & ACC_ABSTRACT) != 0 || (this.methodNode.access & ACC_NATIVE) != 0) return;/*from ww w .ja v a2 s . c o m*/ // check out what labels are jump targets (only these have to be traced) analyze(this.methodNode); this.instructionIterator = new FixedInstructionIterator(this.methodNode.instructions); // in the old method, initialize the new local variable for the threadtracer this.instructionIterator.add(new MethodInsnNode(INVOKESTATIC, Type.getInternalName(Tracer.class), "getInstance", "()L" + Type.getInternalName(Tracer.class) + ";")); this.instructionIterator.add(new MethodInsnNode(INVOKEVIRTUAL, Type.getInternalName(Tracer.class), "getThreadTracer", "()L" + Type.getInternalName(ThreadTracer.class) + ";")); this.instructionIterator.add(new InsnNode(DUP)); this.instructionIterator.add(new VarInsnNode(ASTORE, this.tracerLocalVarIndex)); this.instructionIterator.add( new MethodInsnNode(INVOKEINTERFACE, Type.getInternalName(ThreadTracer.class), "isPaused", "()Z")); final LabelNode noTracingLabel = new LabelNode(); this.instructionIterator.add(new JumpInsnNode(IFNE, noTracingLabel)); // create a copy of the (uninstrumented) instructions (later, while iterating through the instructions) final InsnList oldInstructions = new InsnList(); final Map<LabelNode, LabelNode> labelCopies = LazyMap.decorate(new HashMap<LabelNode, LabelNode>(), new Factory() { @Override public Object create() { return new LabelNode(); } }); // copy the try-catch-blocks final Object[] oldTryCatchblockNodes = this.methodNode.tryCatchBlocks.toArray(); for (final Object o : oldTryCatchblockNodes) { final TryCatchBlockNode tcb = (TryCatchBlockNode) o; final TryCatchBlockNode newTcb = new TryCatchBlockNode(labelCopies.get(tcb.start), labelCopies.get(tcb.end), labelCopies.get(tcb.handler), tcb.type); this.methodNode.tryCatchBlocks.add(newTcb); } // increment number of local variables by one (for the threadtracer) ++this.methodNode.maxLocals; // and increment all local variable indexes after the new one by one for (final Object o : this.methodNode.localVariables) { final LocalVariableNode localVar = (LocalVariableNode) o; if (localVar.index >= this.tracerLocalVarIndex) ++localVar.index; } // store information about local variables in the ReadMethod object List<LocalVariable> localVariables = new ArrayList<LocalVariable>(); for (final Object o : this.methodNode.localVariables) { final LocalVariableNode localVar = (LocalVariableNode) o; while (localVariables.size() <= localVar.index) localVariables.add(null); localVariables.set(localVar.index, new LocalVariable(localVar.index, localVar.name, localVar.desc)); } this.readMethod.setLocalVariables(localVariables.toArray(new LocalVariable[localVariables.size()])); localVariables = null; // each method must start with a (dedicated) label: assert this.readMethod.getInstructions().isEmpty(); traceLabel(null, InstructionType.METHODENTRY); assert this.readMethod.getInstructions().size() == 1 && this.readMethod.getInstructions().get(0) instanceof LabelMarker && ((LabelMarker) this.readMethod.getInstructions().get(0)).isAdditionalLabel(); this.readMethod.setMethodEntryLabel((LabelMarker) this.readMethod.getInstructions().get(0)); // needed later: final LabelNode l0 = new LabelNode(); this.instructionIterator.add(l0); // then, visit the instructions that were in the method before while (this.instructionIterator.hasNext()) { final AbstractInsnNode insnNode = this.instructionIterator.next(); switch (insnNode.getType()) { case AbstractInsnNode.INSN: transformInsn((InsnNode) insnNode); break; case AbstractInsnNode.INT_INSN: transformIntInsn((IntInsnNode) insnNode); break; case AbstractInsnNode.VAR_INSN: transformVarInsn((VarInsnNode) insnNode); break; case AbstractInsnNode.TYPE_INSN: transformTypeInsn((TypeInsnNode) insnNode); break; case AbstractInsnNode.FIELD_INSN: