List of usage examples for java.util HashMap HashMap
public HashMap()
From source file:ch.epfl.lsir.xin.test.ItemBasedCFTest.java
/** * @param args/*from www .j av a2s.c o m*/ */ public static void main(String[] args) throws Exception { // TODO Auto-generated method stub PrintWriter logger = new PrintWriter(".//results//ItemBasedCF"); PropertiesConfiguration config = new PropertiesConfiguration(); config.setFile(new File(".//conf//ItemBasedCF.properties")); try { config.load(); } catch (ConfigurationException e) { // TODO Auto-generated catch block e.printStackTrace(); } logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data..."); DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt"); loader.readSimple(); DataSetNumeric dataset = loader.getDataset(); System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: " + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size()); logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: " + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size()); logger.flush(); double totalMAE = 0; double totalRMSE = 0; double totalPrecision = 0; double totalRecall = 0; double totalMAP = 0; double totalNDCG = 0; double totalMRR = 0; double totalAUC = 0; int F = 5; logger.println(F + "- folder cross validation."); ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>(); for (int i = 0; i < F; i++) { folders.add(new ArrayList<NumericRating>()); } while (dataset.getRatings().size() > 0) { int index = new Random().nextInt(dataset.getRatings().size()); int r = new Random().nextInt(F); folders.get(r).add(dataset.getRatings().get(index)); dataset.getRatings().remove(index); } for (int folder = 1; folder <= F; folder++) { logger.println("Folder: " + folder); System.out.println("Folder: " + folder); ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>(); ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>(); for (int i = 0; i < folders.size(); i++) { if (i == folder - 1)//test data { testRatings.addAll(folders.get(i)); } else {//training data trainRatings.addAll(folders.get(i)); } } //create rating matrix HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>(); HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>(); for (int i = 0; i < dataset.getUserIDs().size(); i++) { userIDIndexMapping.put(dataset.getUserIDs().get(i), i); } for (int i = 0; i < dataset.getItemIDs().size(); i++) { itemIDIndexMapping.put(dataset.getItemIDs().get(i), i); } RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < trainRatings.size(); i++) { trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()), itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue()); } trainRatingMatrix.calculateGlobalAverage(); trainRatingMatrix.calculateItemsMean(); RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < testRatings.size(); i++) { testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()), itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue()); } System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: " + testRatingMatrix.getTotalRatingNumber()); logger.println("Initialize a item based collaborative filtering recommendation model."); ItemBasedCF algo = new ItemBasedCF(trainRatingMatrix); algo.setLogger(logger); algo.build();//if read local model, no need to build the model algo.saveModel(".//localModels//" + config.getString("NAME")); logger.println("Save the model."); logger.flush(); //rating prediction accuracy double RMSE = 0; double MAE = 0; double precision = 0; double recall = 0; double map = 0; double ndcg = 0; double mrr = 0; double auc = 0; int count = 0; for (int i = 0; i < testRatings.size(); i++) { NumericRating rating = testRatings.get(i); double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()), itemIDIndexMapping.get(rating.getItemID()), false); if (prediction > algo.getMaxRating()) prediction = algo.getMaxRating(); if (prediction < algo.getMinRating()) prediction = algo.getMinRating(); if (Double.isNaN(prediction)) { System.out.println("no prediction"); continue; } MAE = MAE + Math.abs(rating.getValue() - prediction); RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2); count++; } MAE = MAE / count; RMSE = Math.sqrt(RMSE / count); totalMAE = totalMAE + MAE; totalRMSE = totalRMSE + RMSE; System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE); logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: " + MAE + " RMSE: " + RMSE); //ranking accuracy if (algo.getTopN() > 0) { HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>(); for (int i = 0; i < trainRatingMatrix.getRow(); i++) { // ArrayList<ResultUnit> rec = algo.getRecommendationList(i); // results.put(i, rec); ArrayList<ResultUnit> rec = algo.getRecommendationList(i); if (rec == null) continue; int total = testRatingMatrix.getUserRatingNumber(i); if (total == 0)//this user is ignored continue; results.put(i, rec); } RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix, trainRatingMatrix); precision = generator.getPrecisionN(); totalPrecision = totalPrecision + precision; recall = generator.getRecallN(); totalRecall = totalRecall + recall; map = generator.getMAPN(); totalMAP = totalMAP + map; ndcg = generator.getNDCGN(); totalNDCG = totalNDCG + ndcg; mrr = generator.getMRRN(); totalMRR = totalMRR + mrr; auc = generator.getAUC(); totalAUC = totalAUC + auc; System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc); logger.append("Folder --- precision: " + precision + " recall: " + recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc + "\n"); } } System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F); System.out.println("Precision@N: " + totalPrecision / F); System.out.println("Recall@N: " + totalRecall / F); System.out.println("MAP@N: " + totalMAP / F); System.out.println("MRR@N: " + totalMRR / F); System.out.println("NDCG@N: " + totalNDCG / F); System.out.println("AUC@N: " + totalAUC / F); System.out.println("similarity: " + config.getString("SIMILARITY")); //MAE: 0.7227232762922241 RMSE: 0.9225576790122603 (MovieLens 100K, shrinkage 2500, neighbor size 40, PCC) //MAE: 0.7250636319353241 RMSE: 0.9242305485411567 (MovieLens 100K, shrinkage 25, neighbor size 40, PCC) //MAE: 0.7477213243604459 RMSE: 0.9512195004171138 (MovieLens 100K, shrinkage 2500, neighbor size 40, COSINE) logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n" + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F); logger.flush(); logger.close(); }
