Example usage for java.util Collections shuffle

List of usage examples for java.util Collections shuffle

Introduction

In this page you can find the example usage for java.util Collections shuffle.

Prototype

@SuppressWarnings({ "rawtypes", "unchecked" })
public static void shuffle(List<?> list, Random rnd) 

Source Link

Document

Randomly permute the specified list using the specified source of randomness.

Usage

From source file:MainClass.java

public static void main(String args[]) {
    String s[] = { "A", "B", "C", "D", "E", "H", "I" };
    List list1 = Arrays.asList(s);
    List list2 = Arrays.asList(s);
    Random rand = new Random(100);
    Collections.shuffle(list1, rand);
    Collections.shuffle(list2, rand);
    System.out.println(list1);/* w w w .ja  v  a2  s  . c o m*/
    System.out.println(list2);
}

From source file:ShuffleTest.java

public static void main(String args[]) {
    String simpsons[] = { "Bart", "Hugo", "Lisa", "Marge", "Homer", "Maggie", "Roy" };
    List list1 = Arrays.asList(simpsons);
    List list2 = Arrays.asList(simpsons);
    Random rand = new Random(100);
    Collections.shuffle(list1, rand);
    Collections.shuffle(list2, rand);
    System.out.println(list1);//from  w ww  .j av  a 2s  .  c om
    System.out.println(list2);
}

From source file:Main.java

public static void main(String args[]) {
    // create Linked List
    List<Integer> list = new LinkedList<Integer>();

    // populate list
    list.add(5);/*from w  ww  .  j a  v  a2  s .c o  m*/
    list.add(2);
    list.add(1);
    list.add(-3);

    System.out.println("List before shuffle: " + list);

    // shuffle the list
    Collections.shuffle(list, new Random());

    System.out.println("List after shuffle: " + list);
}

From source file:de.tudarmstadt.ukp.experiments.argumentation.convincingness.sampling.Step2ArgumentPairsSampling.java

public static void main(String[] args) throws Exception {
    String inputDir = args[0];//w w  w. ja v a 2  s.  c  o  m

    // /tmp
    File outputDir = new File(args[1]);
    if (!outputDir.exists()) {
        outputDir.mkdirs();
    }

    // pseudo-random
    final Random random = new Random(1);

    int totalPairsCount = 0;

    // read all debates
    for (File file : IOHelper.listXmlFiles(new File(inputDir))) {
        Debate debate = DebateSerializer.deserializeFromXML(FileUtils.readFileToString(file, "utf-8"));

        // get two stances
        SortedSet<String> originalStances = debate.getStances();

        // cleaning: some debate has three or more stances (data are inconsistent)
        // remove those with only one argument
        SortedSet<String> stances = new TreeSet<>();
        for (String stance : originalStances) {
            if (debate.getArgumentsForStance(stance).size() > 1) {
                stances.add(stance);
            }
        }

        if (stances.size() != 2) {
            throw new IllegalStateException(
                    "2 stances per debate expected, was " + stances.size() + ", " + stances);
        }

        // for each stance, get pseudo-random N arguments
        for (String stance : stances) {
            List<Argument> argumentsForStance = debate.getArgumentsForStance(stance);

            // shuffle
            Collections.shuffle(argumentsForStance, random);

            // and get max first N arguments
            List<Argument> selectedArguments = argumentsForStance.subList(0,
                    argumentsForStance.size() < MAX_SELECTED_ARGUMENTS_PRO_SIDE ? argumentsForStance.size()
                            : MAX_SELECTED_ARGUMENTS_PRO_SIDE);

            List<ArgumentPair> argumentPairs = new ArrayList<>();

            // now create pairs
            for (int i = 0; i < selectedArguments.size(); i++) {
                for (int j = (i + 1); j < selectedArguments.size(); j++) {
                    Argument arg1 = selectedArguments.get(i);
                    Argument arg2 = selectedArguments.get(j);

                    ArgumentPair argumentPair = new ArgumentPair();
                    argumentPair.setDebateMetaData(debate.getDebateMetaData());

                    // assign arg1 and arg2 pseudo-randomly
                    // (not to have the same argument as arg1 all the time)
                    if (random.nextBoolean()) {
                        argumentPair.setArg1(arg1);
                        argumentPair.setArg2(arg2);
                    } else {
                        argumentPair.setArg1(arg2);
                        argumentPair.setArg2(arg1);
                    }