transformFieldInsn((FieldInsnNode) insnNode); break; case AbstractInsnNode.METHOD_INSN: transformMethodInsn((MethodInsnNode) insnNode); break; case AbstractInsnNode.JUMP_INSN: transformJumpInsn((JumpInsnNode) insnNode); break; case AbstractInsnNode.LABEL: transformLabel((LabelNode) insnNode); break; case AbstractInsnNode.LDC_INSN: transformLdcInsn((LdcInsnNode) insnNode); break; case AbstractInsnNode.IINC_INSN: transformIincInsn((IincInsnNode) insnNode); break; case AbstractInsnNode.TABLESWITCH_INSN: transformTableSwitchInsn((TableSwitchInsnNode) insnNode); break; case AbstractInsnNode.LOOKUPSWITCH_INSN: transformLookupSwitchInsn((LookupSwitchInsnNode) insnNode); break; case AbstractInsnNode.MULTIANEWARRAY_INSN: transformMultiANewArrayInsn((MultiANewArrayInsnNode) insnNode); break; case AbstractInsnNode.FRAME: // ignore break; case AbstractInsnNode.LINE: // ignore break; default: throw new RuntimeException("Unknown instruction type " + insnNode.getType() + " (" + insnNode.getClass().getSimpleName() + ")"); } oldInstructions.add(insnNode.clone(labelCopies)); } assert this.outstandingInitializations == 0; // add the (old) try-catch blocks to the readMethods // (can only be done down here since we use the information in the // labels map) for (final Object o : oldTryCatchblockNodes) { final TryCatchBlockNode tcb = (TryCatchBlockNode) o; this.readMethod.addTryCatchBlock(new TryCatchBlock(this.labels.get(tcb.start), this.labels.get(tcb.end), this.labels.get(tcb.handler), tcb.type)); } final LabelNode l1 = new LabelNode(); this.instructionIterator.add(l1); final int newPos = this.readMethod.getInstructions().size(); traceLabel(null, InstructionType.METHODEXIT); assert this.readMethod.getInstructions().size() == newPos + 1; final AbstractInstruction abnormalTerminationLabel = this.readMethod.getInstructions().get(newPos); assert abnormalTerminationLabel instanceof LabelMarker; this.readMethod.setAbnormalTerminationLabel((LabelMarker) abnormalTerminationLabel); this.methodNode.instructions.add(new InsnNode(ATHROW)); // add a try catch block around the method so that we can trace when this method is left // a thrown exception this.methodNode.tryCatchBlocks.add(new TryCatchBlockNode(l0, l1, l1, null)); // now add the code that is executed if no tracing should be performed this.methodNode.instructions.add(noTracingLabel); if (this.firstLine != -1) this.methodNode.instructions.add(new LineNumberNode(this.firstLine, noTracingLabel)); this.methodNode.instructions.add(new InsnNode(ACONST_NULL)); this.methodNode.instructions.add(new VarInsnNode(ASTORE, this.tracerLocalVarIndex)); this.methodNode.instructions.add(oldInstructions); // finally: create a copy of the method that gets the ThreadTracer as argument // this is only necessary for private methods or "<init>" if (this.tracer.wasRedefined(this.readMethod.getReadClass().getName()) && (this.methodNode.access & ACC_PRIVATE) != 0) { final Type[] oldMethodArguments = Type.getArgumentTypes(this.methodNode.desc); final Type[] newMethodArguments = Arrays.copyOf(oldMethodArguments, oldMethodArguments.length + 1); newMethodArguments[oldMethodArguments.length] = Type.getType(ThreadTracer.class); final String newMethodDesc = Type.getMethodDescriptor(Type.getReturnType(this.methodNode.desc), newMethodArguments); final MethodNode newMethod = new MethodNode(this.methodNode.access, this.methodNode.name, newMethodDesc, this.methodNode.signature, (String[]) this.methodNode.exceptions.toArray(new String[this.methodNode.exceptions.size()])); methodIt.add(newMethod); int threadTracerParamPos = ((this.readMethod.getAccess() & Opcodes.ACC_STATIC) == 0 ? 