List of usage examples for java.util Calendar clear
public final void clear(int field)
Calendar
undefined. From source file:org.kuali.kra.s2s.service.impl.S2SUtilServiceImpl.java
/** * // w ww . ja v a 2 s. co m * This method computes the number of months between any 2 given * {@link Date} objects * * @param dateStart * starting date. * @param dateEnd * end date. * * @return number of months between the start date and end date. */ public BudgetDecimal getNumberOfMonths(Date dateStart, Date dateEnd) { BudgetDecimal monthCount = BudgetDecimal.ZERO; int fullMonthCount = 0; Calendar startDate = Calendar.getInstance(); Calendar endDate = Calendar.getInstance(); startDate.setTime(dateStart); endDate.setTime(dateEnd); startDate.clear(Calendar.HOUR); startDate.clear(Calendar.MINUTE); startDate.clear(Calendar.SECOND); startDate.clear(Calendar.MILLISECOND); endDate.clear(Calendar.HOUR); endDate.clear(Calendar.MINUTE); endDate.clear(Calendar.SECOND); endDate.clear(Calendar.MILLISECOND); if (startDate.after(endDate)) { return BudgetDecimal.ZERO; } int startMonthDays = startDate.getActualMaximum(Calendar.DATE) - startDate.get(Calendar.DATE); startMonthDays++; int startMonthMaxDays = startDate.getActualMaximum(Calendar.DATE); BudgetDecimal startMonthFraction = new BudgetDecimal(startMonthDays) .divide(new BudgetDecimal(startMonthMaxDays)); int endMonthDays = endDate.get(Calendar.DATE); int endMonthMaxDays = endDate.getActualMaximum(Calendar.DATE); BudgetDecimal endMonthFraction = new BudgetDecimal(endMonthDays).divide(new BudgetDecimal(endMonthMaxDays)); startDate.set(Calendar.DATE, 1); endDate.set(Calendar.DATE, 1); while (startDate.getTimeInMillis() < endDate.getTimeInMillis()) { startDate.set(Calendar.MONTH, startDate.get(Calendar.MONTH) + 1); fullMonthCount++; } fullMonthCount = fullMonthCount - 1; monthCount = monthCount.add(new BudgetDecimal(fullMonthCount)).add(startMonthFraction) .add(endMonthFraction); return monthCount; }
From source file:org.kuali.kra.proposaldevelopment.printing.xmlstream.NIHResearchAndRelatedXmlStream.java
/** * /*from w w w .j av a 2s .co m*/ * This method computes the number of months between any 2 given * {@link Date} objects * * @param dateStart * starting date. * @param dateEnd * end date. * * @return number of months between the start date and end date. */ private BudgetDecimal getNumberOfMonths(Date dateStart, Date dateEnd) { BudgetDecimal monthCount = BudgetDecimal.ZERO; int fullMonthCount = 0; Calendar startDate = Calendar.getInstance(); Calendar endDate = Calendar.getInstance(); startDate.setTime(dateStart); endDate.setTime(dateEnd); startDate.clear(Calendar.HOUR); startDate.clear(Calendar.MINUTE); startDate.clear(Calendar.SECOND); startDate.clear(Calendar.MILLISECOND); endDate.clear(Calendar.HOUR); endDate.clear(Calendar.MINUTE); endDate.clear(Calendar.SECOND); endDate.clear(Calendar.MILLISECOND); if (startDate.after(endDate)) { return BudgetDecimal.ZERO; } int startMonthDays = startDate.getActualMaximum(Calendar.DATE) - startDate.get(Calendar.DATE); startMonthDays++; int startMonthMaxDays = startDate.getActualMaximum(Calendar.DATE); BudgetDecimal startMonthFraction = new BudgetDecimal(startMonthDays) .divide(new BudgetDecimal(startMonthMaxDays)); int endMonthDays = endDate.get(Calendar.DATE); int endMonthMaxDays = endDate.getActualMaximum(Calendar.DATE); BudgetDecimal endMonthFraction = new BudgetDecimal(endMonthDays).divide(new BudgetDecimal(endMonthMaxDays)); startDate.set(Calendar.DATE, 1); endDate.set(Calendar.DATE, 1); while (startDate.getTimeInMillis() < endDate.getTimeInMillis()) { startDate.set(Calendar.MONTH, startDate.get(Calendar.MONTH) + 1); fullMonthCount++; } fullMonthCount = fullMonthCount - 1; monthCount = monthCount.add(new BudgetDecimal(fullMonthCount)).add(startMonthFraction) .add(endMonthFraction); return monthCount; }
From source file:de.innovationgate.utils.WGUtils.java
/** * Removes date information from a date, leaving daytime information only * @param date The date to strip date information from * @return The daytime only date object//from w w w . ja v a 2s . c o m */ public static Date timeOnly(Date date) { Calendar cal = Calendar.getInstance(); cal.setTime(date); cal.clear(Calendar.YEAR); cal.clear(Calendar.MONTH); cal.clear(Calendar.DATE); cal.clear(Calendar.DAY_OF_WEEK); cal.clear(Calendar.DAY_OF_MONTH); return cal.getTime(); }
