Example usage for java.util Collections emptySet

List of usage examples for java.util Collections emptySet

Introduction

In this page you can find the example usage for java.util Collections emptySet.

Prototype

@SuppressWarnings("unchecked")
public static final <T> Set<T> emptySet() 

Source Link

Document

Returns an empty set (immutable).

Usage

From source file:Main.java

public static void main(String args[]) {
    // create an empty set    
    Set emptyset = Collections.emptySet();

    System.out.println("Created empty immutable set: " + emptyset);

    // try to add elements
    emptyset.add("from java2s.com");
}

From source file:Main.java

public static void main(String args[]) {
    List list = Collections.EMPTY_LIST;
    Set set = Collections.EMPTY_SET;
    Map map = Collections.EMPTY_MAP;

    List<String> s = Collections.emptyList();
    Set<Long> l = Collections.emptySet();
    Map<Date, String> d = Collections.emptyMap();
}

From source file:com.ikanow.aleph2.analytics.spark.assets.SparkPassthroughTopology.java

public static void main(String[] args)
        throws InstantiationException, IllegalAccessException, ClassNotFoundException {

    try {/*from w  w w.j a  v a  2  s .  c  om*/
        final Tuple2<IAnalyticsContext, Optional<ProcessingTestSpecBean>> aleph2_tuple = SparkTechnologyUtils
                .initializeAleph2(args);
        final IAnalyticsContext context = aleph2_tuple._1();
        final Optional<ProcessingTestSpecBean> test_spec = aleph2_tuple._2();

        // Optional: make really really sure it exists after the specified timeout
        SparkTechnologyUtils.registerTestTimeout(test_spec, () -> {
            System.exit(0);
        });

        //INFO:
        System.out.println("Starting SparkPassthroughTopology");

        SparkConf spark_context = new SparkConf().setAppName("SparkPassthroughTopology");

        final Optional<Double> sub_sample = test_spec
                .map(__ -> Optional.ofNullable(spark_context.getDouble(SUBSAMPLE_TEST, -1)))
                .orElseGet(() -> Optional.ofNullable(spark_context.getDouble(SUBSAMPLE_NORMAL, -1)))
                .filter(d -> d > 0);

        //INFO:
        sub_sample.ifPresent(d -> System.out.println("OPTIONS: sub_sample = " + d));
        test_spec.ifPresent(spec -> System.out
                .println("OPTIONS: test_spec = " + BeanTemplateUtils.toJson(spec).toString()));

        //DEBUG
        //final boolean test_mode = test_spec.isPresent(); // (serializable thing i can pass into the map)

        try (final JavaSparkContext jsc = new JavaSparkContext(spark_context)) {

            final Multimap<String, JavaPairRDD<Object, Tuple2<Long, IBatchRecord>>> inputs = SparkTechnologyUtils
                    .buildBatchSparkInputs(context, test_spec, jsc, Collections.emptySet());

            final Optional<JavaPairRDD<Object, Tuple2<Long, IBatchRecord>>> input = inputs.values().stream()
                    .reduce((acc1, acc2) -> acc1.union(acc2));

            long written = input.map(in -> in.values())
                    .map(rdd -> sub_sample.map(sample -> rdd.sample(true, sample)).orElse(rdd)).map(rdd -> {
                        return rdd.map(t2 -> {
                            final Validation<BasicMessageBean, JsonNode> ret_val = context.emitObject(
                                    Optional.empty(), context.getJob().get(), Either.left(t2._2().getJson()),
                                    Optional.empty());
                            return ret_val; // (doesn't matter what I return, just want to count it up)
                        })
                                //DEBUG: (print the output JSON on success and the error message on fail)
                                //.map(val -> test_mode ? val.f().bind(f -> Validation.fail("FAIL: " + f.message())) : val)
                                .count();
                    }).orElse(-1L);

            jsc.stop();