1 : 0); for (final Type t : oldMethodArguments) threadTracerParamPos += t.getSize(); final Map<LabelNode, LabelNode> newMethodLabels = LazyMap.decorate(new HashMap<LabelNode, LabelNode>(), new Factory() { @Override public Object create() { return new LabelNode(); } }); // copy the local variables information to the new method for (final Object o : this.methodNode.localVariables) { final LocalVariableNode lv = (LocalVariableNode) o; newMethod.localVariables.add(new LocalVariableNode(lv.name, lv.desc, lv.signature, newMethodLabels.get(lv.start), newMethodLabels.get(lv.end), lv.index)); } newMethod.maxLocals = this.methodNode.maxLocals; newMethod.maxStack = this.methodNode.maxStack; // copy the try-catch-blocks for (final Object o : this.methodNode.tryCatchBlocks) { final TryCatchBlockNode tcb = (TryCatchBlockNode) o; newMethod.tryCatchBlocks.add(new TryCatchBlockNode(newMethodLabels.get(tcb.start), newMethodLabels.get(tcb.end), newMethodLabels.get(tcb.handler), tcb.type)); } // skip the first 6 instructions, replace them with these: newMethod.instructions.add(new VarInsnNode(ALOAD, threadTracerParamPos)); newMethod.instructions.add(new InsnNode(DUP)); newMethod.instructions.add(new VarInsnNode(ASTORE, this.tracerLocalVarIndex)); newMethod.instructions.add(new JumpInsnNode(IFNULL, newMethodLabels.get(noTracingLabel))); final Iterator<AbstractInsnNode> oldInsnIt = this.methodNode.instructions.iterator(6); // and add all the other instructions while (oldInsnIt.hasNext()) { final AbstractInsnNode insn = oldInsnIt.next(); newMethod.instructions.add(insn.clone(newMethodLabels)); } } ready(); }
From source file:de.unisb.cs.st.javaslicer.tracer.instrumentation.TracingMethodInstrumenter.java
@SuppressWarnings("unchecked") public void transform(final ListIterator<MethodNode> methodIt) { // do not modify abstract or native methods if ((this.methodNode.access & ACC_ABSTRACT) != 0 || (this.methodNode.access & ACC_NATIVE) != 0) return;/*w ww .j a v a 2s . c om*/ // check out what labels are jump targets (only these have to be traced) analyze(this.methodNode); this.instructionIterator = new FixedInstructionIterator(this.methodNode.instructions); // in the old method, initialize the new local variable for the threadtracer this.instructionIterator.add(new MethodInsnNode(INVOKESTATIC, Type.getInternalName(Tracer.class), "getInstance", "()L" + Type.getInternalName(Tracer.class) + ";")); this.instructionIterator.add(new MethodInsnNode(INVOKEVIRTUAL, Type.getInternalName(Tracer.class), "getThreadTracer", "()L" + Type.getInternalName(ThreadTracer.class) + ";")); this.instructionIterator.add(new InsnNode(DUP)); this.instructionIterator.add(new VarInsnNode(ASTORE, this.tracerLocalVarIndex)); this.instructionIterator.add( new MethodInsnNode(INVOKEINTERFACE, Type.getInternalName(ThreadTracer.class), "isPaused", "()Z")); final LabelNode noTracingLabel = new LabelNode(); this.instructionIterator.add(new JumpInsnNode(IFNE, noTracingLabel)); // create a copy of the (uninstrumented) instructions (later, while iterating through the instructions) final InsnList oldInstructions = new InsnList(); final Map<LabelNode, LabelNode> labelCopies = LazyMap.decorate(new HashMap<LabelNode, LabelNode>(), new Factory() { @Override public Object create() { return new LabelNode(); } }); // copy the try-catch-blocks final Object[] oldTryCatchblockNodes = this.methodNode.tryCatchBlocks.toArray(); for (final Object o : oldTryCatchblockNodes) { final TryCatchBlockNode tcb = (TryCatchBlockNode) o; final TryCatchBlockNode newTcb = new TryCatchBlockNode(labelCopies.get(tcb.start), labelCopies.get(tcb.end), labelCopies.get(tcb.handler), tcb.type); this.methodNode.tryCatchBlocks.add(newTcb); } // increment number of local variables by one (for the threadtracer) ++this.methodNode.maxLocals; // and increment all local variable indexes after the new one by one for (final Object o : this.methodNode.localVariables) { final LocalVariableNode localVar = (LocalVariableNode) o; if (localVar.index >= this.tracerLocalVarIndex) ++localVar.index; } // store information about local variables