List of usage examples for java.util Date Date
public Date()
From source file:com.hp.mqm.atrf.Main.java
public static void main(String[] args) { long start = System.currentTimeMillis(); setUncaughtExceptionHandler();//from ww w.j a v a2 s . co m CliParser cliParser = new CliParser(); cliParser.handleHelpAndVersionOptions(args); configureLog4J(); logger.info(System.lineSeparator() + System.lineSeparator()); logger.info("************************************************************************************"); DateFormat dateFormatter = DateFormat.getDateInstance(DateFormat.DEFAULT, Locale.getDefault()); DateFormat timeFormatter = DateFormat.getTimeInstance(DateFormat.DEFAULT, Locale.getDefault()); logger.info((String.format("Starting HPE ALM Test Result Collection Tool %s %s", dateFormatter.format(new Date()), timeFormatter.format(new Date())))); logger.info("************************************************************************************"); FetchConfiguration configuration = cliParser.parse(args); ConfigurationUtilities.setConfiguration(configuration); App app = new App(configuration); app.start(); long end = System.currentTimeMillis(); logger.info(String.format("Finished creating tests and test results on ALM Octane in %s seconds", (end - start) / 1000)); logger.info(System.lineSeparator()); }
From source file:io.minimum.minecraft.rbclean.RedisBungeeClean.java
public static void main(String... args) { Options options = new Options(); Option hostOption = new Option("h", "host", true, "Sets the Redis host to use."); hostOption.setRequired(true);/*from ww w . j a v a2 s . com*/ options.addOption(hostOption); Option portOption = new Option("p", "port", true, "Sets the Redis port to use."); options.addOption(portOption); Option passwordOption = new Option("w", "password", true, "Sets the Redis password to use."); options.addOption(passwordOption); Option dryRunOption = new Option("d", "dry-run", false, "Performs a dry run (no data is modified)."); options.addOption(dryRunOption); CommandLine commandLine; try { commandLine = new DefaultParser().parse(options, args); } catch (ParseException e) { HelpFormatter formatter = new HelpFormatter(); formatter.printHelp("RedisBungeeClean", options); return; } int port = commandLine.hasOption('p') ? Integer.parseInt(commandLine.getOptionValue('p')) : 6379; try (Jedis jedis = new Jedis(commandLine.getOptionValue('h'), port, 0)) { if (commandLine.hasOption('w')) { jedis.auth(commandLine.getOptionValue('w')); } System.out.println("Fetching UUID cache..."); Map<String, String> uuidCache = jedis.hgetAll("uuid-cache"); Gson gson = new Gson(); // Just in case we need it, compress everything in JSON format. if (!commandLine.hasOption('d')) { SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd-hh-mm-ss"); File file = new File("uuid-cache-previous-" + dateFormat.format(new Date()) + ".json.gz"); try { file.createNewFile(); } catch (IOException e) { System.out.println("Can't write backup of the UUID cache, will NOT proceed."); e.printStackTrace(); return; } System.out.println("Creating backup (as " + file.getName() + ")..."); try (OutputStreamWriter bw = new OutputStreamWriter( new GZIPOutputStream(new FileOutputStream(file)))) { gson.toJson(uuidCache, bw); } catch (IOException e) { System.out.println("Can't write backup of the UUID cache, will NOT proceed."); e.printStackTrace(); return; } } System.out.println("Cleaning out the bird cage (this may take a while...)"); int originalSize = uuidCache.size(); for (Iterator<Map.Entry<String, String>> it = uuidCache.entrySet().iterator(); it.hasNext();) { CachedUUIDEntry entry = gson.fromJson(it.next().getValue(), CachedUUIDEntry.class); if (entry.expired()) { it.remove(); } } int newSize = uuidCache.size(); if (commandLine.hasOption('d')) { System.out.println( (originalSize - newSize) + " records would be expunged if a dry run was not conducted."); } else { System.out.println("Expunging " + (originalSize - newSize) + " records..."); Transaction transaction = jedis.multi(); transaction.del("uuid-cache"); transaction.hmset("uuid-cache", uuidCache); transaction.exec(); System.out.println("Expunging complete."); } } }
From source file:DateFormatBest.java
public static void main(String[] args) { Date today = new Date(); DateFormat df = DateFormat.getInstance(); System.out.println(df.format(today)); DateFormat df_fr = DateFormat.getDateInstance(DateFormat.FULL, Locale.FRENCH); System.out.println(df_fr.format(today)); }
From source file:VarArgsDemo.java
public static void main(String[] args) { process(System.out, "Hello", "Goodbye"); process(System.out, 42, 1066, 1776); process(System.out, "Foo", new Date(), new Object()); }