            //INFO:
            System.out.println("Wrote: data_objects=" + written);
        }
    } catch (Throwable t) {
        System.out.println(ErrorUtils.getLongForm("ERROR: {0}", t));
    }
}

From source file:com.ikanow.aleph2.analytics.spark.assets.SparkSqlTopology.java

public static void main(String[] args)
        throws InstantiationException, IllegalAccessException, ClassNotFoundException {

    try {/*w  ww .j a v a 2  s. c  o m*/
        final Tuple2<IAnalyticsContext, Optional<ProcessingTestSpecBean>> aleph2_tuple = SparkTechnologyUtils
                .initializeAleph2(args);
        final IAnalyticsContext context = aleph2_tuple._1();
        final Optional<ProcessingTestSpecBean> test_spec = aleph2_tuple._2();

        // Optional: make really really sure it exists after the specified timeout
        SparkTechnologyUtils.registerTestTimeout(test_spec, () -> {
            System.exit(0);
        });

        final SparkTopologyConfigBean config = BeanTemplateUtils
                .from(context.getJob().map(job -> job.config()).orElse(Collections.emptyMap()),
                        SparkTopologyConfigBean.class)
                .get();
        final String sql_string = Optional.ofNullable(config.script()).orElse("");

        //INFO:
        System.out.println("Starting SparkSqlTopology");

        SparkConf spark_context = new SparkConf().setAppName("SparkSqlTopology");

        final Optional<Double> sub_sample = test_spec
                .map(__ -> Optional.ofNullable(spark_context.getDouble(SUBSAMPLE_TEST, -1)))
                .orElseGet(() -> Optional.ofNullable(spark_context.getDouble(SUBSAMPLE_NORMAL, -1)))
                .filter(d -> d > 0);

        //INFO:
        sub_sample.ifPresent(d -> System.out.println("OPTIONS: sub_sample = " + d));
        test_spec.ifPresent(spec -> System.out
                .println("OPTIONS: test_spec = " + BeanTemplateUtils.toJson(spec).toString()));
        System.out.println("OPTIONS: sql = " + sql_string);

        //DEBUG
        //final boolean test_mode = test_spec.isPresent(); // (serializable thing i can pass into the map)

        try (final JavaSparkContext jsc = new JavaSparkContext(spark_context)) {

            SQLContext sql_context = new SQLContext(jsc);

            final Multimap<String, DataFrame> inputs = SparkTechnologyUtils.buildBatchSparkSqlInputs(context,
                    test_spec, sql_context, Collections.emptySet());

            //INFO
            System.out.println("Registered tables = " + inputs.keySet().toString());

            final DataFrame filtered_df = sql_context.sql(sql_string);
            final String[] columns = filtered_df.columns(); // (have to do this here because columns() depends on transient code)

            final long written = filtered_df.javaRDD().map(row -> {
                final ObjectNode j = _mapper.createObjectNode(); //.put("message", row.toString()); (Don't think we want this now that we're using the columns)
                for (int ii = 0; ii < row.length(); ++ii) {
                    j.set(columns[ii], _mapper.convertValue(row.get(ii), JsonNode.class));
                }
                return context.emitObject(Optional.empty(), context.getJob().get(), Either.left(j),
                        Optional.empty());
            }).count();

            //INFO:
            System.out.println("Wrote: data_objects=" + written);
        }
    } catch (Throwable t) {
        System.out.println(ErrorUtils.getLongForm("ERROR: {0}", t));
    }
}

From source file:com.ikanow.aleph2.analytics.spark.assets.SparkJsInterpreterTopology.java

public static void main(String[] args)
        throws InstantiationException, IllegalAccessException, ClassNotFoundException {

    final SetOnce<IBucketLogger> bucket_logger = new SetOnce<>();
    final SetOnce<String> job_name = new SetOnce<>(); // (the string we'll use in logging activities)
    try {//from   w  ww.j  av  a  2s.com
        final Tuple2<IAnalyticsContext, Optional<ProcessingTestSpecBean>> aleph2_tuple = SparkTechnologyUtils
                .initializeAleph2(args);
        final IAnalyticsContext context = aleph2_tuple._1();
        final Optional<ProcessingTestSpecBean> test_spec = aleph2_tuple._2();

        bucket_logger.set(context.getLogger(context.getBucket()));
        job_name.set(context.getJob().map(j -> j.name()).orElse("no_name"));