                    // set unique id
                    argumentPair.setId(argumentPair.getArg1().getId() + "_" + argumentPair.getArg2().getId());

                    argumentPairs.add(argumentPair);
                }
            }

            String fileName = IOHelper.createFileName(debate.getDebateMetaData(), stance);

            File outputFile = new File(outputDir, fileName);

            // and save all sampled pairs into a XML file
            XStreamTools.toXML(argumentPairs, outputFile);

            System.out.println("Saved " + argumentPairs.size() + " pairs to " + outputFile);

            totalPairsCount += argumentPairs.size();
        }

    }

    System.out.println("Total pairs generated: " + totalPairsCount);
}

From source file:de.tudarmstadt.ukp.experiments.argumentation.convincingness.sampling.Step3HITCreator.java

@SuppressWarnings("unchecked")
public static void main(String[] args) throws IOException {
    String inputDir = args[0];//from  ww w.  j a  v a2s.com
    File outputDir = new File(args[1]);

    // sandbox or real MTurk?
    final boolean useSandbox = false;

    // required only for pilot
    // final int randomArgumentPairsCount = 50;

    // pseudo-random generator
    final Random random = new Random(1);

    for (Map.Entry<String, SortedSet<String>> entry : BATCHES.entrySet()) {
        Step3HITCreator hitCreator = new Step3HITCreator(useSandbox);
        hitCreator.outputPath = new File(outputDir, entry.getKey());
        hitCreator.initialize();

        // we will process only a subset first
        List<ArgumentPair> allArgumentPairs = new ArrayList<>();

        Collection<File> files = IOHelper.listXmlFiles(new File(inputDir));

        System.out.println(files);

        // read all files for the given batch
        for (File file : files) {
            if (entry.getValue().contains(file.getName())) {
                allArgumentPairs.addAll((List<ArgumentPair>) XStreamTools.getXStream().fromXML(file));
            }
        }

        // we have to shuffle them
        Collections.shuffle(allArgumentPairs, random);

        // only for pilot
        // List<ArgumentPair> selectedArgumentPairs = allArgumentPairs
        //      .subList(0, randomArgumentPairsCount);

        // for (ArgumentPair argumentPair : selectedArgumentPairs) {
        for (ArgumentPair argumentPair : allArgumentPairs) {
            hitCreator.process(argumentPair);
        }

