Example usage for java.util Formatter Formatter

List of usage examples for java.util Formatter Formatter

Introduction

In this page you can find the example usage for java.util Formatter Formatter.

Prototype

public Formatter(OutputStream os) 

Source Link

Document

Constructs a new formatter with the specified output stream.

Usage

From source file:MainClass.java

public static void main(String[] args) {
    String[] phrases = { "A", "B 1", "C 1.3" };
    String dirname = "C:/test";
    String filename = "Phrases.txt";
    File dir = new File(dirname);
    File aFile = new File(dir, filename);
    FileOutputStream outputFile = null;
    try {//from   ww w. ja  v a  2s .c  om
        outputFile = new FileOutputStream(aFile, true);
    } catch (FileNotFoundException e) {
        e.printStackTrace(System.err);
    }
    FileChannel outChannel = outputFile.getChannel();
    ByteBuffer buf = ByteBuffer.allocate(1024);
    System.out.println(buf.position());
    System.out.println(buf.limit());
    System.out.println(buf.capacity());
    CharBuffer charBuf = buf.asCharBuffer();
    System.out.println(charBuf.position());
    System.out.println(charBuf.limit());
    System.out.println(charBuf.capacity());
    Formatter formatter = new Formatter(charBuf);
    int number = 0;
    for (String phrase : phrases) {
        formatter.format("%n %s", ++number, phrase);
        System.out.println(charBuf.position());
        System.out.println(charBuf.limit());
        System.out.println(charBuf.capacity());
        charBuf.flip();
        System.out.println(charBuf.position());
        System.out.println(charBuf.limit());
        System.out.println(charBuf.length());
        buf.limit(2 * charBuf.length()); // Set byte buffer limit
        System.out.println(buf.position());
        System.out.println(buf.limit());
        System.out.println(buf.remaining());
        try {
            outChannel.write(buf);
            buf.clear();
            charBuf.clear();
        } catch (IOException e) {
            e.printStackTrace(System.err);
        }
    }
    try {
        outputFile.close();
    } catch (IOException e) {
        e.printStackTrace(System.err);
    }
}

From source file:gentracklets.Propagate.java

public static void main(String[] args) throws OrekitException {

    // load the data files
    File data = new File("/home/zittersteijn/Documents/java/libraries/orekit-data.zip");
    DataProvidersManager DM = DataProvidersManager.getInstance();
    ZipJarCrawler crawler = new ZipJarCrawler(data);
    DM.clearProviders();/*from w  w  w  .  j  a va  2  s. c om*/
    DM.addProvider(crawler);

    // Read in TLE elements
    File tleFile = new File("/home/zittersteijn/Documents/TLEs/ASTRA20151207.tle");
    FileReader TLEfr;
    Vector<TLE> tles = new Vector<>();
    tles.setSize(30);

    try {
        // read and save TLEs to a vector
        TLEfr = new FileReader("/home/zittersteijn/Documents/TLEs/ASTRA20151207.tle");
        BufferedReader readTLE = new BufferedReader(TLEfr);

        Scanner s = new Scanner(tleFile);

        String line1, line2;
        TLE2 tle = new TLE2();

        int nrOfObj = 4;
        for (int ii = 1; ii < nrOfObj + 1; ii++) {
            System.out.println(ii);
            line1 = s.nextLine();
            line2 = s.nextLine();
            if (TLE.isFormatOK(line1, line2)) {
                tles.setElementAt(new TLE(line1, line2), ii);
                System.out.println(tles.get(ii).toString());
            } else {
                System.out.println("format problem");
            }

        }
        readTLE.close();

        // define a groundstation
        Frame inertialFrame = FramesFactory.getEME2000();
        TimeScale utc = TimeScalesFactory.getUTC();
        double longitude = FastMath.toRadians(7.465);
        double latitude = FastMath.toRadians(46.87);
        double altitude = 950.;
        GeodeticPoint station = new GeodeticPoint(latitude, longitude, altitude);
        Frame earthFrame = FramesFactory.getITRF(IERSConventions.IERS_2010, true);
        BodyShape earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS,
                Constants.WGS84_EARTH_FLATTENING, earthFrame);
        TopocentricFrame staF = new TopocentricFrame(earth, station, "station");