From source file:edu.hawaii.soest.kilonalu.ctd.CTDSource.java
/** * A method that executes the streaming of data from the source to the RBNB * server after all configuration of settings, connections to hosts, and * thread initiatizing occurs. This method contains the detailed code for * streaming the data and interpreting the stream. *//* w w w . java2 s . c om*/ protected boolean execute() { logger.debug("CTDSource.execute() called."); // do not execute the stream if there is no connection if (!isConnected()) return false; boolean failed = false; // test the connection type if (this.connectionType.equals("serial")) { // create a serial connection to the local serial port this.channel = getSerialConnection(); } else if (this.connectionType.equals("socket")) { // otherwise create a TCP or UDP socket connection to the remote host this.channel = getSocketConnection(); } else { logger.info("There was an error establishing either a serial or " + "socket connection to the instrument. Please be sure " + "the connection type is set to either 'serial' or 'socket'."); return false; } // while data are being sent, read them into the buffer try { // create four byte placeholders used to evaluate up to a four-byte // window. The FIFO layout looks like: // ------------------------- // in ---> | One | Two |Three|Four | ---> out // ------------------------- byte byteOne = 0x00, // set initial placeholder values byteTwo = 0x00, byteThree = 0x00, byteFour = 0x00; // Create a buffer that will store the sample bytes as they are read ByteBuffer sampleBuffer = ByteBuffer.allocate(getBufferSize()); // Declare sample variables to be used in the response parsing byte[] sampleArray; // create a byte buffer to store bytes from the TCP stream ByteBuffer buffer = ByteBuffer.allocateDirect(getBufferSize()); // add a channel of data that will be pushed to the server. // Each sample will be sent to the Data Turbine as an rbnb frame. ChannelMap rbnbChannelMap = new ChannelMap(); // while there are bytes to read from the channel ... while (this.channel.read(buffer) != -1 || buffer.position() > 0) { // prepare the buffer for reading buffer.flip(); // while there are unread bytes in the ByteBuffer while (buffer.hasRemaining()) { byteOne = buffer.get(); logger.debug("b1: " + new String(Hex.encodeHex((new byte[] { byteOne }))) + "\t" + "b2: " + new String(Hex.encodeHex((new byte[] { byteTwo }))) + "\t" + "b3: " + new String(Hex.encodeHex((new byte[] { byteThree }))) + "\t" + "b4: " + new String(Hex.encodeHex((new byte[] { byteFour }))) + "\t" + "sample pos: " + sampleBuffer.position() + "\t" + "sample rem: " + sampleBuffer.remaining() + "\t" + "sample cnt: " + sampleByteCount + "\t" + "buffer pos: " + buffer.position() + "\t" + "buffer rem: " + buffer.remaining() + "\t" + "state: " + this.state); // Use a State Machine to process the byte stream. // Start building an rbnb frame for the entire sample, first by // inserting a timestamp into the channelMap. This time is merely // the time of insert into the data turbine, not the time of // observations of the measurements. That time should be parsed out // of the sample in the Sink client code switch (this.state) { case 0: // wake up the instrument // check for instrument metadata fields if (this.enableSendCommands && !this.hasMetadata) { // wake the instrument with an initial '\r\n' command this.command = this.commandSuffix; this.sentCommand = queryInstrument(this.command); this.sentCommand = queryInstrument(this.command); streamingThread.sleep(2000); this.state = 1; break; } else { this.state = 11; break; } case 1: // stop the sampling // be sure the instrument woke (look for S> prompt) //if (byteOne == 0x3E && byteTwo == 0x53 ) { // // sampleByteCount = 0; // sampleBuffer.clear(); // // // send the stop sampling command this.command = this.commandPrefix + this.stopSamplingCommand + this.commandSuffix; this.sentCommand = queryInstrument(command); sampleBuffer.clear(); sampleByteCount = 0; this.state = 2; break; //} else { // // handle instrument hardware response // sampleByteCount++; // add the last byte found to the count // // // add the last byte found to the sample buffer // if ( sampleBuffer.remaining() > 0 ) { // sampleBuffer.put(byteOne); // // } else { // sampleBuffer.compact(); // sampleBuffer.put(byteOne); // // } // // break; // continue reading bytes // //} case 2: // based on outputType, get metadata from the instrument // the response should end in <Executed/> if (byteOne == 0x3E && byteTwo == 0x2F && byteThree == 0x64 && byteFour == 0x65) { sampleBuffer.clear(); sampleByteCount = 0; this.samplingIsStopped = true; // for newer firmware CTDs, use xml-based query commands if (getOutputType().equals("xml")) { // create the CTD parser instance used to parse CTD output this.ctdParser = new CTDParser(); this.state = 3; break; // otherwise, use text-based query commands } else if (getOutputType().equals("text")) { this.state = 12; // process DS and DCal commands break; } else { logger.info("The CTD output type is not recognized. " + "Please set the output type to either " + "'xml' or 'text'."); failed = true; this.state = 0; // close the serial or socket channel if (this.channel != null && this.channel.isOpen()) { try { this.channel.close(); } catch (IOException cioe) { logger.debug("An error occurred trying to close the byte channel. " + " The error message was: " + cioe.getMessage()); return !failed; } } // disconnect from the RBNB if (isConnected()) { disconnect(); } return !failed; } } else { // handle instrument hardware response sampleByteCount++; // add the last byte found to the count // add the last byte found to the sample buffer if (sampleBuffer.remaining() > 0) { sampleBuffer.put(byteOne); } else { sampleBuffer.compact(); sampleBuffer.put(byteOne); } break; // continue reading bytes } case 3: // get the instrument status metadata if (!this.ctdParser.getHasStatusMetadata()) { this.command = this.commandPrefix + this.getStatusCommand + this.commandSuffix; this.sentCommand = queryInstrument(command); streamingThread.sleep(5000); this.state = 4; break; } else { // get the configuration metadata this.command = this.commandPrefix + this.getConfigurationCommand + this.commandSuffix; this.sentCommand = queryInstrument(command); streamingThread.sleep(5000); this.state = 5; break; } case 4: // handle instrument status response // command response ends with <Executed/> (so find: ed/>) if (byteOne == 0x3E && byteTwo == 0x2F && byteThree == 0x64 && byteFour == 0x65) { // handle instrument status response sampleByteCount++; // add the last byte found to the count // add the last byte found to the sample buffer if (sampleBuffer.remaining() > 0) { sampleBuffer.put(byteOne); } else { sampleBuffer.compact(); sampleBuffer.put(byteOne); } // extract the sampleByteCount length from the sampleBuffer sampleArray = new byte[sampleByteCount]; sampleBuffer.flip(); sampleBuffer.get(sampleArray); this.responseString = new String(sampleArray, "US-ASCII"); // set the CTD metadata int executedIndex = this.responseString.indexOf("<Executed/>"); this.responseString = this.responseString.substring(0, executedIndex - 1); this.ctdParser.setMetadata(this.responseString); // reset variables for the next sample sampleBuffer.clear(); sampleByteCount = 0; // then get the instrument configuration metadata if (!this.ctdParser.getHasConfigurationMetadata()) { this.command = this.commandPrefix + this.getConfigurationCommand + this.commandSuffix; this.sentCommand = queryInstrument(command); streamingThread.sleep(5000); this.state = 5; break; } else { // get the calibration metadata this.command = this.commandPrefix + this.getCalibrationCommand + this.commandSuffix; this.sentCommand = queryInstrument(command); streamingThread.sleep(5000); this.state = 6; break; } } else { break; // continue reading bytes } case 5: // handle the instrument configuration metadata // command response ends with <Executed/> (so find: ed/>) if (byteOne == 0x3E && byteTwo == 0x2F && byteThree == 0x64 && byteFour == 0x65) { // handle instrument configration response sampleByteCount++; // add the last byte found to the count // add the last byte found to the sample buffer if (sampleBuffer.remaining() > 0) { sampleBuffer.put(byteOne); } else { sampleBuffer.compact(); sampleBuffer.put(byteOne); } // extract the sampleByteCount length from the sampleBuffer sampleArray = new byte[sampleByteCount]; sampleBuffer.flip(); sampleBuffer.get(sampleArray); this.responseString = new String(sampleArray, "US-ASCII"); // set