From source file:fr.inria.atlanmod.kyanos.benchmarks.ase2015.NeoEMFMapQueryGrabats09.java
public static void main(String[] args) { Options options = new Options(); Option inputOpt = OptionBuilder.create(IN); inputOpt.setArgName("INPUT"); inputOpt.setDescription("Input Kyanos resource directory"); inputOpt.setArgs(1);/*from w ww. j ava 2 s .com*/ inputOpt.setRequired(true); Option inClassOpt = OptionBuilder.create(EPACKAGE_CLASS); inClassOpt.setArgName("CLASS"); inClassOpt.setDescription("FQN of EPackage implementation class"); inClassOpt.setArgs(1); inClassOpt.setRequired(true); Option optFileOpt = OptionBuilder.create(OPTIONS_FILE); optFileOpt.setArgName("FILE"); optFileOpt.setDescription("Properties file holding the options to be used in the Kyanos Resource"); optFileOpt.setArgs(1); options.addOption(inputOpt); options.addOption(inClassOpt); options.addOption(optFileOpt); CommandLineParser parser = new PosixParser(); try { PersistenceBackendFactoryRegistry.getFactories().put(NeoMapURI.NEO_MAP_SCHEME, new MapPersistenceBackendFactory()); CommandLine commandLine = parser.parse(options, args); URI uri = NeoMapURI.createNeoMapURI(new File(commandLine.getOptionValue(IN))); Class<?> inClazz = NeoEMFMapQueryGrabats09.class.getClassLoader() .loadClass(commandLine.getOptionValue(EPACKAGE_CLASS)); inClazz.getMethod("init").invoke(null); ResourceSet resourceSet = new ResourceSetImpl(); resourceSet.getResourceFactoryRegistry().getProtocolToFactoryMap().put(NeoMapURI.NEO_MAP_SCHEME, PersistentResourceFactory.eINSTANCE); Resource resource = resourceSet.createResource(uri); Map<String, Object> loadOpts = new HashMap<String, Object>(); if (commandLine.hasOption(OPTIONS_FILE)) { Properties properties = new Properties(); properties.load(new FileInputStream(new File(commandLine.getOptionValue(OPTIONS_FILE)))); for (final Entry<Object, Object> entry : properties.entrySet()) { loadOpts.put((String) entry.getKey(), (String) entry.getValue()); } } // Add the LoadedObjectCounter store List<StoreOption> storeOptions = new ArrayList<StoreOption>(); // storeOptions.add(PersistentResourceOptions.EStoreOption.LOADED_OBJECT_COUNTER_LOGGING); storeOptions.add(MapResourceOptions.EStoreMapOption.AUTOCOMMIT); storeOptions.add(PersistentResourceOptions.EStoreOption.ESTRUCUTRALFEATURE_CACHING); storeOptions.add(PersistentResourceOptions.EStoreOption.IS_SET_CACHING); storeOptions.add(PersistentResourceOptions.EStoreOption.SIZE_CACHING); loadOpts.put(PersistentResourceOptions.STORE_OPTIONS, storeOptions); resource.load(loadOpts); { Runtime.getRuntime().gc(); long initialUsedMemory = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory(); LOG.log(Level.INFO, MessageFormat.format("Used memory before query: {0}", MessageUtil.byteCountToDisplaySize(initialUsedMemory))); LOG.log(Level.INFO, "Start query"); long begin = System.currentTimeMillis(); EList<ClassDeclaration> list = ASE2015JavaQueries.grabats09(resource); long end = System.currentTimeMillis(); LOG.log(Level.INFO, "End query"); LOG.log(Level.INFO, MessageFormat.format("Query result contains {0} elements", list.size())); LOG.log(Level.INFO, MessageFormat.format("Time spent: {0}", MessageUtil.formatMillis(end - begin))); Runtime.getRuntime().gc(); long finalUsedMemory = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory(); LOG.log(Level.INFO, MessageFormat.format("Used memory after query: {0}", MessageUtil.byteCountToDisplaySize(finalUsedMemory))); LOG.log(Level.INFO, MessageFormat.format("Memory use increase: {0}", MessageUtil.byteCountToDisplaySize(finalUsedMemory - initialUsedMemory))); } if (resource instanceof PersistentResourceImpl) { PersistentResourceImpl.shutdownWithoutUnload((PersistentResourceImpl) resource); } else { resource.unload(); } } catch (ParseException e) { MessageUtil.showError(e.toString()); MessageUtil.showError("Current arguments: " + Arrays.toString(args)); HelpFormatter formatter = new HelpFormatter(); formatter.printHelp("java -jar <this-file.jar>", options, true); } catch (Throwable e) { MessageUtil.showError(e.toString()); } }
From source file:fr.inria.atlanmod.kyanos.benchmarks.ase2015.NeoEMFMapQueryGetBranchStatements.java