        Vector<Orbit> eles = new Vector<>();
        eles.setSize(tles.size());
        for (int ii = 1; ii < nrOfObj + 1; ii++) {
            double a = FastMath.pow(Constants.WGS84_EARTH_MU / FastMath.pow(tles.get(ii).getMeanMotion(), 2),
                    (1.0 / 3));
            // convert them to orbits
            Orbit kep = new KeplerianOrbit(a, tles.get(ii).getE(), tles.get(ii).getI(),
                    tles.get(ii).getPerigeeArgument(), tles.get(ii).getRaan(), tles.get(ii).getMeanAnomaly(),
                    PositionAngle.MEAN, inertialFrame, tles.get(ii).getDate(), Constants.WGS84_EARTH_MU);

            eles.setElementAt(kep, ii);

            // set up propagators
            KeplerianPropagator kepler = new KeplerianPropagator(eles.get(ii));

            System.out.println("a: " + a);

            // Initial state definition
            double mass = 1000.0;
            SpacecraftState initialState = new SpacecraftState(kep, mass);

            // Adaptive step integrator
            // with a minimum step of 0.001 and a maximum step of 1000
            double minStep = 0.001;
            double maxstep = 1000.0;
            double positionTolerance = 10.0;
            OrbitType propagationType = OrbitType.KEPLERIAN;
            double[][] tolerances = NumericalPropagator.tolerances(positionTolerance, kep, propagationType);
            AdaptiveStepsizeIntegrator integrator = new DormandPrince853Integrator(minStep, maxstep,
                    tolerances[0], tolerances[1]);

            NumericalPropagator propagator = new NumericalPropagator(integrator);
            propagator.setOrbitType(propagationType);

            // set up and add force models
            double AMR = 4.0;
            double crossSection = mass * AMR;
            double Cd = 0.01;
            double Cr = 0.5;
            double Co = 0.8;
            NormalizedSphericalHarmonicsProvider provider = GravityFieldFactory.getNormalizedProvider(4, 4);
            ForceModel holmesFeatherstone = new HolmesFeatherstoneAttractionModel(
                    FramesFactory.getITRF(IERSConventions.IERS_2010, true), provider);
            SphericalSpacecraft ssc = new SphericalSpacecraft(crossSection, Cd, Cr, Co);
            PVCoordinatesProvider sun = CelestialBodyFactory.getSun();
            SolarRadiationPressure srp = new SolarRadiationPressure(sun,
                    Constants.WGS84_EARTH_EQUATORIAL_RADIUS, ssc);

            //                propagator.addForceModel(srp);
            //                propagator.addForceModel(holmesFeatherstone);
            propagator.setInitialState(initialState);

            // propagate the orbits with steps size and tracklet lenght at several epochs (tracklets)
            Vector<AbsoluteDate> startDates = new Vector<>();
            startDates.setSize(1);
            startDates.setElementAt(new AbsoluteDate(2016, 1, 26, 20, 00, 00, utc), 0);

            // set the step size [s] and total length
            double tstep = 100;
            double ld = 3;
            double ls = FastMath.floor(ld * (24 * 60 * 60) / tstep);
            System.out.println(ls);

            SpacecraftState currentStateKep = kepler.propagate(startDates.get(0));
            SpacecraftState currentStatePer = propagator.propagate(startDates.get(0));

            for (int tt = 0; tt < startDates.size(); tt++) {

                // set up output file
                String app = tles.get(ii).getSatelliteNumber() + "_" + startDates.get(tt) + ".txt";

                // with formatted output
                File file1 = new File("/home/zittersteijn/Documents/propagate/keplerian/MEO/" + app);
                File file2 = new File("/home/zittersteijn/Documents/propagate/perturbed/MEO/" + app);
                file1.createNewFile();
                file2.createNewFile();
                Formatter fmt1 = new Formatter(file1);
                Formatter fmt2 = new Formatter(file2);

                for (int kk = 0; kk < (int) ls; kk++) {
                    AbsoluteDate propDate = startDates.get(tt).shiftedBy(tstep * kk);
                    currentStateKep = kepler.propagate(propDate);
                    currentStatePer = propagator.propagate(propDate);

                    System.out.println(currentStateKep.getPVCoordinates().getPosition() + "\t"
                            + currentStateKep.getDate());

                    // convert to RADEC coordinates
                    double[] radecKep = conversions.geo2radec(currentStateKep.getPVCoordinates(), staF,
                            inertialFrame, propDate);
                    double[] radecPer = conversions.geo2radec(currentStatePer.getPVCoordinates(), staF,
                            inertialFrame, propDate);