in the ReadMethod object List<LocalVariable> localVariables = new ArrayList<LocalVariable>(); for (final Object o : this.methodNode.localVariables) { final LocalVariableNode localVar = (LocalVariableNode) o; while (localVariables.size() <= localVar.index) localVariables.add(null); localVariables.set(localVar.index, new LocalVariable(localVar.index, localVar.name, localVar.desc)); } this.readMethod.setLocalVariables(localVariables.toArray(new LocalVariable[localVariables.size()])); localVariables = null; // each method must start with a (dedicated) label: assert this.readMethod.getInstructions().isEmpty(); traceLabel(null, InstructionType.METHODENTRY); assert this.readMethod.getInstructions().size() == 1 && this.readMethod.getInstructions().get(0) instanceof LabelMarker && ((LabelMarker) this.readMethod.getInstructions().get(0)).isAdditionalLabel(); this.readMethod.setMethodEntryLabel((LabelMarker) this.readMethod.getInstructions().get(0)); // needed later: final LabelNode l0 = new LabelNode(); this.instructionIterator.add(l0); // then, visit the instructions that were in the method before while (this.instructionIterator.hasNext()) { final AbstractInsnNode insnNode = this.instructionIterator.next(); switch (insnNode.getType()) { case AbstractInsnNode.INSN: transformInsn((InsnNode) insnNode); break; case AbstractInsnNode.INT_INSN: transformIntInsn((IntInsnNode) insnNode); break; case AbstractInsnNode.VAR_INSN: transformVarInsn((VarInsnNode) insnNode); break; case AbstractInsnNode.TYPE_INSN: transformTypeInsn((TypeInsnNode) insnNode); break; case AbstractInsnNode.FIELD_INSN: transformFieldInsn((FieldInsnNode) insnNode); break; case AbstractInsnNode.METHOD_INSN: transformMethodInsn((MethodInsnNode) insnNode); break; case AbstractInsnNode.JUMP_INSN: transformJumpInsn((JumpInsnNode) insnNode); break; case AbstractInsnNode.LABEL: transformLabel((LabelNode) insnNode); break; case AbstractInsnNode.LDC_INSN: transformLdcInsn((LdcInsnNode) insnNode); break; case AbstractInsnNode.IINC_INSN: transformIincInsn((IincInsnNode) insnNode); break; case AbstractInsnNode.TABLESWITCH_INSN: transformTableSwitchInsn((TableSwitchInsnNode) insnNode); break; case AbstractInsnNode.LOOKUPSWITCH_INSN: transformLookupSwitchInsn((LookupSwitchInsnNode) insnNode); break; case AbstractInsnNode.MULTIANEWARRAY_INSN: transformMultiANewArrayInsn((MultiANewArrayInsnNode) insnNode); break; case AbstractInsnNode.FRAME: // ignore break; case AbstractInsnNode.LINE: // ignore break; default: throw new RuntimeException("Unknown instruction type " + insnNode.getType() + " (" + insnNode.getClass().getSimpleName() + ")"); } oldInstructions.add(insnNode.clone(labelCopies)); } assert this.outstandingInitializations == 0; // add exception handlers for array allocations, *before* any other exception handler. // the Java VM Spec (paragraph 3.10) specified that they are executed in the order in which they // appear in the bytecode if (this.newArrayErrorHandlers != null) { for (Entry<LabelNode, Integer> handler : this.newArrayErrorHandlers.entrySet()) { this.methodNode.instructions.add(handler.getKey()); this.methodNode.instructions.add(new VarInsnNode(ALOAD, this.tracerLocalVarIndex)); this.methodNode.instructions.add(new InsnNode(ACONST_NULL)); this.methodNode.instructions.add(getIntConstInsn(handler.getValue())); this.methodNode.instructions.add(new MethodInsnNode(INVOKEINTERFACE, Type.getInternalName(ThreadTracer.class), "traceObject", "(Ljava/lang/Object;I)V")); this.methodNode.instructions.add(new InsnNode(ATHROW)); } this.newArrayErrorHandlers = null; } // add the (old) try-catch blocks to the readMethods // (can only be done down here since we use the information in the // labels map) for (final Object o : oldTryCatchblockNodes) { final TryCatchBlockNode tcb = (TryCatchBlockNode) o; this.readMethod.addTryCatchBlock(new