        // Optional: make really really sure it exists after the specified timeout
        SparkTechnologyUtils.registerTestTimeout(test_spec, () -> {
            System.exit(0);
        });

        final SparkTopologyConfigBean config = BeanTemplateUtils
                .from(context.getJob().map(job -> job.config()).orElse(Collections.emptyMap()),
                        SparkTopologyConfigBean.class)
                .get();

        final String js_script = Optional.ofNullable(config.script()).orElse("");

        //INFO:
        System.out.println("Starting " + job_name.get());

        SparkConf spark_context = new SparkConf().setAppName(job_name.get());

        test_spec.ifPresent(spec -> System.out
                .println("OPTIONS: test_spec = " + BeanTemplateUtils.toJson(spec).toString()));

        try (final JavaSparkContext jsc = new JavaSparkContext(spark_context)) {

            final Multimap<String, JavaPairRDD<Object, Tuple2<Long, IBatchRecord>>> inputs = SparkTechnologyUtils
                    .buildBatchSparkInputs(context, test_spec, jsc, Collections.emptySet());
            final JavaPairRDD<Object, Tuple2<Long, IBatchRecord>> all_inputs = inputs.values().stream()
                    .reduce((acc1, acc2) -> acc1.union(acc2)).orElse(null);

            // Load globals:
            ScriptEngineManager manager = new ScriptEngineManager();
            ScriptEngine engine = manager.getEngineByName("JavaScript");
            engine.put("_a2_global_context", context);
            engine.put("_a2_global_bucket", context.getBucket().get());
            engine.put("_a2_global_job", context.getJob().get());
            engine.put("_a2_global_config",
                    BeanTemplateUtils.configureMapper(Optional.empty()).convertValue(config, JsonNode.class));
            engine.put("_a2_global_mapper", BeanTemplateUtils.configureMapper(Optional.empty()));
            //TODO (until bucket logger is serializable, don't allow anywhere)
            //engine.put("_a2_bucket_logger", bucket_logger.optional().orElse(null));
            engine.put("_a2_enrichment_name", job_name.get());
            engine.put("_a2_spark_inputs", inputs);
            engine.put("_a2_spark_inputs_all", all_inputs);
            engine.put("_a2_spark_context", jsc);

            Stream.concat(config.uploaded_lang_files().stream(),
                    Stream.of("aleph2_sparkjs_globals_before.js", ""))
                    .flatMap(Lambdas.flatWrap_i(import_path -> {
                        try {
                            if (import_path.equals("")) { // also import the user script just before here
                                return js_script;
                            } else
                                return IOUtils.toString(SparkJsInterpreterTopology.class.getClassLoader()
                                        .getResourceAsStream(import_path), "UTF-8");
                        } catch (Throwable e) {
                            bucket_logger.optional()
                                    .ifPresent(l -> l.log(Level.ERROR,
                                            ErrorUtils.lazyBuildMessage(false,
                                                    () -> SparkJsInterpreterTopology.class.getSimpleName(),
                                                    () -> job_name.get() + ".main", () -> null,
                                                    () -> ErrorUtils.get(
                                                            "Error initializing stage {0} (script {1}): {2}",
                                                            job_name.get(), import_path, e.getMessage()),
                                                    () -> ImmutableMap.<String, Object>of("full_error",
                                                            ErrorUtils.getLongForm("{0}", e)))));