                    // write the orbit to seperate files with the RA, DEC, epoch and fence given
                    AbsoluteDate year = new AbsoluteDate(YEAR, utc);
                    fmt1.format("%.12f %.12f %.12f %d%n", radecKep[0], radecKep[2],
                            (currentStateKep.getDate().durationFrom(year) / (24 * 3600)), (tt + 1));
                    fmt2.format("%.12f %.12f %.12f %d%n", radecPer[0], radecPer[2],
                            (currentStateKep.getDate().durationFrom(year) / (24 * 3600)), (tt + 1));

                }
                fmt1.flush();
                fmt1.close();
                fmt2.flush();
                fmt2.close();

            }
            double[] radecKep = conversions.geo2radec(currentStateKep.getPVCoordinates(), staF, inertialFrame,
                    new AbsoluteDate(startDates.get(0), ls * tstep));
            double[] radecPer = conversions.geo2radec(currentStatePer.getPVCoordinates(), staF, inertialFrame,
                    new AbsoluteDate(startDates.get(0), ls * tstep));
            double sig0 = 1.0 / 3600.0 / 180.0 * FastMath.PI;
            double dRA = radecKep[0] - radecPer[0] / (sig0 * sig0);
            double dDEC = radecKep[2] - radecPer[2] / (sig0 * sig0);

            System.out.println(dRA + "\t" + dDEC);

        }

    } catch (FileNotFoundException ex) {
        Logger.getLogger(GenTracklets.class.getName()).log(Level.SEVERE, null, ex);
    } catch (IOException iox) {
        Logger.getLogger(GenTracklets.class.getName()).log(Level.SEVERE, null, iox);
    }

}

From source file:gentracklets.GenTracklets.java

public static void main(String[] args) throws OrekitException {

    // load the data files
    File data = new File("/home/zittersteijn/Documents/java/libraries/orekit-data.zip");
    DataProvidersManager DM = DataProvidersManager.getInstance();
    ZipJarCrawler crawler = new ZipJarCrawler(data);
    DM.clearProviders();//from   ww  w.  j  ava  2  s . c o  m
    DM.addProvider(crawler);

    // Read in TLE elements
    File tleFile = new File("/home/zittersteijn/Documents/TLEs/ASTRA20151207.tle");
    FileReader TLEfr;
    Vector<TLE> tles = new Vector<>();
    tles.setSize(30);

    try {
        // read and save TLEs to a vector
        TLEfr = new FileReader("/home/zittersteijn/Documents/TLEs/ASTRA20151207.tle");
        BufferedReader readTLE = new BufferedReader(TLEfr);

        Scanner s = new Scanner(tleFile);

        String line1, line2;
        TLE2 tle = new TLE2();

        int nrOfObj = 4;
        for (int ii = 1; ii < nrOfObj + 1; ii++) {
            System.out.println(ii);
            line1 = s.nextLine();
            line2 = s.nextLine();
            if (TLE.isFormatOK(line1, line2)) {
                tles.setElementAt(new TLE(line1, line2), ii);
                System.out.println(tles.get(ii).toString());
            } else {
                System.out.println("format problem");
            }

        }
        readTLE.close();

        // define a groundstation
        Frame inertialFrame = FramesFactory.getEME2000();
        TimeScale utc = TimeScalesFactory.getUTC();
        double longitude = FastMath.toRadians(7.465);
        double latitude = FastMath.toRadians(46.87);
        double altitude = 950.;
        GeodeticPoint station = new GeodeticPoint(latitude, longitude, altitude);
        Frame earthFrame = FramesFactory.getITRF(IERSConventions.IERS_2010, true);
        BodyShape earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS,
                Constants.WGS84_EARTH_FLATTENING, earthFrame);
        TopocentricFrame staF = new TopocentricFrame(earth, station, "station");

        Vector<Orbit> eles = new Vector<>();
        eles.setSize(tles.size());
        for (int ii = 1; ii < nrOfObj + 1; ii++) {
            double a = FastMath.pow(Constants.WGS84_EARTH_MU / FastMath.pow(tles.get(ii).getMeanMotion(), 2),
                    (1.0 / 3));
            // convert them to orbits
            Orbit kep = new KeplerianOrbit(a, tles.get(ii).getE(), tles.get(ii).getI(),
                    tles.get(ii).getPerigeeArgument(), tles.get(ii).getRaan(), tles.get(ii).getMeanAnomaly(),
                    PositionAngle.MEAN, inertialFrame, tles.get(ii).getDate(), Constants.WGS84_EARTH_MU);

            eles.setElementAt(kep, ii);

            // set up propagators
            KeplerianPropagator kepler = new KeplerianPropagator(eles.get(ii));

            System.out.println("a: " + a);