the CTD metadata int executedIndex = this.responseString.indexOf("<Executed/>"); this.responseString = this.responseString.substring(0, executedIndex - 1); this.ctdParser.setMetadata(this.responseString); // reset variables for the next sample sampleBuffer.clear(); sampleByteCount = 0; // then get the instrument calibration metadata if (!this.ctdParser.getHasCalibrationMetadata()) { this.command = this.commandPrefix + this.getCalibrationCommand + this.commandSuffix; this.sentCommand = queryInstrument(command); streamingThread.sleep(5000); this.state = 6; break; } else { this.command = this.commandPrefix + this.getEventsCommand + this.commandSuffix; this.sentCommand = queryInstrument(command); streamingThread.sleep(5000); this.state = 7; break; } } else { break; // continue reading bytes } case 6: // handle the instrument calibration metadata // command response ends with <Executed/> (so find: ed/>) if (byteOne == 0x3E && byteTwo == 0x2F && byteThree == 0x64 && byteFour == 0x65) { // handle instrument calibration response sampleByteCount++; // add the last byte found to the count // add the last byte found to the sample buffer if (sampleBuffer.remaining() > 0) { sampleBuffer.put(byteOne); } else { sampleBuffer.compact(); sampleBuffer.put(byteOne); } // extract the sampleByteCount length from the sampleBuffer sampleArray = new byte[sampleByteCount]; sampleBuffer.flip(); sampleBuffer.get(sampleArray); this.responseString = new String(sampleArray, "US-ASCII"); // set the CTD metadata int executedIndex = this.responseString.indexOf("<Executed/>"); this.responseString = this.responseString.substring(0, executedIndex - 1); this.ctdParser.setMetadata(this.responseString); // reset variables for the next sample sampleBuffer.clear(); sampleByteCount = 0; // then get the instrument event metadata if (!this.ctdParser.getHasEventMetadata()) { this.command = this.commandPrefix + this.getEventsCommand + this.commandSuffix; this.sentCommand = queryInstrument(command); streamingThread.sleep(5000); this.state = 7; break; } else { this.command = this.commandPrefix + this.getHardwareCommand + this.commandSuffix; this.sentCommand = queryInstrument(command); streamingThread.sleep(5000); this.state = 8; break; } } else { break; // continue reading bytes } case 7: // handle instrument event metadata // command response ends with <Executed/> (so find: ed/>) if (byteOne == 0x3E && byteTwo == 0x2F && byteThree == 0x64 && byteFour == 0x65) { // handle instrument events response sampleByteCount++; // add the last byte found to the count // add the last byte found to the sample buffer if (sampleBuffer.remaining() > 0) { sampleBuffer.put(byteOne); } else { sampleBuffer.compact(); sampleBuffer.put(byteOne); } // extract the sampleByteCount length from the sampleBuffer sampleArray = new byte[sampleByteCount]; sampleBuffer.flip(); sampleBuffer.get(sampleArray); this.responseString = new String(sampleArray, "US-ASCII"); // set the CTD metadata int executedIndex = this.responseString.indexOf("<Executed/>"); this.responseString = this.responseString.substring(0, executedIndex - 1); this.ctdParser.setMetadata(this.responseString); // reset variables for the next sample sampleBuffer.clear(); sampleByteCount = 0; // then get the instrument hardware metadata if (!this.ctdParser.getHasHardwareMetadata()) { this.command = this.commandPrefix + this.getHardwareCommand + this.commandSuffix; this.sentCommand = queryInstrument(command); streamingThread.sleep(5000); this.state = 8; break; } else { this.state = 9; break; } } else { break; // continue reading bytes } case 8: // handle the instrument hardware response // command response ends with <Executed/> (so find: ed/>) if (byteOne == 0x3E && byteTwo == 0x2F && byteThree == 0x64 && byteFour == 0x65) { // handle instrument hardware response sampleByteCount++; // add the last byte found to the count // add the last byte found to the sample buffer if (sampleBuffer.remaining() > 0) { sampleBuffer.put(byteOne); } else { sampleBuffer.compact(); sampleBuffer.put(byteOne); } // extract the sampleByteCount length from the sampleBuffer sampleArray = new byte[sampleByteCount]; sampleBuffer.flip(); sampleBuffer.get(sampleArray); this.responseString = new String(sampleArray, "US-ASCII"); // set the CTD metadata int