                            System.out.println(ErrorUtils.getLongForm("onStageInitialize: {0}", e));
                            throw e; // ignored
                        }
                    })).forEach(Lambdas.wrap_consumer_i(script -> {
                        try {
                            engine.eval(script);
                        } catch (Throwable e) {
                            bucket_logger.optional()
                                    .ifPresent(l -> l.log(Level.ERROR,
                                            ErrorUtils.lazyBuildMessage(false,
                                                    () -> SparkJsInterpreterTopology.class.getSimpleName(),
                                                    () -> job_name.get() + ".main", () -> null,
                                                    () -> ErrorUtils.get(
                                                            "Error initializing stage {0} (main script): {1}",
                                                            job_name.get(), e.getMessage()),
                                                    () -> ImmutableMap.<String, Object>of("full_error",
                                                            ErrorUtils.getLongForm("{0}", e)))));

                            System.out.println(ErrorUtils.getLongForm("onStageInitialize: {0}", e));
                            throw e; // ignored
                        }
                    }));
            ;

            jsc.stop();

            //INFO:
            System.out.println("Finished " + job_name.get());
        }
    } catch (Throwable t) {
        System.out.println(ErrorUtils.getLongForm("ERROR: {0}", t));

        bucket_logger.optional().ifPresent(l -> l.log(Level.ERROR, ErrorUtils.lazyBuildMessage(false,
                () -> SparkJsInterpreterTopology.class.getSimpleName()
                        + job_name.optional().map(j -> "." + j).orElse(""),
                () -> job_name.optional().orElse("global") + ".main", () -> null,
                () -> ErrorUtils.get("Error on batch in job {0}: {1}",
                        job_name.optional().orElse("global") + ".main", t.getMessage()),
                () -> ImmutableMap.<String, Object>of("full_error", ErrorUtils.getLongForm("{0}", t)))));
    }
}

From source file:com.act.lcms.v2.MZCollisionCounter.java

public static void main(String[] args) throws Exception {
    CLIUtil cliUtil = new CLIUtil(MassChargeCalculator.class, HELP_MESSAGE, OPTION_BUILDERS);
    CommandLine cl = cliUtil.parseCommandLine(args);

    File inputFile = new File(cl.getOptionValue(OPTION_INPUT_INCHI_LIST));
    if (!inputFile.exists()) {
        cliUtil.failWithMessage("Input file at does not exist at %s", inputFile.getAbsolutePath());
    }//from   www. jav  a2 s. c om

    List<MassChargeCalculator.MZSource> sources = new ArrayList<>();
    try (BufferedReader reader = new BufferedReader(new FileReader(inputFile))) {
        String line;
        while ((line = reader.readLine()) != null) {
            line = line.trim();
            sources.add(new MassChargeCalculator.MZSource(line));
            if (sources.size() % 1000 == 0) {
                LOGGER.info("Loaded %d sources from input file", sources.size());
            }
        }
    }

    Set<String> considerIons = Collections.emptySet();
    if (cl.hasOption(OPTION_ONLY_CONSIDER_IONS)) {
        List<String> ions = Arrays.asList(cl.getOptionValues(OPTION_ONLY_CONSIDER_IONS));
        LOGGER.info("Only considering ions for m/z calculation: %s", StringUtils.join(ions, ", "));
        considerIons = new HashSet<>(ions);
    }

    TSVWriter<String, Long> tsvWriter = new TSVWriter<>(Arrays.asList("collisions", "count"));
    tsvWriter.open(new File(cl.getOptionValue(OPTION_OUTPUT_FILE)));

    try {
        LOGGER.info("Loaded %d sources in total from input file", sources.size());

        MassChargeCalculator.MassChargeMap mzMap = MassChargeCalculator.makeMassChargeMap(sources,
                considerIons);

        if (!cl.hasOption(OPTION_COUNT_WINDOW_INTERSECTIONS)) {
            // Do an exact analysis of the m/z collisions if windowing is not specified.