public static void main(String[] args) { Options options = new Options(); Option inputOpt = OptionBuilder.create(IN); inputOpt.setArgName("INPUT"); inputOpt.setDescription("Input Kyanos resource directory"); inputOpt.setArgs(1);//from w w w . j a va2 s.co m inputOpt.setRequired(true); Option inClassOpt = OptionBuilder.create(EPACKAGE_CLASS); inClassOpt.setArgName("CLASS"); inClassOpt.setDescription("FQN of EPackage implementation class"); inClassOpt.setArgs(1); inClassOpt.setRequired(true); Option optFileOpt = OptionBuilder.create(OPTIONS_FILE); optFileOpt.setArgName("FILE"); optFileOpt.setDescription("Properties file holding the options to be used in the Kyanos Resource"); optFileOpt.setArgs(1); options.addOption(inputOpt); options.addOption(inClassOpt); options.addOption(optFileOpt); CommandLineParser parser = new PosixParser(); try { PersistenceBackendFactoryRegistry.getFactories().put(NeoMapURI.NEO_MAP_SCHEME, new MapPersistenceBackendFactory()); CommandLine commandLine = parser.parse(options, args); URI uri = NeoMapURI.createNeoMapURI(new File(commandLine.getOptionValue(IN))); Class<?> inClazz = NeoEMFMapQueryGetBranchStatements.class.getClassLoader() .loadClass(commandLine.getOptionValue(EPACKAGE_CLASS)); inClazz.getMethod("init").invoke(null); ResourceSet resourceSet = new ResourceSetImpl(); resourceSet.getResourceFactoryRegistry().getProtocolToFactoryMap().put(NeoMapURI.NEO_MAP_SCHEME, PersistentResourceFactory.eINSTANCE); Resource resource = resourceSet.createResource(uri); Map<String, Object> loadOpts = new HashMap<String, Object>(); if (commandLine.hasOption(OPTIONS_FILE)) { Properties properties = new Properties(); properties.load(new FileInputStream(new File(commandLine.getOptionValue(OPTIONS_FILE)))); for (final Entry<Object, Object> entry : properties.entrySet()) { loadOpts.put((String) entry.getKey(), (String) entry.getValue()); } } // Add the LoadedObjectCounter store List<StoreOption> storeOptions = new ArrayList<StoreOption>(); // storeOptions.add(PersistentResourceOptions.EStoreOption.LOADED_OBJECT_COUNTER_LOGGING); storeOptions.add(MapResourceOptions.EStoreMapOption.AUTOCOMMIT); storeOptions.add(PersistentResourceOptions.EStoreOption.ESTRUCUTRALFEATURE_CACHING); storeOptions.add(PersistentResourceOptions.EStoreOption.IS_SET_CACHING); storeOptions.add(PersistentResourceOptions.EStoreOption.SIZE_CACHING); loadOpts.put(PersistentResourceOptions.STORE_OPTIONS, storeOptions); resource.load(loadOpts); { Runtime.getRuntime().gc(); long initialUsedMemory = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory(); LOG.log(Level.INFO, MessageFormat.format("Used memory before query: {0}", MessageUtil.byteCountToDisplaySize(initialUsedMemory))); LOG.log(Level.INFO, "Start query"); long begin = System.currentTimeMillis(); Set<TextElement> list = ASE2015JavaQueries.getCommentsTagContent(resource); long end = System.currentTimeMillis(); LOG.log(Level.INFO, "End query"); LOG.log(Level.INFO, MessageFormat.format("Query result contains {0} elements", list.size())); LOG.log(Level.INFO, MessageFormat.format("Time spent: {0}", MessageUtil.formatMillis(end - begin))); Runtime.getRuntime().gc(); long finalUsedMemory = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory(); LOG.log(Level.INFO, MessageFormat.format("Used memory after query: {0}", MessageUtil.byteCountToDisplaySize(finalUsedMemory))); LOG.log(Level.INFO, MessageFormat.format("Memory use increase: {0}", MessageUtil.byteCountToDisplaySize(finalUsedMemory - initialUsedMemory))); } if (resource instanceof PersistentResourceImpl) { PersistentResourceImpl.shutdownWithoutUnload((PersistentResourceImpl) resource); } else { resource.unload(); } } catch (ParseException e) { MessageUtil.showError(e.toString()); MessageUtil.showError("Current arguments: " + Arrays.toString(args)); HelpFormatter formatter = new HelpFormatter(); formatter.printHelp("java -jar <this-file.jar>", options, true); } catch (Throwable e) { MessageUtil.showError(e.toString()); } }
From source file:fr.inria.atlanmod.kyanos.benchmarks.ase2015.NeoEMFMapQueryThrownExceptions.java
public static void main(String[] args) { Options options = new Options(); Option inputOpt = OptionBuilder.create(IN); inputOpt.setArgName("INPUT"); inputOpt.setDescription("Input Kyanos resource directory"); inputOpt.setArgs(1);//from w ww.j a va 2 s . c o m inputOpt.setRequired(true); Option inClassOpt = OptionBuilder.create(EPACKAGE_CLASS); inClassOpt.setArgName("CLASS"); inClassOpt.setDescription("FQN of EPackage implementation class"); inClassOpt.setArgs(1); inClassOpt.setRequired(true); Option optFileOpt = OptionBuilder.create(OPTIONS_FILE); optFileOpt.setArgName("FILE"); optFileOpt.setDescription("Properties file holding the options to be used in the Kyanos Resource"); optFileOpt.setArgs(1); options.addOption(inputOpt); options.addOption(inClassOpt); options.addOption(optFileOpt); CommandLineParser parser = new PosixParser(); try { PersistenceBackendFactoryRegistry.getFactories().put(NeoMapURI.NEO_MAP_SCHEME, new MapPersistenceBackendFactory()); CommandLine commandLine = parser.parse(options, args); URI uri = NeoMapURI.createNeoMapURI(new File(commandLine.getOptionValue(IN))); Class<?> inClazz = NeoEMFMapQueryThrownExceptions.class.getClassLoader() .loadClass(commandLine.getOptionValue(EPACKAGE_CLASS)); inClazz.getMethod("init").invoke(null); ResourceSet resourceSet = new ResourceSetImpl(); resourceSet.getResourceFactoryRegistry().getProtocolToFactoryMap().put(NeoMapURI.NEO_MAP_SCHEME, PersistentResourceFactory.eINSTANCE); Resource resource = resourceSet.createResource(uri); Map<String, Object> loadOpts = new HashMap<String, Object>(); if (commandLine.hasOption(OPTIONS_FILE)) { Properties properties = new Properties(); properties.load(new FileInputStream(new File(commandLine.getOptionValue(OPTIONS_FILE)))); for (final Entry<Object, Object> entry : properties.entrySet()) { loadOpts.put((String) entry.getKey(), (String) entry.getValue()); } } // Add the LoadedObjectCounter store List<StoreOption> storeOptions = new ArrayList<StoreOption>(); // storeOptions.add(PersistentResourceOptions.EStoreOption.LOADED_OBJECT_COUNTER_LOGGING); storeOptions.add(MapResourceOptions.EStoreMapOption.AUTOCOMMIT); storeOptions.add(PersistentResourceOptions.EStoreOption.ESTRUCUTRALFEATURE_CACHING); storeOptions.add(PersistentResourceOptions.EStoreOption.IS_SET_CACHING); storeOptions.add(PersistentResourceOptions.EStoreOption.SIZE_CACHING); loadOpts.put(PersistentResourceOptions.STORE_OPTIONS, storeOptions); resource.load(loadOpts); { Runtime.getRuntime().gc(); long