TryCatchBlock(this.labels.get(tcb.start), this.labels.get(tcb.end), this.labels.get(tcb.handler), tcb.type)); } final LabelNode l1 = new LabelNode(); this.instructionIterator.add(l1); final int newPos = this.readMethod.getInstructions().size(); traceLabel(null, InstructionType.METHODEXIT); assert this.readMethod.getInstructions().size() == newPos + 1; final AbstractInstruction abnormalTerminationLabel = this.readMethod.getInstructions().get(newPos); assert abnormalTerminationLabel instanceof LabelMarker; this.readMethod.setAbnormalTerminationLabel((LabelMarker) abnormalTerminationLabel); this.methodNode.instructions.add(new InsnNode(ATHROW)); // add a try catch block around the method so that we can trace when this method is left // by a thrown exception this.methodNode.tryCatchBlocks.add(new TryCatchBlockNode(l0, l1, l1, null)); // now add the code that is executed if no tracing should be performed this.methodNode.instructions.add(noTracingLabel); if (this.firstLine != -1) this.methodNode.instructions.add(new LineNumberNode(this.firstLine, noTracingLabel)); this.methodNode.instructions.add(new InsnNode(ACONST_NULL)); this.methodNode.instructions.add(new VarInsnNode(ASTORE, this.tracerLocalVarIndex)); this.methodNode.instructions.add(oldInstructions); // finally: create a copy of the method that gets the ThreadTracer as argument // this is only necessary for private methods or "<init>" if (this.tracer.wasRedefined(this.readMethod.getReadClass().getName()) && (this.methodNode.access & ACC_PRIVATE) != 0) { final Type[] oldMethodArguments = Type.getArgumentTypes(this.methodNode.desc); final Type[] newMethodArguments = Arrays.copyOf(oldMethodArguments, oldMethodArguments.length + 1); newMethodArguments[oldMethodArguments.length] = Type.getType(ThreadTracer.class); final String newMethodDesc = Type.getMethodDescriptor(Type.getReturnType(this.methodNode.desc), newMethodArguments); final MethodNode newMethod = new MethodNode(this.methodNode.access, this.methodNode.name, newMethodDesc, this.methodNode.signature, (String[]) this.methodNode.exceptions.toArray(new String[this.methodNode.exceptions.size()])); methodIt.add(newMethod); int threadTracerParamPos = ((this.readMethod.getAccess() & Opcodes.ACC_STATIC) == 0 ? 1 : 0); for (final Type t : oldMethodArguments) threadTracerParamPos += t.getSize(); final Map<LabelNode, LabelNode> newMethodLabels = LazyMap.decorate(new HashMap<LabelNode, LabelNode>(), new Factory() { @Override public Object create() { return new LabelNode(); } }); // copy the local variables information to the new method for (final Object o : this.methodNode.localVariables) { final LocalVariableNode lv = (LocalVariableNode) o; newMethod.localVariables.add(new LocalVariableNode(lv.name, lv.desc, lv.signature, newMethodLabels.get(lv.start), newMethodLabels.get(lv.end), lv.index)); } newMethod.maxLocals = this.methodNode.maxLocals; newMethod.maxStack = this.methodNode.maxStack; // copy the try-catch-blocks for (final Object o : this.methodNode.tryCatchBlocks) { final TryCatchBlockNode tcb = (TryCatchBlockNode) o; newMethod.tryCatchBlocks.add(new TryCatchBlockNode(newMethodLabels.get(tcb.start), newMethodLabels.get(tcb.end), newMethodLabels.get(tcb.handler), tcb.type)); } // skip the first 6 instructions, replace them with these: newMethod.instructions.add(new VarInsnNode(ALOAD, threadTracerParamPos)); newMethod.instructions.add(new InsnNode(DUP)); newMethod.instructions.add(new VarInsnNode(ASTORE, this.tracerLocalVarIndex)); newMethod.instructions.add(new JumpInsnNode(IFNULL, newMethodLabels.get(noTracingLabel))); final Iterator<AbstractInsnNode> oldInsnIt = this.methodNode.instructions.iterator(6); // and add all the other instructions while (oldInsnIt.hasNext()) { final AbstractInsnNode insn = oldInsnIt.next(); newMethod.instructions.add(insn.clone(newMethodLabels)); } } ready(); }