        hitCreator.collectionProcessComplete();
    }
}

From source file:it.units.malelab.ege.MappingPropertiesExperimenter.java

public static void main(String[] args) throws IOException, InterruptedException, ExecutionException {
    final int n = 10000;
    final int nDist = 10000;
    //prepare problems and methods
    List<String> problems = Lists.newArrayList("bool-parity5", "bool-mopm3", "sr-keijzer6", "sr-nguyen7",
            "sr-pagie1", "sr-vladislavleva4", "other-klandscapes3", "other-klandscapes7", "other-text");
    List<String> mappers = new ArrayList<>();
    for (int gs : new int[] { 64, 128, 256, 512, 1024 }) {
        mappers.add("ge-" + gs + "-2");
        mappers.add("ge-" + gs + "-4");
        mappers.add("ge-" + gs + "-8");
        mappers.add("ge-" + gs + "-12");
        mappers.add("pige-" + gs + "-4");
        mappers.add("pige-" + gs + "-8");
        mappers.add("pige-" + gs + "-16");
        mappers.add("pige-" + gs + "-24");
        mappers.add("hge-" + gs + "-0");
        mappers.add("whge-" + gs + "-2");
        mappers.add("whge-" + gs + "-3");
        mappers.add("whge-" + gs + "-5");
    }//from   ww  w.j  a v  a  2 s .  c o  m
    mappers.add("sge-0-5");
    mappers.add("sge-0-6");
    mappers.add("sge-0-7");
    mappers.add("sge-0-8");
    mappers.clear();
    mappers.addAll(Lists.newArrayList("ge-1024-8", "pige-1024-16", "hge-1024-0", "whge-1024-3", "sge-0-6"));
    PrintStream filePrintStream = null;
    if (args.length > 0) {
        filePrintStream = new PrintStream(args[0]);
    } else {
        filePrintStream = System.out;
    }
    filePrintStream.printf("problem;mapper;genotypeSize;param;property;value%n");
    //prepare distances
    Distance<Node<String>> phenotypeDistance = new CachedDistance<>(new LeavesEdit<String>());
    Distance<Sequence> genotypeDistance = new CachedDistance<>(new Hamming());
    //iterate
    for (String problemName : problems) {
        for (String mapperName : mappers) {
            System.out.printf("%20.20s, %20.20s", problemName, mapperName);
            //build problem
            Problem<String, NumericFitness> problem = null;
            if (problemName.equals("bool-parity5")) {
                problem = new Parity(5);
            } else if (problemName.equals("bool-mopm3")) {
                problem = new MultipleOutputParallelMultiplier(3);
            } else if (problemName.equals("sr-keijzer6")) {
                problem = new HarmonicCurve();
            } else if (problemName.equals("sr-nguyen7")) {
                problem = new Nguyen7(1);
            } else if (problemName.equals("sr-pagie1")) {
                problem = new Pagie1();
            } else if (problemName.equals("sr-vladislavleva4")) {
                problem = new Vladislavleva4(1);
            } else if (problemName.equals("other-klandscapes3")) {
                problem = new KLandscapes(3);
            } else if (problemName.equals("other-klandscapes7")) {
                problem = new KLandscapes(7);
            } else if (problemName.equals("other-text")) {
                problem = new Text();
            }
            //build configuration and evolver
            Mapper mapper = null;
            int genotypeSize = Integer.parseInt(mapperName.split("-")[1]);
            int mapperMainParam = Integer.parseInt(mapperName.split("-")[2]);
            if (mapperName.split("-")[0].equals("ge")) {
                mapper = new StandardGEMapper<>(mapperMainParam, 1, problem.getGrammar());
            } else if (mapperName.split("-")[0].equals("pige")) {
                mapper = new PiGEMapper<>(mapperMainParam, 1, problem.getGrammar());
            } else if (mapperName.split("-")[0].equals("sge")) {
                mapper = new SGEMapper<>(mapperMainParam, problem.getGrammar());
            } else if (mapperName.split("-")[0].equals("hge")) {
                mapper = new HierarchicalMapper<>(problem.getGrammar());
            } else if (mapperName.split("-")[0].equals("whge")) {
                mapper = new WeightedHierarchicalMapper<>(mapperMainParam, false, true, problem.getGrammar());
            }
            //prepare things
            Random random = new Random(1);
            Set<Sequence> genotypes = new LinkedHashSet<>(n);
            //build genotypes
            if (mapperName.split("-")[0].equals("sge")) {
                SGEGenotypeFactory<String> factory = new SGEGenotypeFactory<>((SGEMapper) mapper);
                while (genotypes.size() < n) {
                    genotypes.add(factory.build(random));
                }
                genotypeSize = factory.getBitSize();
            } else {
                BitsGenotypeFactory factory = new BitsGenotypeFactory(genotypeSize);
                while (genotypes.size() < n) {
                    genotypes.add(factory.build(random));
                }
            }
            //build and fill map
            Multimap<Node<String>, Sequence> multimap = HashMultimap.create();
            int progress = 0;
            for (Sequence genotype : genotypes) {
                Node<String> phenotype;
                try {
                    if (mapperName.split("-")[0].equals("sge")) {
                        phenotype = mapper.map((SGEGenotype<String>) genotype, new HashMap<>());
                    } else {
                        phenotype = mapper.map((BitsGenotype) genotype, new HashMap<>());
                    }
                } catch (MappingException e) {
                    phenotype = Node.EMPTY_TREE;
                }
                multimap.put(phenotype, genotype);
                progress = progress + 1;
                if (progress % Math.round(n / 10) == 0) {
                    System.out.print(".");
                }
            }
            System.out.println();
            //compute distances
            List<Pair<Double, Double>> allDistances = new ArrayList<>();
            List<Pair<Double, Double>> allValidDistances = new ArrayList<>();
            Multimap<Node<String>, Double> genotypeDistances = ArrayListMultimap.create();
            for (Node<String> phenotype : multimap.keySet()) {
                for (Sequence genotype1 : multimap.get(phenotype)) {