initialUsedMemory = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory(); LOG.log(Level.INFO, MessageFormat.format("Used memory before query: {0}", MessageUtil.byteCountToDisplaySize(initialUsedMemory))); LOG.log(Level.INFO, "Start query"); long begin = System.currentTimeMillis(); EList<TypeAccess> list = ASE2015JavaQueries.getThrownExceptions(resource); long end = System.currentTimeMillis(); LOG.log(Level.INFO, "End query"); LOG.log(Level.INFO, MessageFormat.format("Query result contains {0} elements", list.size())); LOG.log(Level.INFO, MessageFormat.format("Time spent: {0}", MessageUtil.formatMillis(end - begin))); Runtime.getRuntime().gc(); long finalUsedMemory = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory(); LOG.log(Level.INFO, MessageFormat.format("Used memory after query: {0}", MessageUtil.byteCountToDisplaySize(finalUsedMemory))); LOG.log(Level.INFO, MessageFormat.format("Memory use increase: {0}", MessageUtil.byteCountToDisplaySize(finalUsedMemory - initialUsedMemory))); } if (resource instanceof PersistentResourceImpl) { PersistentResourceImpl.shutdownWithoutUnload((PersistentResourceImpl) resource); } else { resource.unload(); } } catch (ParseException e) { MessageUtil.showError(e.toString()); MessageUtil.showError("Current arguments: " + Arrays.toString(args)); HelpFormatter formatter = new HelpFormatter(); formatter.printHelp("java -jar <this-file.jar>", options, true); } catch (Throwable e) { MessageUtil.showError(e.toString()); } }
From source file:org.kuali.student.git.importer.ConvertBuildTagBranchesToGitTags.java
/** * @param args/* w ww .java 2 s. co m*/ */ public static void main(String[] args) { if (args.length < 3 || args.length > 6) { System.err.println("USAGE: <git repository> <bare> <ref mode> [<ref prefix> <username> <password>]"); System.err.println("\t<bare> : 0 (false) or 1 (true)"); System.err.println("\t<ref mode> : local or name of remote"); System.err.println("\t<ref prefix> : refs/heads (default) or say refs/remotes/origin (test clone)"); System.exit(-1); } boolean bare = false; if (args[1].trim().equals("1")) { bare = true; } String remoteName = args[2].trim(); String refPrefix = Constants.R_HEADS; if (args.length == 4) refPrefix = args[3].trim(); String userName = null; String password = null; if (args.length == 5) userName = args[4].trim(); if (args.length == 6) password = args[5].trim(); try { Repository repo = GitRepositoryUtils.buildFileRepository(new File(args[0]).getAbsoluteFile(), false, bare); Git git = new Git(repo); ObjectInserter objectInserter = repo.newObjectInserter(); Collection<Ref> repositoryHeads = repo.getRefDatabase().getRefs(refPrefix).values(); RevWalk rw = new RevWalk(repo); Map<String, ObjectId> tagNameToTagId = new HashMap<>(); Map<String, Ref> tagNameToRef = new HashMap<>(); for (Ref ref : repositoryHeads) { String branchName = ref.getName().substring(refPrefix.length() + 1); if (branchName.contains("tag") && branchName.contains("builds")) { String branchParts[] = branchName.split("_"); int buildsIndex = ArrayUtils.indexOf(branchParts, "builds"); String moduleName = StringUtils.join(branchParts, "_", buildsIndex + 1, branchParts.length); RevCommit commit = rw.parseCommit(ref.getObjectId()); ObjectId tag = GitRefUtils.insertTag(moduleName, commit, objectInserter); tagNameToTagId.put(moduleName, tag); tagNameToRef.put(moduleName, ref); } } BatchRefUpdate batch = repo.getRefDatabase().newBatchUpdate(); List<RefSpec> branchesToDelete = new ArrayList<>(); for (Entry<String, ObjectId> entry : tagNameToTagId.entrySet()) { String tagName = entry.getKey(); // create the reference to the tag object batch.addCommand( new ReceiveCommand(null, entry.getValue(), Constants.R_TAGS + tagName, Type.CREATE)); // delete the original branch object Ref branch = tagNameToRef.get(entry.getKey()); if (remoteName.equals("local")) { batch.addCommand(new ReceiveCommand(branch.getObjectId(), null, branch.getName(), Type.DELETE)); } else { String adjustedBranchName = branch.getName().substring(refPrefix.length() + 1); branchesToDelete.add(new RefSpec(":" + Constants.R_HEADS + adjustedBranchName)); } } // create the tags batch.execute(rw, new TextProgressMonitor()); if (!remoteName.equals("local")) { // push the tag to the remote right now PushCommand pushCommand = git.push().setRemote(remoteName).setPushTags() .setProgressMonitor(new TextProgressMonitor()); if (userName != null) pushCommand.setCredentialsProvider(new UsernamePasswordCredentialsProvider(userName, password)); Iterable<PushResult> results = pushCommand.call(); for (PushResult pushResult : results) { if (!pushResult.equals(Result.NEW)) { log.warn("failed to push tag " + pushResult.getMessages()); } } // delete the branches from the remote results = git.push().setRemote(remoteName).setRefSpecs(branchesToDelete) .setProgressMonitor(new TextProgressMonitor()).call(); log.info(""); } // Result result = GitRefUtils.createTagReference(repo, moduleName, tag); // // if (!result.equals(Result.NEW)) { // log.warn("failed to create tag {} for branch {}", moduleName, branchName); // continue; // } // // if (deleteMode) { // result = GitRefUtils.deleteRef(repo, ref); // // if (!result.equals(Result.NEW)) { // log.warn("failed to delete branch {}", branchName); // continue; // } objectInserter.release(); rw.release(); } catch (Exception e) { log.error("unexpected Exception ", e); } }
From source file:ch.epfl.lsir.xin.test.SVDPPTest.java