            LOGGER.info("Computing precise collision histogram.");
            Iterable<Double> mzs = mzMap.ionMZIter();
            Map<Integer, Long> collisionHistogram = histogram(
                    StreamSupport.stream(mzs.spliterator(), false).map(mz -> { // See comment about Iterable below.
                        try {
                            return mzMap.ionMZToMZSources(mz).size();
                        } catch (NoSuchElementException e) {
                            LOGGER.error("Caught no such element exception for mz %f: %s", mz, e.getMessage());
                            throw e;
                        }
                    }));
            List<Integer> sortedCollisions = new ArrayList<>(collisionHistogram.keySet());
            Collections.sort(sortedCollisions);
            for (Integer collision : sortedCollisions) {
                tsvWriter.append(new HashMap<String, Long>() {
                    {
                        put("collisions", collision.longValue());
                        put("count", collisionHistogram.get(collision));
                    }
                });
            }
        } else {
            /* After some deliberation (thanks Gil!), the windowed variant of this calculation counts the number of
             * structures whose 0.01 Da m/z windows (for some set of ions) overlap with each other.
             *
             * For example, let's assume we have five total input structures, and are only searching for one ion.  Let's
             * also assume that three of those structures have m/z A and the remaining two have m/z B.  The windows might
             * look like this in the m/z domain:
             * |----A----|
             *        |----B----|
             * Because A represents three structures and overlaps with B, which represents two, we assign A a count of 5--
             * this is the number of structures we believe could fall into the range of A given our current peak calling
             * approach.  Similarly, B is assigned a count of 5, as the possibility for collision/confusion is symmetric.
             *
             * Note that this is an over-approximation of collisions, as we could more precisely only consider intersections
             * when the exact m/z of B falls within the window around A and vice versa.  However, because we have observed
             * cases where the MS sensor doesn't report structures at exactly the m/z we predict, we employ this weaker
             * definition of intersection to give a slightly pessimistic view of what confusions might be possible. */
            // Compute windows for every m/z.  We don't care about the original mz values since we just want the count.
            List<Double> mzs = mzMap.ionMZsSorted();

            final Double windowHalfWidth;
            if (cl.hasOption(OPTION_WINDOW_HALFWIDTH)) {
                // Don't use get with default for this option, as we want the exact FP value of the default tolerance.
                windowHalfWidth = Double.valueOf(cl.getOptionValue(OPTION_WINDOW_HALFWIDTH));
            } else {
                windowHalfWidth = DEFAULT_WINDOW_TOLERANCE;
            }

            /* Window = (lower bound, upper bound), counter of represented m/z's that collide with this window, and number
             * of representative structures (which will be used in counting collisions). */
            LinkedList<CollisionWindow> allWindows = new LinkedList<CollisionWindow>() {
                {
                    for (Double mz : mzs) {
                        // CPU for memory trade-off: don't re-compute the window bounds over and over and over and over and over.
                        try {
                            add(new CollisionWindow(mz, windowHalfWidth, mzMap.ionMZToMZSources(mz).size()));
                        } catch (NoSuchElementException e) {
                            LOGGER.error("Caught no such element exception for mz %f: %s", mz, e.getMessage());
                            throw e;
                        }
                    }
                }
            };

            // Sweep line time!  The window ranges are the interesting points.  We just accumulate overlap counts as we go.
            LinkedList<CollisionWindow> workingSet = new LinkedList<>();
            List<CollisionWindow> finished = new LinkedList<>();

            while (allWindows.size() > 0) {
                CollisionWindow thisWindow = allWindows.pop();
                // Remove any windows from the working set that don't overlap with the next window.
                while (workingSet.size() > 0 && workingSet.peekFirst().getMaxMZ() < thisWindow.getMinMZ()) {
                    finished.add(workingSet.pop());
                }

                for (CollisionWindow w : workingSet) {
                    /* Add the size of the new overlapping window's structure count to each of the windows in the working set,
                     * which represents the number of possible confused structures that fall within the overlapping region.
                     * We exclude the window itself as it should already have counted the colliding structures it represents. */
                    w.getAccumulator().add(thisWindow.getStructureCount());