                    for (Sequence genotype2 : multimap.get(phenotype)) {
                        double gDistance = genotypeDistance.d(genotype1, genotype2);
                        genotypeDistances.put(phenotype, gDistance);
                        if (genotypeDistances.get(phenotype).size() > nDist) {
                            break;
                        }
                    }
                    if (genotypeDistances.get(phenotype).size() > nDist) {
                        break;
                    }
                }
            }
            List<Map.Entry<Node<String>, Sequence>> entries = new ArrayList<>(multimap.entries());
            Collections.shuffle(entries, random);
            for (Map.Entry<Node<String>, Sequence> entry1 : entries) {
                for (Map.Entry<Node<String>, Sequence> entry2 : entries) {
                    double gDistance = genotypeDistance.d(entry1.getValue(), entry2.getValue());
                    double pDistance = phenotypeDistance.d(entry1.getKey(), entry2.getKey());
                    allDistances.add(new Pair<>(gDistance, pDistance));
                    if (!Node.EMPTY_TREE.equals(entry1.getKey()) && !Node.EMPTY_TREE.equals(entry2.getKey())) {
                        allValidDistances.add(new Pair<>(gDistance, pDistance));
                    }
                    if (allDistances.size() > nDist) {
                        break;
                    }
                }
                if (allDistances.size() > nDist) {
                    break;
                }
            }
            //compute properties
            double invalidity = (double) multimap.get(Node.EMPTY_TREE).size() / (double) genotypes.size();
            double redundancy = 1 - (double) multimap.keySet().size() / (double) genotypes.size();
            double validRedundancy = redundancy;
            if (multimap.keySet().contains(Node.EMPTY_TREE)) {
                validRedundancy = 1 - ((double) multimap.keySet().size() - 1d)
                        / (double) (genotypes.size() - multimap.get(Node.EMPTY_TREE).size());
            }
            double locality = Utils.pearsonCorrelation(allDistances);
            double validLocality = Utils.pearsonCorrelation(allValidDistances);
            double[] sizes = new double[multimap.keySet().size()];
            double[] meanGenotypeDistances = new double[multimap.keySet().size()];
            int invalidIndex = -1;
            int c = 0;
            for (Node<String> phenotype : multimap.keySet()) {
                if (Node.EMPTY_TREE.equals(phenotype)) {
                    invalidIndex = c;
                }
                sizes[c] = multimap.get(phenotype).size();
                double[] distances = new double[genotypeDistances.get(phenotype).size()];
                int k = 0;
                for (Double distance : genotypeDistances.get(phenotype)) {
                    distances[k] = distance;
                    k = k + 1;
                }
                meanGenotypeDistances[c] = StatUtils.mean(distances);
                c = c + 1;
            }
            double nonUniformity = Math.sqrt(StatUtils.variance(sizes)) / StatUtils.mean(sizes);
            double nonSynonymousity = StatUtils.mean(meanGenotypeDistances)
                    / StatUtils.mean(firsts(allDistances));
            double validNonUniformity = nonUniformity;
            double validNonSynonymousity = nonSynonymousity;
            if (invalidIndex != -1) {
                double[] validSizes = new double[multimap.keySet().size() - 1];
                double[] validMeanGenotypeDistances = new double[multimap.keySet().size() - 1];
                if (invalidIndex > 0) {
                    System.arraycopy(sizes, 0, validSizes, 0, invalidIndex);
                    System.arraycopy(meanGenotypeDistances, 0, validMeanGenotypeDistances, 0, invalidIndex);
                }
                System.arraycopy(sizes, invalidIndex + 1, validSizes, invalidIndex,
                        sizes.length - invalidIndex - 1);
                System.arraycopy(meanGenotypeDistances, invalidIndex + 1, validMeanGenotypeDistances,
                        invalidIndex, meanGenotypeDistances.length - invalidIndex - 1);
                validNonUniformity = Math.sqrt(StatUtils.variance(validSizes)) / StatUtils.mean(validSizes);
                validNonSynonymousity = StatUtils.mean(validMeanGenotypeDistances)
                        / StatUtils.mean(firsts(allValidDistances));
            }
            //compute locality
            filePrintStream.printf("%s;%s;%d;%d;invalidity;%f %n", problemName, mapperName.split("-")[0],
                    genotypeSize, mapperMainParam, invalidity);
            filePrintStream.printf("%s;%s;%d;%d;redundancy;%f %n", problemName, mapperName.split("-")[0],
                    genotypeSize, mapperMainParam, redundancy);
            filePrintStream.printf("%s;%s;%d;%d;validRedundancy;%f %n", problemName, mapperName.split("-")[0],
                    genotypeSize, mapperMainParam, validRedundancy);
            filePrintStream.printf("%s;%s;%d;%d;locality;%f %n", problemName, mapperName.split("-")[0],
                    genotypeSize, mapperMainParam, locality);
            filePrintStream.printf("%s;%s;%d;%d;validLLocality;%f %n", problemName, mapperName.split("-")[0],
                    genotypeSize, mapperMainParam, validLocality);
            filePrintStream.printf("%s;%s;%d;%d;nonUniformity;%f %n", problemName, mapperName.split("-")[0],
                    genotypeSize, mapperMainParam, nonUniformity);
            filePrintStream.printf("%s;%s;%d;%d;validNonUniformity;%f %n", problemName,
                    mapperName.split("-")[0], genotypeSize, mapperMainParam, validNonUniformity);
            filePrintStream.printf("%s;%s;%d;%d;nonSynonymousity;%f %n", problemName, mapperName.split("-")[0],
                    genotypeSize, mapperMainParam, nonSynonymousity);
            filePrintStream.printf("%s;%s;%d;%d;validNonSynonymousity;%f %n", problemName,
                    mapperName.split("-")[0], genotypeSize, mapperMainParam, validNonSynonymousity);
        }
    }
    if (filePrintStream != null) {
        filePrintStream.close();
    }
}