/** * @param args/* w w w .j a v a 2s. c o m*/ */ public static void main(String[] args) throws Exception { // TODO Auto-generated method stub PrintWriter logger = new PrintWriter(".//results//SVDPP"); PropertiesConfiguration config = new PropertiesConfiguration(); config.setFile(new File("conf//SVDPlusPlus.properties")); try { config.load(); } catch (ConfigurationException e) { // TODO Auto-generated catch block e.printStackTrace(); } logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data..."); logger.flush(); DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt"); loader.readSimple(); DataSetNumeric dataset = loader.getDataset(); System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: " + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size()); logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: " + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size()); logger.flush(); double totalMAE = 0; double totalRMSE = 0; double totalPrecision = 0; double totalRecall = 0; double totalMAP = 0; double totalNDCG = 0; double totalMRR = 0; double totalAUC = 0; int F = 5; logger.println(F + "- folder cross validation."); logger.flush(); ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>(); for (int i = 0; i < F; i++) { folders.add(new ArrayList<NumericRating>()); } while (dataset.getRatings().size() > 0) { int index = new Random().nextInt(dataset.getRatings().size()); int r = new Random().nextInt(F); folders.get(r).add(dataset.getRatings().get(index)); dataset.getRatings().remove(index); } for (int folder = 1; folder <= F; folder++) { System.out.println("Folder: " + folder); logger.println("Folder: " + folder); logger.flush(); ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>(); ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>(); for (int i = 0; i < folders.size(); i++) { if (i == folder - 1)//test data { testRatings.addAll(folders.get(i)); } else {//training data trainRatings.addAll(folders.get(i)); } } //create rating matrix HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>(); HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>(); for (int i = 0; i < dataset.getUserIDs().size(); i++) { userIDIndexMapping.put(dataset.getUserIDs().get(i), i); } for (int i = 0; i < dataset.getItemIDs().size(); i++) { itemIDIndexMapping.put(dataset.getItemIDs().get(i), i); } RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < trainRatings.size(); i++) { trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()), itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue()); } RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < testRatings.size(); i++) { if (testRatings.get(i).getValue() < 5) continue; testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()), itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue()); } System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: " + testRatingMatrix.getTotalRatingNumber()); logger.println("Initialize a SVD++ recommendation model."); logger.flush(); SVDPlusPlus algo = new SVDPlusPlus(trainRatingMatrix, false, ".//localModels//" + config.getString("NAME")); algo.setLogger(logger); algo.build(); algo.saveModel(".//localModels//" + config.getString("NAME")); logger.println("Save the model."); logger.flush(); //rating prediction accuracy double RMSE = 0; double MAE = 0; double precision = 0; double recall = 0; double map = 0; double ndcg = 0; double mrr = 0; double auc = 0; int count = 0; for (int i = 0; i < testRatings.size(); i++) { NumericRating rating = testRatings.get(i); double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()), itemIDIndexMapping.get(rating.getItemID()), false); if (prediction > algo.getMaxRating()) prediction = algo.getMaxRating(); if (prediction < algo.getMinRating()) prediction = algo.getMinRating(); if (Double.isNaN(prediction)) { System.out.println("no prediction"); continue; } MAE = MAE + Math.abs(rating.getValue() - prediction); RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2); count++; } MAE = MAE / count; RMSE = Math.sqrt(RMSE / count); totalMAE = totalMAE + MAE; totalRMSE = totalRMSE + RMSE; System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE); logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: " + MAE + " RMSE: " + RMSE); //ranking accuracy if (algo.getTopN() > 0) { HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>(); for (int i = 0; i < trainRatingMatrix.getRow(); i++) { ArrayList<ResultUnit> rec = algo.getRecommendationList(i); if (rec == null) continue; int total = testRatingMatrix.getUserRatingNumber(i); if (total == 0)//this user is ignored continue; results.put(i, rec); } RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix); precision = generator.getPrecisionN(); totalPrecision = totalPrecision + precision; recall = generator.getRecallN(); totalRecall = totalRecall + recall; map = generator.getMAPN(); totalMAP = totalMAP + map; ndcg = generator.getNDCGN(); totalNDCG = totalNDCG + ndcg; mrr = generator.getMRRN(); totalMRR = totalMRR + mrr; auc = generator.getAUC(); totalAUC = totalAUC + auc; System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc); logger.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc); } logger.flush(); } System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F); System.out.println("Precision@N: " + totalPrecision / F); System.out.println("Recall@N: " + totalRecall / F); System.out.println("MAP@N: " + totalMAP / F); System.out.println("MRR@N: " + totalMRR / F); System.out.println("NDCG@N: " + totalNDCG / F); System.out.println("AUC@N: " + totalAUC / F); logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n" + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F); logger.flush(); logger.close(); }