                    /* Reciprocally, add the structure counts of all windows with which the current window overlaps to it. */
                    thisWindow.getAccumulator().add(w.getStructureCount());
                }

                // Now that accumulation is complete, we can safely add the current window.
                workingSet.add(thisWindow);
            }

            // All the interesting events are done, so drop the remaining windows into the finished set.
            finished.addAll(workingSet);

            Map<Long, Long> collisionHistogram = histogram(
                    finished.stream().map(w -> w.getAccumulator().longValue()));
            List<Long> sortedCollisions = new ArrayList<>(collisionHistogram.keySet());
            Collections.sort(sortedCollisions);
            for (Long collision : sortedCollisions) {
                tsvWriter.append(new HashMap<String, Long>() {
                    {
                        put("collisions", collision);
                        put("count", collisionHistogram.get(collision));
                    }
                });
            }
        }
    } finally {
        if (tsvWriter != null) {
            tsvWriter.close();
        }
    }
}

From source file:com.ikanow.aleph2.analytics.spark.assets.SparkScalaInterpreterTopology.java

public static void main(String[] args)
        throws InstantiationException, IllegalAccessException, ClassNotFoundException {

    final SetOnce<IBucketLogger> logger = new SetOnce<>();

    try {/*from w ww  . ja va2 s .  co m*/
        final Tuple2<IAnalyticsContext, Optional<ProcessingTestSpecBean>> aleph2_tuple = SparkTechnologyUtils
                .initializeAleph2(args);
        final IAnalyticsContext context = aleph2_tuple._1();
        final Optional<ProcessingTestSpecBean> test_spec = aleph2_tuple._2();

        logger.set(context.getLogger(context.getBucket()));

        // Optional: make really really sure it exists after the specified timeout
        SparkTechnologyUtils.registerTestTimeout(test_spec, () -> {
            System.exit(0);
        });

        //INFO:
        System.out.println("Starting SparkScalaInterpreterTopology logging=" + logger.optional().isPresent());

        logger.optional().ifPresent(l -> {
            l.inefficientLog(Level.INFO,
                    ErrorUtils.buildSuccessMessage("SparkScalaInterpreterTopology", "main",
                            "Starting SparkScalaInterpreterTopology.{0}",
                            Optionals.of(() -> context.getJob().get().name()).orElse("no_name")));
        });

        final SparkTopologyConfigBean job_config = BeanTemplateUtils
                .from(context.getJob().map(job -> job.config()).orElse(Collections.emptyMap()),
                        SparkTopologyConfigBean.class)
                .get();
        final String scala_script = Optional.ofNullable(job_config.script()).orElse("");

        final String wrapper_script = IOUtils.toString(
                SparkScalaInterpreterTopology.class.getClassLoader().getResourceAsStream("ScriptRunner.scala"),
                "UTF-8");
        final String to_compile = wrapper_script.replace("USER_SCRIPT", scala_script);
        final SparkCompilerService scs = new SparkCompilerService();
        final Tuple2<ClassLoader, Object> o = scs.buildClass(to_compile, "ScriptRunner", logger.optional());

        Thread.currentThread().setContextClassLoader(o._1());

        test_spec.ifPresent(spec -> System.out
                .println("OPTIONS: test_spec = " + BeanTemplateUtils.toJson(spec).toString()));

        SparkConf spark_context = new SparkConf().setAppName("SparkPassthroughTopology");

        final long streaming_batch_interval = (long) spark_context
                .getInt(SparkTopologyConfigBean.STREAMING_BATCH_INTERVAL, 10);

        // MAIN PROCESSING

        final Method m = o._2().getClass().getMethod("runScript", SparkScriptEngine.class);