            // Initial state definition
            double mass = 1000.0;
            SpacecraftState initialState = new SpacecraftState(kep, mass);

            // Adaptive step integrator
            // with a minimum step of 0.001 and a maximum step of 1000
            double minStep = 0.001;
            double maxstep = 1000.0;
            double positionTolerance = 10.0;
            OrbitType propagationType = OrbitType.KEPLERIAN;
            double[][] tolerances = NumericalPropagator.tolerances(positionTolerance, kep, propagationType);
            AdaptiveStepsizeIntegrator integrator = new DormandPrince853Integrator(minStep, maxstep,
                    tolerances[0], tolerances[1]);

            NumericalPropagator propagator = new NumericalPropagator(integrator);
            propagator.setOrbitType(propagationType);

            // set up and add force models
            double AMR = 0.4;
            double crossSection = mass * AMR;
            double Cd = 0.01;
            double Cr = 0.5;
            double Co = 0.8;
            NormalizedSphericalHarmonicsProvider provider = GravityFieldFactory.getNormalizedProvider(4, 4);
            ForceModel holmesFeatherstone = new HolmesFeatherstoneAttractionModel(
                    FramesFactory.getITRF(IERSConventions.IERS_2010, true), provider);
            SphericalSpacecraft ssc = new SphericalSpacecraft(crossSection, Cd, Cr, Co);
            PVCoordinatesProvider sun = CelestialBodyFactory.getSun();
            SolarRadiationPressure srp = new SolarRadiationPressure(sun,
                    Constants.WGS84_EARTH_EQUATORIAL_RADIUS, ssc);

            propagator.addForceModel(srp);
            propagator.addForceModel(holmesFeatherstone);
            propagator.setInitialState(initialState);

            // propagate the orbits with steps size and tracklet lenght at several epochs (tracklets)
            Vector<AbsoluteDate> startDates = new Vector<>();
            startDates.setSize(3);
            startDates.setElementAt(new AbsoluteDate(2015, 12, 8, 20, 00, 00, utc), 0);
            startDates.setElementAt(new AbsoluteDate(2015, 12, 9, 21, 00, 00, utc), 1);
            startDates.setElementAt(new AbsoluteDate(2015, 12, 10, 22, 00, 00, utc), 2);

            double tstep = 30;
            int l = 7;

            for (int tt = 0; tt < startDates.size(); tt++) {

                // set up output file
                String app = "S_" + tles.get(ii).getSatelliteNumber() + "_" + startDates.get(tt) + ".txt";
                //                    FileWriter trackletsOutKep = new FileWriter("/home/zittersteijn/Documents/tracklets/simulated/keplerian/ASTRA/dt1h/AMR040/" + app);
                //                    FileWriter trackletsOutPer = new FileWriter("/home/zittersteijn/Documents/tracklets/simulated/perturbed/ASTRA/dt1h/AMR040/" + app);
                //                    BufferedWriter trackletsKepBW = new BufferedWriter(trackletsOutKep);
                //                    BufferedWriter trackletsPerBW = new BufferedWriter(trackletsOutPer);

                // with formatted output
                File file1 = new File(
                        "/home/zittersteijn/Documents/tracklets/simulated/keplerian/ASTRA/dt1d/AMR040/" + app);
                File file2 = new File(
                        "/home/zittersteijn/Documents/tracklets/simulated/perturbed/ASTRA/dt1d/AMR040/" + app);
                file1.createNewFile();
                file2.createNewFile();
                Formatter fmt1 = new Formatter(file1);
                Formatter fmt2 = new Formatter(file2);

                for (int kk = 0; kk < l; kk++) {
                    AbsoluteDate propDate = startDates.get(tt).shiftedBy(tstep * kk);
                    SpacecraftState currentStateKep = kepler.propagate(propDate);
                    SpacecraftState currentStatePer = propagator.propagate(propDate);

                    System.out.println(currentStateKep.getPVCoordinates().getPosition() + "\t"
                            + currentStateKep.getDate());

                    // convert to RADEC coordinates
                    double[] radecKep = conversions.geo2radec(currentStateKep.getPVCoordinates(), staF,
                            inertialFrame, propDate);
                    double[] radecPer = conversions.geo2radec(currentStatePer.getPVCoordinates(), staF,
                            inertialFrame, propDate);