From source file:fr.inria.atlanmod.kyanos.benchmarks.ase2015.NeoEMFMapQueryInvisibleMethodDeclarations.java
public static void main(String[] args) { Options options = new Options(); Option inputOpt = OptionBuilder.create(IN); inputOpt.setArgName("INPUT"); inputOpt.setDescription("Input Kyanos resource directory"); inputOpt.setArgs(1);/* w w w .j ava 2 s. c o m*/ inputOpt.setRequired(true); Option inClassOpt = OptionBuilder.create(EPACKAGE_CLASS); inClassOpt.setArgName("CLASS"); inClassOpt.setDescription("FQN of EPackage implementation class"); inClassOpt.setArgs(1); inClassOpt.setRequired(true); Option optFileOpt = OptionBuilder.create(OPTIONS_FILE); optFileOpt.setArgName("FILE"); optFileOpt.setDescription("Properties file holding the options to be used in the Kyanos Resource"); optFileOpt.setArgs(1); options.addOption(inputOpt); options.addOption(inClassOpt); options.addOption(optFileOpt); CommandLineParser parser = new PosixParser(); try { PersistenceBackendFactoryRegistry.getFactories().put(NeoMapURI.NEO_MAP_SCHEME, new MapPersistenceBackendFactory()); CommandLine commandLine = parser.parse(options, args); URI uri = NeoMapURI.createNeoMapURI(new File(commandLine.getOptionValue(IN))); Class<?> inClazz = NeoEMFMapQueryInvisibleMethodDeclarations.class.getClassLoader() .loadClass(commandLine.getOptionValue(EPACKAGE_CLASS)); inClazz.getMethod("init").invoke(null); ResourceSet resourceSet = new ResourceSetImpl(); resourceSet.getResourceFactoryRegistry().getProtocolToFactoryMap().put(NeoMapURI.NEO_MAP_SCHEME, PersistentResourceFactory.eINSTANCE); Resource resource = resourceSet.createResource(uri); Map<String, Object> loadOpts = new HashMap<String, Object>(); if (commandLine.hasOption(OPTIONS_FILE)) { Properties properties = new Properties(); properties.load(new FileInputStream(new File(commandLine.getOptionValue(OPTIONS_FILE)))); for (final Entry<Object, Object> entry : properties.entrySet()) { loadOpts.put((String) entry.getKey(), (String) entry.getValue()); } } // Add the LoadedObjectCounter store List<StoreOption> storeOptions = new ArrayList<StoreOption>(); // storeOptions.add(PersistentResourceOptions.EStoreOption.LOADED_OBJECT_COUNTER_LOGGING); storeOptions.add(MapResourceOptions.EStoreMapOption.AUTOCOMMIT); storeOptions.add(PersistentResourceOptions.EStoreOption.ESTRUCUTRALFEATURE_CACHING); storeOptions.add(PersistentResourceOptions.EStoreOption.IS_SET_CACHING); storeOptions.add(PersistentResourceOptions.EStoreOption.SIZE_CACHING); loadOpts.put(PersistentResourceOptions.STORE_OPTIONS, storeOptions); resource.load(loadOpts); { Runtime.getRuntime().gc(); long initialUsedMemory = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory(); LOG.log(Level.INFO, MessageFormat.format("Used memory before query: {0}", MessageUtil.byteCountToDisplaySize(initialUsedMemory))); LOG.log(Level.INFO, "Start query"); long begin = System.currentTimeMillis(); EList<MethodDeclaration> list = ASE2015JavaQueries.getInvisibleMethodDeclarations(resource); long end = System.currentTimeMillis(); LOG.log(Level.INFO, "End query"); LOG.log(Level.INFO, MessageFormat.format("Query result contains {0} elements", list.size())); LOG.log(Level.INFO, MessageFormat.format("Time spent: {0}", MessageUtil.formatMillis(end - begin))); Runtime.getRuntime().gc(); long finalUsedMemory = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory(); LOG.log(Level.INFO, MessageFormat.format("Used memory after query: {0}", MessageUtil.byteCountToDisplaySize(finalUsedMemory))); LOG.log(Level.INFO, MessageFormat.format("Memory use increase: {0}", MessageUtil.byteCountToDisplaySize(finalUsedMemory - initialUsedMemory))); } if (resource instanceof PersistentResourceImpl) { PersistentResourceImpl.shutdownWithoutUnload((PersistentResourceImpl) resource); } else { resource.unload(); } } catch (ParseException e) { MessageUtil.showError(e.toString()); MessageUtil.showError("Current arguments: " + Arrays.toString(args)); HelpFormatter formatter = new HelpFormatter(); formatter.printHelp("java -jar <this-file.jar>", options, true); } catch (Throwable e) { MessageUtil.showError(e.toString()); } }
From source file:ch.epfl.lsir.xin.test.BiasedMFTest.java
/** * @param args//from ww w . ja v a 2 s.c om */ public static void main(String[] args) throws Exception { // TODO Auto-generated method stub PrintWriter logger = new PrintWriter(".//results//BiasedMF"); PropertiesConfiguration config = new PropertiesConfiguration(); config.setFile(new File("conf//biasedMF.properties")); try { config.load(); } catch (ConfigurationException e) { // TODO Auto-generated catch block e.printStackTrace(); } logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data..."); logger.flush(); DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt"); loader.readSimple(); DataSetNumeric dataset = loader.getDataset(); System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: " + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size()); logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: " + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size()); logger.flush(); double totalMAE = 0; double totalRMSE = 0; double totalPrecision = 0; double totalRecall = 0; double totalMAP = 0; double totalNDCG = 0; double totalMRR = 0; double totalAUC = 0; int F = 5; logger.println(F + "- folder cross validation."); logger.flush(); ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>(); for (int i = 0; i < F; i++) { folders.add(new ArrayList<NumericRating>()); } while (dataset.getRatings().size() > 0) { int index = new Random().nextInt(dataset.getRatings().size()); int