        //DEBUG
        //final boolean test_mode = test_spec.isPresent(); // (serializable thing i can pass into the map)

        boolean is_streaming = context.getJob().map(j -> j.analytic_type())
                .map(t -> MasterEnrichmentType.streaming == t).orElse(false);
        final Either<JavaSparkContext, JavaStreamingContext> jsc = Lambdas.get(() -> {
            return is_streaming
                    ? Either.<JavaSparkContext, JavaStreamingContext>right(new JavaStreamingContext(
                            spark_context, Durations.seconds(streaming_batch_interval)))
                    : Either.<JavaSparkContext, JavaStreamingContext>left(new JavaSparkContext(spark_context));
        });
        try {
            final JavaSparkContext jsc_batch = jsc.either(l -> l, r -> r.sparkContext());

            final Multimap<String, JavaPairRDD<Object, Tuple2<Long, IBatchRecord>>> inputs = SparkTechnologyUtils
                    .buildBatchSparkInputs(context, test_spec, jsc_batch, Collections.emptySet());

            final Multimap<String, JavaPairDStream<String, Tuple2<Long, IBatchRecord>>> streaming_inputs = jsc
                    .<Multimap<String, JavaPairDStream<String, Tuple2<Long, IBatchRecord>>>>either(
                            l -> HashMultimap
                                    .<String, JavaPairDStream<String, Tuple2<Long, IBatchRecord>>>create(),
                            r -> SparkTechnologyUtils.buildStreamingSparkInputs(context, test_spec, r,
                                    Collections.emptySet()));

            final SparkScriptEngine script_engine_bridge = new SparkScriptEngine(context, inputs,
                    streaming_inputs, test_spec, jsc_batch, jsc.either(l -> null, r -> r), job_config);

            // Add driver and generated JARs to path:
            jsc_batch.addJar(LiveInjector.findPathJar(o._2().getClass()));

            m.invoke(o._2(), script_engine_bridge);

            jsc.either(l -> {
                l.stop();
                return null;
            }, r -> {
                r.stop();
                return null;
            });

            logger.optional().ifPresent(l -> {
                l.inefficientLog(Level.INFO,
                        ErrorUtils.buildSuccessMessage("SparkScalaInterpreterTopology", "main",
                                "Stopping SparkScalaInterpreterTopology.{0}",
                                Optionals.of(() -> context.getJob().get().name()).orElse("no_name")));
            });

            //INFO:
            System.out.println("Finished interpreter");
        } finally {
            jsc.either(l -> {
                l.close();
                return null;
            }, r -> {
                r.close();
                return null;
            });
        }
        logger.optional().ifPresent(Lambdas.wrap_consumer_u(l -> l.flush().get(10, TimeUnit.SECONDS)));
    } catch (Throwable t) {
        logger.optional().ifPresent(l -> {
            l.inefficientLog(Level.ERROR, ErrorUtils.buildSuccessMessage("SparkScalaInterpreterTopology",
                    "main",
                    ErrorUtils.getLongForm("Error executing SparkScalaInterpreterTopology.unknown: {0}", t)));
        });

        System.out.println(ErrorUtils.getLongForm("ERROR: {0}", t));
        logger.optional().ifPresent(Lambdas.wrap_consumer_u(l -> l.flush().get(10, TimeUnit.SECONDS)));
        System.exit(-1);
    }
}

From source file:Main.java

public static final <T> Set<T> emptySet() {
    return Collections.emptySet();
}

From source file:Main.java

public static <E> Set<E> asSet(E... elements) {
    if (elements == null || elements.length == 0) {
        return Collections.emptySet();
    }/*from  ww w .  jav  a 2 s.  c o  m*/
    LinkedHashSet<E> set = new LinkedHashSet<E>(elements.length * 4 / 3 + 1);
    Collections.addAll(set, elements);
    return set;
}

From source file:Main.java

public static <T> Set removeRepetition(Collection<T> ts) {
    if (ts == null || ts.isEmpty()) {
        return Collections.emptySet();
    }// www. j  a va  2s  . co  m
    Map<T, Object> map = new LinkedHashMap();
    for (T t : ts) {
        if (!map.containsKey(t)) {
            map.put(t, -1);
        }
    }
    Set<T> set = map.keySet();
    return set;
}