From source file:ch.epfl.lsir.xin.test.UserAverageTest.java
/** * @param args//from w ww . java 2 s .c o m */ public static void main(String[] args) throws Exception { // TODO Auto-generated method stub PrintWriter logger = new PrintWriter(".//results//UserAverage"); PropertiesConfiguration config = new PropertiesConfiguration(); config.setFile(new File(".//conf//UserAverage.properties")); try { config.load(); } catch (ConfigurationException e) { // TODO Auto-generated catch block e.printStackTrace(); } logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data..."); DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt"); loader.readSimple(); DataSetNumeric dataset = loader.getDataset(); System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: " + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size()); logger.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: " + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size()); logger.flush(); double totalMAE = 0; double totalRMSE = 0; int F = 5; logger.println(F + "- folder cross validation."); ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>(); for (int i = 0; i < F; i++) { folders.add(new ArrayList<NumericRating>()); } while (dataset.getRatings().size() > 0) { int index = new Random().nextInt(dataset.getRatings().size()); int r = new Random().nextInt(F); folders.get(r).add(dataset.getRatings().get(index)); dataset.getRatings().remove(index); } for (int folder = 1; folder <= F; folder++) { logger.println("Folder: " + folder); System.out.println("Folder: " + folder); ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>(); ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>(); for (int i = 0; i < folders.size(); i++) { if (i == folder - 1)//test data { testRatings.addAll(folders.get(i)); } else {//training data trainRatings.addAll(folders.get(i)); } } //create rating matrix HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>(); HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>(); for (int i = 0; i < dataset.getUserIDs().size(); i++) { userIDIndexMapping.put(dataset.getUserIDs().get(i), i); } for (int i = 0; i < dataset.getItemIDs().size(); i++) { itemIDIndexMapping.put(dataset.getItemIDs().get(i), i); } RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < trainRatings.size(); i++) { trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()), itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue()); } trainRatingMatrix.calculateGlobalAverage(); RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < testRatings.size(); i++) { testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()), itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue()); } System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: " + testRatingMatrix.getTotalRatingNumber()); logger.println("Initialize a recommendation model based on user average method."); UserAverage algo = new UserAverage(trainRatingMatrix); algo.setLogger(logger); algo.build(); algo.saveModel(".//localModels//" + config.getString("NAME")); logger.println("Save the model."); System.out.println(trainRatings.size() + " vs. " + testRatings.size()); double RMSE = 0; double MAE = 0; int count = 0; for (int i = 0; i < testRatings.size(); i++) { NumericRating rating = testRatings.get(i); double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()), itemIDIndexMapping.get(rating.getItemID())); if (Double.isNaN(prediction)) { System.out.println("no prediction"); continue; } MAE = MAE + Math.abs(rating.getValue() - prediction); RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2); count++; } MAE = MAE / count; RMSE = Math.sqrt(RMSE / count); logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " MAE: " + MAE + " RMSE: " + RMSE); logger.flush(); totalMAE = totalMAE + MAE; totalRMSE = totalRMSE + RMSE; } System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F); logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Final results: MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F); logger.flush(); logger.close(); //MAE: 0.8353035962363073 RMSE: 1.0422971886952053 (MovieLens 100k) }
From source file:ch.epfl.lsir.xin.test.ItemAverageTest.java