From source file:Main.java

public static <T> List<T> shuffle(Collection<T> items, Random random) {
    List<T> result = new ArrayList<T>(items);
    Collections.shuffle(result, random);
    return result;
}

From source file:Main.java

private static Bundle createNamePortBundle(String name, int port, TreeMap<String, ArrayList<String>> ips) {
    Bundle namePort = new Bundle();
    namePort.putString("name", name);
    namePort.putInt("port", port);
    if (ips != null) {
        ArrayList<String> ip = ips.get(name);
        Collections.shuffle(ip, new Random());
        namePort.putString("ip", ip.get(0));
    }//from ww w.  jav  a  2 s. c  om
    return namePort;
}

From source file:com.google.android.apps.santatracker.games.cityquiz.CityQuizUtil.java

/**
 * Retrieve a random list of cities./* ww w. j av a  2  s  . c  om*/
 *
 * @param amt Max number of cities to retrieve.
 *
 * @return Random list of cities. If amt is more than the amount of cities available, all cities are returned.
 */
public static List<City> getCities(Context context, int amt) {
    List<City> allCities = getCities(context);
    Collections.shuffle(allCities, new Random());
    if (amt > allCities.size()) {
        amt = allCities.size();
    }
    // Only return the cities that will be used in the game.
    List<City> cities = new ArrayList<>();
    cities.addAll(0, allCities.subList(0, amt));
    return cities;
}

From source file:edu.byu.nlp.util.Counters.java

/**
 * Get the n entries with the largest value based on some comparator. 
 * Used by Counter's argMaxList method. 
 *//*w  w  w .  ja v  a 2  s  .  c  o  m*/
public static <E, V extends Comparable<V>> List<E> argMaxList(Set<Entry<E, V>> entrySet, int topn,
        RandomGenerator rnd) {
    topn = (topn > 0) ? topn : entrySet.size();

    List<Entry<E, V>> entries = Lists.newArrayList(entrySet);
    // shuffle to ensure that ties are broken randomly
    if (rnd != null) {
        Collections.shuffle(entries, new RandomAdaptor(rnd));
    }
    // sort to ensure most voted-for options are at the beginning
    Collections.sort(entries, new Comparator<Entry<E, V>>() {
        @Override
        public int compare(Entry<E, V> o1, Entry<E, V> o2) {
            return (o2.getValue()).compareTo(o1.getValue()); // descending order
        }
    });
    // pull out the top n values
    List<E> vals = Lists.newArrayList();
    for (int i = 0; i < Math.min(topn, entries.size()); i++) {
        vals.add(entries.get(i).getKey());
    }
    return vals;
}