r = new Random().nextInt(F); folders.get(r).add(dataset.getRatings().get(index)); dataset.getRatings().remove(index); } for (int folder = 1; folder <= F; folder++) { System.out.println("Folder: " + folder); logger.println("Folder: " + folder); logger.flush(); ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>(); ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>(); for (int i = 0; i < folders.size(); i++) { if (i == folder - 1)//test data { testRatings.addAll(folders.get(i)); } else {//training data trainRatings.addAll(folders.get(i)); } } //create rating matrix HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>(); HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>(); for (int i = 0; i < dataset.getUserIDs().size(); i++) { userIDIndexMapping.put(dataset.getUserIDs().get(i), i); } for (int i = 0; i < dataset.getItemIDs().size(); i++) { itemIDIndexMapping.put(dataset.getItemIDs().get(i), i); } RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < trainRatings.size(); i++) { trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()), itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue()); } RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < testRatings.size(); i++) { // if( testRatings.get(i).getValue() < 5 ) // continue; testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()), itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue()); } System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: " + testRatingMatrix.getTotalRatingNumber()); logger.println("Initialize a biased matrix factorization recommendation model."); logger.flush(); BiasedMF algo = new BiasedMF(trainRatingMatrix, false, ".//localModels//" + config.getString("NAME")); algo.setLogger(logger); algo.build(); algo.saveModel(".//localModels//" + config.getString("NAME")); logger.println("Save the model."); logger.flush(); //rating prediction accuracy double RMSE = 0; double MAE = 0; double precision = 0; double recall = 0; double map = 0; double ndcg = 0; double mrr = 0; double auc = 0; int count = 0; for (int i = 0; i < testRatings.size(); i++) { NumericRating rating = testRatings.get(i); double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()), itemIDIndexMapping.get(rating.getItemID()), false); if (prediction > algo.getMaxRating()) prediction = algo.getMaxRating(); if (prediction < algo.getMinRating()) prediction = algo.getMinRating(); if (Double.isNaN(prediction)) { System.out.println("no prediction"); continue; } MAE = MAE + Math.abs(rating.getValue() - prediction); RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2); count++; } MAE = MAE / count; RMSE = Math.sqrt(RMSE / count); totalMAE = totalMAE + MAE; totalRMSE = totalRMSE + RMSE; System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE); logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: " + MAE + " RMSE: " + RMSE); //ranking accuracy if (algo.getTopN() > 0) { HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>(); for (int i = 0; i < trainRatingMatrix.getRow(); i++) { ArrayList<ResultUnit> rec = algo.getRecommendationList(i); if (rec == null) continue; int total = testRatingMatrix.getUserRatingNumber(i); if (total == 0)//this user is ignored continue; results.put(i, rec); } RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix, trainRatingMatrix); precision = generator.getPrecisionN(); totalPrecision = totalPrecision + precision; recall = generator.getRecallN(); totalRecall = totalRecall + recall; map = generator.getMAPN(); totalMAP = totalMAP + map; ndcg = generator.getNDCGN(); totalNDCG = totalNDCG + ndcg; mrr = generator.getMRRN(); totalMRR = totalMRR + mrr; auc = generator.getAUC(); totalAUC = totalAUC + auc; System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc); logger.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc); } logger.flush(); } System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F); System.out.println("Precision@N: " + totalPrecision / F); System.out.println("Recall@N: " + totalRecall / F); System.out.println("MAP@N: " + totalMAP / F); System.out.println("MRR@N: " + totalMRR / F); System.out.println("NDCG@N: " + totalNDCG / F); System.out.println("AUC@N: " + totalAUC / F); logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n" + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F); logger.flush(); logger.close(); }
From source file:ch.epfl.lsir.xin.test.UserBasedCFTest.java
/** * @param args/*from w w w . j a va 2 s . c om*/ */ public static void main(String[] args) throws Exception { // TODO Auto-generated method stub PrintWriter logger = new PrintWriter(".//results//UserBasedCF"); PropertiesConfiguration config = new PropertiesConfiguration(); config.setFile(new File(".//conf//UserBasedCF.properties")); try { config.load(); } catch (ConfigurationException e) { // TODO Auto-generated catch block e.printStackTrace(); } logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data..."); DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt"); loader.readSimple(); DataSetNumeric dataset = loader.getDataset(); System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: " + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size()); logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: " + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size()); logger.flush(); double totalMAE = 0; double totalRMSE = 0; double totalPrecision = 0; double totalRecall = 0; double totalMAP = 0; double totalNDCG = 0; double totalMRR = 0; double totalAUC = 0; int F = 5; logger.println(F + "- folder cross validation."); ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>(); for (int i = 0; i < F; i++) { folders.add(new ArrayList<NumericRating>()); } while (dataset.getRatings().size() > 0) { int index = new Random().nextInt(dataset.getRatings().size()); int r = new Random().nextInt(F); folders.get(r).add(dataset.getRatings().get(index)); dataset.getRatings().remove(index); } for (int folder = 1; folder <= F; folder++) { logger.println("Folder: " + folder); System.out.println("Folder: " + folder); ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>(); ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>(); for (int i = 0; i < folders.size(); i++) { if (i == folder - 1)//test data { testRatings.addAll(folders.get(i)); } else {//training data trainRatings.addAll(folders.get(i)); } } //create rating matrix HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>(); HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>(); for (int i = 0; i < dataset.getUserIDs().size(); i++) { userIDIndexMapping.put(dataset.getUserIDs().get(i), i); } for (int i = 0; i < dataset.getItemIDs().size(); i++) { itemIDIndexMapping.put(dataset.getItemIDs().get(i), i); } RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < trainRatings.size(); i++) { trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()), itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue()); } trainRatingMatrix.calculateGlobalAverage(); trainRatingMatrix.calculateUsersMean(); RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < testRatings.size(); i++) { // if( testRatings.get(i).getValue() < 5 ) // continue; testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()), itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue()); } logger.println("Initialize a user based collaborative filtering recommendation model."); UserBasedCF algo = new UserBasedCF(trainRatingMatrix, false, ".//localModels//" + config.getString("NAME")); algo.setLogger(logger); algo.build();//if read local model, no need to build the model algo.saveModel(".//localModels//" + config.getString("NAME")); logger.println("Save the model."); System.out.println(trainRatings.size() + " vs. " + testRatings.size()); logger.flush(); //rating prediction accuracy double RMSE = 0; double MAE = 0; double precision = 0; double recall = 0; double map = 0; double ndcg = 0; double mrr = 0; double auc = 0; int count = 0; for (int i = 0; i < testRatings.size(); i++) { NumericRating rating = testRatings.get(i); double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()), itemIDIndexMapping.get(rating.getItemID()), false); if (Double.isNaN(prediction)) { System.out.println("no prediction"); continue; } if (prediction > algo.getMaxRating()) prediction = algo.getMaxRating(); if (prediction < algo.getMinRating()) prediction = algo.getMinRating(); MAE = MAE + Math.abs(rating.getValue() - prediction); RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2); count++; } MAE = MAE / count; RMSE = Math.sqrt(RMSE / count); totalMAE = totalMAE + MAE; totalRMSE = totalRMSE + RMSE; System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE); logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: " + MAE + " RMSE: " + RMSE); logger.flush(); //ranking accuracy if (algo.getTopN() > 0) { HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>(); for (int i = 0; i < testRatingMatrix.getRow(); i++) { ArrayList<ResultUnit> rec = algo.getRecommendationList(i); if (rec == null) continue; int total = testRatingMatrix.getUserRatingNumber(i); if (total == 0)//this user is ignored continue; results.put(i, rec); // for( Map.Entry<Integer, Double> entry : testRatingMatrix.getRatingMatrix().get(i).entrySet() ) // { // System.out.print( entry.getKey() + "(" + entry.getValue() + ") , "); // } // System.out.println(); // for( int j = 0 ; j < rec.size() ; j++ ) // { // System.out.print(rec.get(j).getItemIndex() + "(" + rec.get(j).getPrediciton() + // ") , "); // } // System.out.println("**********"); } RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix, trainRatingMatrix); precision = generator.getPrecisionN(); totalPrecision = totalPrecision + precision; recall = generator.getRecallN(); totalRecall = totalRecall + recall; map = generator.getMAPN(); totalMAP = totalMAP + map; ndcg = generator.getNDCGN(); totalNDCG = totalNDCG + ndcg; mrr = generator.getMRRN(); totalMRR = totalMRR + mrr; auc = generator.getAUC(); totalAUC = totalAUC + auc; System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc); logger.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc); } } System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F); System.out.println("Precision@N: " + totalPrecision / F); System.out.println("Recall@N: " + totalRecall / F); System.out.println("MAP@N: " + totalMAP / F); System.out.println("MRR@N: " + totalMRR / F); System.out.println("NDCG@N: " + totalNDCG / F); System.out.println("AUC@N: " + totalAUC / F); // MovieLens100k //MAE: 0.7343907480119425 RMSE: 0.9405808357192891 (MovieLens 100K, shrinkage 25, neighbor size 60, PCC) //MAE: 0.7522376630596646 RMSE: 0.9520931265724659 (MovieLens 100K, no shrinkage , neighbor size 40, COSINE) logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n" + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F); logger.flush(); logger.close(); }
From source file:com.bigdata.rockstor.console.RockStorSender.java
public static void main(String[] args) throws ClientProtocolException, URISyntaxException, IOException { HttpReq req = new HttpReq(); req.setMethod("GET"); req.setUrl("http://10.24.1.252:8080/rockstor/"); req.setHead(new HashMap<String, String>()); HttpResp resp = perform(req);/*from www. j a v a2 s .c om*/ System.out.println(resp.getStatus()); System.out.println(resp.getBody()); }