/** * @param args// www .ja va 2s .com */ public static void main(String[] args) throws Exception { // TODO Auto-generated method stub PrintWriter logger = new PrintWriter(".//results//ItemAverage"); PropertiesConfiguration config = new PropertiesConfiguration(); config.setFile(new File(".//conf//ItemAverage.properties")); try { config.load(); } catch (ConfigurationException e) { // TODO Auto-generated catch block e.printStackTrace(); } logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data..."); DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt"); loader.readSimple(); DataSetNumeric dataset = loader.getDataset(); System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: " + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size()); logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: " + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size()); logger.flush(); double totalMAE = 0; double totalRMSE = 0; int F = 5; logger.println(F + "- folder cross validation."); ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>(); for (int i = 0; i < F; i++) { folders.add(new ArrayList<NumericRating>()); } while (dataset.getRatings().size() > 0) { int index = new Random().nextInt(dataset.getRatings().size()); int r = new Random().nextInt(F); folders.get(r).add(dataset.getRatings().get(index)); dataset.getRatings().remove(index); } for (int folder = 1; folder <= F; folder++) { logger.println("Folder: " + folder); logger.flush(); System.out.println("Folder: " + folder); ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>(); ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>(); for (int i = 0; i < folders.size(); i++) { if (i == folder - 1)//test data { testRatings.addAll(folders.get(i)); } else {//training data trainRatings.addAll(folders.get(i)); } } //create rating matrix HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>(); HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>(); for (int i = 0; i < dataset.getUserIDs().size(); i++) { userIDIndexMapping.put(dataset.getUserIDs().get(i), i); } for (int i = 0; i < dataset.getItemIDs().size(); i++) { itemIDIndexMapping.put(dataset.getItemIDs().get(i), i); } RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < trainRatings.size(); i++) { trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()), itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue()); } trainRatingMatrix.calculateGlobalAverage(); RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < testRatings.size(); i++) { testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()), itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue()); } System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: " + testRatingMatrix.getTotalRatingNumber()); logger.println("Initialize a recommendation model based on item average method."); ItemAverage algo = new ItemAverage(trainRatingMatrix); algo.setLogger(logger); algo.build(); algo.saveModel(".//localModels//" + config.getString("NAME")); logger.println("Save the model."); logger.flush(); System.out.println(trainRatings.size() + " vs. " + testRatings.size()); double RMSE = 0; double MAE = 0; int count = 0; for (int i = 0; i < testRatings.size(); i++) { NumericRating rating = testRatings.get(i); double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()), itemIDIndexMapping.get(rating.getItemID())); if (Double.isNaN(prediction)) { System.out.println("no prediction"); continue; } MAE = MAE + Math.abs(rating.getValue() - prediction); RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2); count++; } MAE = MAE / count; RMSE = Math.sqrt(RMSE / count); logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " MAE: " + MAE + " RMSE: " + RMSE); logger.flush(); // System.out.println("MAE: " + MAE + " RMSE: " + RMSE); totalMAE = totalMAE + MAE; totalRMSE = totalRMSE + RMSE; } System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F); logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Final results: MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F); logger.flush(); //MAE: 0.8173633324758338 RMSE: 1.0251973503888645 (MovieLens 100K) }
From source file:ch.epfl.lsir.xin.test.MostPopularTest.java
/** * @param args/*from w w w .ja v a2s .co m*/ */ public static void main(String[] args) throws Exception { // TODO Auto-generated method stub PrintWriter logger = new PrintWriter(".//results//MostPopular"); PropertiesConfiguration config = new PropertiesConfiguration(); config.setFile(new File(".