                    // write the tracklets to seperate files with the RA, DEC, epoch and fence given
                    //                        System.out.println(tles.get(kk).getSatelliteNumber() + "\t" + radec[0] / (2 * FastMath.PI) * 180 + "\t" + currentState.getDate());
                    AbsoluteDate year = new AbsoluteDate(YEAR, utc);
                    fmt1.format("%.12f %.12f %.12f %d%n", radecKep[0], radecKep[2],
                            (currentStateKep.getDate().durationFrom(year) / (24 * 3600)), (tt + 1));
                    fmt2.format("%.12f %.12f %.12f %d%n", radecPer[0], radecPer[2],
                            (currentStateKep.getDate().durationFrom(year) / (24 * 3600)), (tt + 1));

                }
                fmt1.flush();
                fmt1.close();
                fmt2.flush();
                fmt2.close();

            }
        }

    } catch (FileNotFoundException ex) {
        Logger.getLogger(GenTracklets.class.getName()).log(Level.SEVERE, null, ex);
    } catch (IOException iox) {
        Logger.getLogger(GenTracklets.class.getName()).log(Level.SEVERE, null, iox);
    }

}

From source file:Main.java

public static String hexEncode(byte[] in) {
    StringBuilder builder = new StringBuilder(in.length * 2);

    Formatter formatter = new Formatter(builder);
    for (byte inByte : in) {
        formatter.format("%02x", inByte);
    }// w w  w  .  j a va2  s  . co  m

    return builder.toString();
}

From source file:Main.java

public static String byteArrayToHexString(byte[] paramArrayOfByte) {
    StringBuilder localStringBuilder = new StringBuilder(2 * paramArrayOfByte.length);
    Formatter localFormatter = new Formatter(localStringBuilder);
    int i = paramArrayOfByte.length;
    for (int j = 0; j < i; j++) {
        byte b = paramArrayOfByte[j];
        Object[] arrayOfObject = new Object[1];
        arrayOfObject[0] = Byte.valueOf(b);
        localFormatter.format("%02x", arrayOfObject);
    }//  w  w w.  java  2 s  . c  o  m
    localFormatter.close();
    return localStringBuilder.toString();
}

From source file:Main.java

public static String toHexString(byte[] bytes) {
    // Used to parse byte array and return as string
    StringBuilder sb = new StringBuilder(bytes.length * 2);

    Formatter formatter = new Formatter(sb);
    for (byte b : bytes) {
        formatter.format("%02x", b);
    }//from w w w.j  a va  2s . c  om
    formatter.close();
    return sb.toString();
}

From source file:Main.java

private static String encodeHex(byte[] data) {
    StringBuilder sb = new StringBuilder(data.length * 2);
    Formatter formatter = new Formatter(sb);
    for (byte b : data) {
        formatter.format("%02x", b);
    }//from   ww  w .  j av  a  2 s.c o  m
    return sb.toString();
}

From source file:Main.java

private static String mBytesToHexString(byte[] bytes) {
    StringBuilder sb = new StringBuilder(bytes.length * 2);

    Formatter formatter = new Formatter(sb);
    for (byte b : bytes) {
        formatter.format("%02x", b);
    }//  ww w. j a  va  2s .c o  m

    return "0x" + sb.toString().toUpperCase();
}

From source file:Main.java

public static String toUUIDFormat(byte[] bytes) {
    byte[] switched = new byte[] { bytes[3], bytes[2], bytes[1], bytes[0], bytes[5], bytes[4], bytes[7],
            bytes[6], bytes[8], bytes[9], bytes[10], bytes[11], bytes[12], bytes[13], bytes[14], bytes[15] };

    StringBuilder sb = new StringBuilder(bytes.length * 2);
    Formatter formatter = new Formatter(sb);
    for (byte b : switched) {
        formatter.format("%02x", b);
    }// www .j ava2  s. c  o m
    sb.insert(8, "-");
    sb.insert(13, "-");
    sb.insert(18, "-");
    sb.insert(23, "-");

    String temp = sb.toString().toUpperCase();
    formatter.close();
    return temp;
}

From source file:Main.java

/**
 * Returns the Md5 hash for the given text.
 * //from   www  . j av a2s .com
 * @param text
 *            String whose Md5 hash should be returned.
 * @return Returns the Md5 hash for the given text.
 */
public static String getMd5Hash(String text) {
    StringBuffer result = new StringBuffer(32);
    try {
        MessageDigest md5 = MessageDigest.getInstance("MD5");
        md5.update(text.getBytes());
        Formatter f = new Formatter(result);

        byte[] digest = md5.digest();

        for (int i = 0; i < digest.length; i++) {
            f.format("%02x", new Object[] { new Byte(digest[i]) });
        }
    } catch (NoSuchAlgorithmException ex) {
        ex.printStackTrace();
    }

    return result.toString();
}