//conf//MostPopular.properties")); try { config.load(); } catch (ConfigurationException e) { // TODO Auto-generated catch block e.printStackTrace(); } logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data..."); DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt"); loader.readSimple(); DataSetNumeric dataset = loader.getDataset(); System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: " + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size()); logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: " + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size()); logger.flush(); TrainTestSplitter splitter = new TrainTestSplitter(dataset); splitter.splitFraction(config.getDouble("TRAIN_FRACTION")); ArrayList<NumericRating> trainRatings = splitter.getTrain(); ArrayList<NumericRating> testRatings = splitter.getTest(); HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>(); HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>(); //create rating matrix for (int i = 0; i < dataset.getUserIDs().size(); i++) { userIDIndexMapping.put(dataset.getUserIDs().get(i), i); } for (int i = 0; i < dataset.getItemIDs().size(); i++) { itemIDIndexMapping.put(dataset.getItemIDs().get(i), i); } RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < trainRatings.size(); i++) { trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()), itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue()); } RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < testRatings.size(); i++) { //only consider 5-star rating in the test set // if( testRatings.get(i).getValue() < 5 ) // continue; testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()), itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue()); } System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: " + testRatingMatrix.getTotalRatingNumber()); logger.println("Initialize a most popular based recommendation model."); MostPopular algo = new MostPopular(trainRatingMatrix); algo.setLogger(logger); algo.build(); algo.saveModel(".//localModels//" + config.getString("NAME")); logger.println("Save the model."); logger.flush(); HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>(); for (int i = 0; i < testRatingMatrix.getRow(); i++) { ArrayList<ResultUnit> rec = algo.getRecommendationList(i); if (rec == null) continue; int total = testRatingMatrix.getUserRatingNumber(i); if (total == 0)//this user is ignored continue; results.put(i, rec); } RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix, trainRatingMatrix); System.out.println("Precision@N: " + generator.getPrecisionN()); System.out.println("Recall@N: " + generator.getRecallN()); System.out.println("MAP@N: " + generator.getMAPN()); System.out.println("MRR@N: " + generator.getMRRN()); System.out.println("NDCG@N: " + generator.getNDCGN()); System.out.println("AUC@N: " + generator.getAUC()); logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "Precision@N: " + generator.getPrecisionN() + "\n" + "Recall@N: " + generator.getRecallN() + "\n" + "MAP@N: " + generator.getMAPN() + "\n" + "MRR@N: " + generator.getMRRN() + "\n" + "NDCG@N: " + generator.getNDCGN() + "\n" + "AUC@N: " + generator.getAUC()); logger.flush(); logger.close(); }
From source file:ch.epfl.lsir.xin.test.SVDPPTest.java
/** * @param args//from ww w. j av a 2 s .co m */ public static void main(String[] args) throws Exception { // TODO Auto-generated method stub PrintWriter logger = new PrintWriter(".//results//SVDPP"); PropertiesConfiguration config = new PropertiesConfiguration(); config.setFile(new File("conf//SVDPlusPlus.properties")); try { config.load(); } catch (ConfigurationException e) { // TODO Auto-generated catch block e.printStackTrace(); } logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data..."); logger.flush(); DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt"); loader.readSimple(); DataSetNumeric dataset = loader.getDataset(); System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: " + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size()); logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: " + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size()); logger.flush(); double totalMAE = 0; double totalRMSE = 0; double totalPrecision = 0; double totalRecall = 0; double totalMAP = 0; double totalNDCG = 0; double totalMRR = 0; double totalAUC = 0; int F = 5; logger.println(F + "- folder cross validation."); logger.flush(); ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>(); for (int i = 0; i < F; i++) { folders.add(new ArrayList<NumericRating>()); } while (dataset.getRatings().size() > 0) { int index = new Random().nextInt(dataset.getRatings().size()); int r = new Random().nextInt(F); folders.get(r).add(dataset.getRatings().get(index)); dataset.getRatings().remove(index); } for (int folder = 1; folder <= F; folder++) { System.out.println("Folder: " + folder); logger.println("Folder: " + folder); logger.flush(); ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>(); ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>(); for (int i = 0; i < folders.size(); i++) { if (i == folder - 1)//test data { testRatings.addAll(folders.get(i)); } else {//training data trainRatings.addAll(folders.get(i)); } } //create rating matrix HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>(); HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>(); for (int i = 0; i < dataset.getUserIDs().size(); i++) { userIDIndexMapping.put(dataset.getUserIDs().get(i), i); } for (int i = 0; i < dataset.getItemIDs().size(); i++) { itemIDIndexMapping.put(dataset.getItemIDs().get(i), i); } RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < trainRatings.size(); i++) { trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()), itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue()); } RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < testRatings.size(); i++) { if (testRatings.get(i).getValue() < 5) continue; testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()), itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue()); } System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: " + testRatingMatrix.getTotalRatingNumber()); logger.println("Initialize a SVD++ recommendation model."); logger.flush(); SVDPlusPlus algo = new SVDPlusPlus(trainRatingMatrix, false, ".//localModels//" + config.getString("NAME")); algo.setLogger(logger); algo.build(); algo.saveModel(".//localModels//" + config.getString("NAME")); logger.println("Save the model."); logger.flush(); //rating prediction accuracy double RMSE = 0; double MAE = 0; double precision = 0; double recall = 0; double map = 0; double ndcg = 0; double mrr = 0; double auc = 0; int count = 0; for (int i = 0; i < testRatings.size(); i++) { NumericRating rating = testRatings.get(i); double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()), itemIDIndexMapping.get(rating.getItemID()), false); if (prediction > algo.getMaxRating()) prediction = algo.getMaxRating(); if (prediction < algo.getMinRating()) prediction = algo.getMinRating(); if (Double.isNaN(prediction)) { System.out.println("no prediction"); continue; } MAE = MAE + Math.abs(rating.getValue() - prediction); RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2); count++; } MAE = MAE / count; RMSE = Math.sqrt(RMSE / count); totalMAE = totalMAE + MAE; totalRMSE = totalRMSE + RMSE; System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE); logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: " + MAE + " RMSE: " + RMSE); //ranking accuracy if (algo.getTopN() > 0) { HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>(); for (int i = 0; i < trainRatingMatrix.getRow(); i++) { ArrayList<ResultUnit> rec = algo.getRecommendationList(i); if (rec == null) continue; int total = testRatingMatrix.getUserRatingNumber(i); if (total == 0)//this user is ignored continue; results.put(i, rec); } RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix); precision = generator.getPrecisionN(); totalPrecision = totalPrecision + precision; recall = generator.getRecallN(); totalRecall = totalRecall + recall; map = generator.getMAPN(); totalMAP = totalMAP + map; ndcg = generator.getNDCGN(); totalNDCG = totalNDCG + ndcg; mrr = generator.getMRRN(); totalMRR = totalMRR + mrr; auc = generator.getAUC(); totalAUC = totalAUC + auc; System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc); logger.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc); } logger.flush(); } System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F); System.out.println("Precision@N: " + totalPrecision / F); System.out.println("Recall@N: " + totalRecall / F); System.out.println("MAP@N: " + totalMAP / F); System.out.println("MRR@N: " + totalMRR / F); System.out.println("NDCG@N: " + totalNDCG / F); System.out.println("AUC@N: " + totalAUC / F); logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n" + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F); logger.flush(); logger.close(); }
From source file:com.taobao.tddl.common.DynamicLogTest.java
public static void main(String[] args) throws InterruptedException { MockServer.setUpMockServer();//from ww w . jav a 2s .c o m DynamicLog dynamicLog = DynamicLog.getInstance("test"); new Thread(new Runnable() { @Override public void run() { for (int i = 0; i < 300; i++) { try { Thread.sleep(1000); } catch (InterruptedException e) { } MockServer.setConfigInfo("com.taobao.tddl.v1_test_buryPoints", getSpringXmlString("test", // i + "+ 'th:date='+(java.util.Date)args[0]")); } } }).start(); for (int i = 0; i < 300; i++) { dynamicLog.warn("test", new Object[] { new Date() }, "defaultLog", log); Thread.sleep(1000); } MockServer.tearDownMockServer(); }
From source file:com.mmone.gpdati.config.GpDatiProperties.java
public static void main(String[] args) { String s = "C:/svnprjects/mauro_netbprj/abs-ota-soapui-listener/test/FILE_DISPO__%s.txt"; String td = DateFormatUtils.format(new Date(), "yyyyMMdd"); System.out.println(String.format(s, td)); }