executedIndex = this.responseString.indexOf("<Executed/>"); this.responseString = this.responseString.substring(0, executedIndex - 1); this.ctdParser.setMetadata(this.responseString); // reset variables for the next sample sampleBuffer.clear(); sampleByteCount = 0; // sync the clock if it is not synced if (!this.clockIsSynced) { this.state = 9; break; } else { this.state = 10; break; } } else { break; // continue reading bytes } case 9: // set the instrument clock // is sampling stopped? if (!this.samplingIsStopped) { // wake the instrument with an initial '\r\n' command this.command = this.commandSuffix; this.sentCommand = queryInstrument(this.command); streamingThread.sleep(2000); // then stop the sampling this.command = this.commandPrefix + this.stopSamplingCommand + this.commandSuffix; this.sentCommand = queryInstrument(command); this.samplingIsStopped = true; } // now set the clock if (this.sentCommand) { this.clockSyncDate = new Date(); DATE_FORMAT.setTimeZone(TZ); String dateAsString = DATE_FORMAT.format(this.clockSyncDate); this.command = this.commandPrefix + this.setDateTimeCommand + dateAsString + this.commandSuffix; this.sentCommand = queryInstrument(command); streamingThread.sleep(5000); this.clockIsSynced = true; logger.info("The instrument clock has bee synced at " + this.clockSyncDate.toString()); this.state = 10; break; } else { break; // try the clock sync again due to failure } case 10: // restart the instrument sampling if (this.samplingIsStopped) { this.hasMetadata = true; this.command = this.commandPrefix + this.startSamplingCommand + this.commandSuffix; this.sentCommand = queryInstrument(command); streamingThread.sleep(5000); if (this.sentCommand) { this.state = 11; break; } else { break; // try starting the sampling again due to failure } } else { break; } case 11: // read bytes to the next EOL characters // sample line is terminated by \r\n // note bytes are in reverse order in the FIFO window if (byteOne == 0x0A && byteTwo == 0x0D) { sampleByteCount++; // add the last byte found to the count // add the last byte found to the sample buffer if (sampleBuffer.remaining() > 0) { sampleBuffer.put(byteOne); } else { sampleBuffer.compact(); sampleBuffer.put(byteOne); } // extract just the length of the sample bytes out of the // sample buffer, and place it in the channel map as a // byte array. Then, send it to the data turbine. sampleArray = new byte[sampleByteCount]; sampleBuffer.flip(); sampleBuffer.get(sampleArray); this.responseString = new String(sampleArray, "US-ASCII"); // test if the sample is not just an instrument message if (this.responseString.matches("^# [0-9].*\r\n") || this.responseString.matches("^# [0-9].*\r\n") || this.responseString.matches("^ [0-9].*\r\n")) { // add the data observations string to the CTDParser object // and populate the CTDParser data fields //this.ctdParser.setData(this.responseString); //this.ctdParser.parse(); // build the channel map with all of the data and metadata channels: int channelIndex = rbnbChannelMap.Add(getRBNBChannelName()); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutTimeAuto("server"); // add the ASCII sample data field rbnbChannelMap.PutDataAsString(channelIndex, this.responseString); // add other metadata and data fields to the map if metadata was collected if (this.hasMetadata && this.ctdParser != null) { // add the samplingMode field data channelIndex = rbnbChannelMap.Add("samplingMode"); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutDataAsString(channelIndex, this.ctdParser.getSamplingMode()); // String // add the temperatureSerialNumber field data channelIndex = rbnbChannelMap.Add("temperatureSerialNumber"); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutDataAsString(channelIndex, this.ctdParser.getTemperatureSerialNumber()); // String // add the conductivitySerialNumber field data channelIndex = rbnbChannelMap.Add("conductivitySerialNumber"); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutDataAsString(channelIndex, this.ctdParser.getConductivitySerialNumber()); // String // add the mainBatteryVoltage field data channelIndex = rbnbChannelMap.Add("mainBatteryVoltage"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getMainBatteryVoltage() }); // double // add the lithiumBatteryVoltage field data channelIndex = rbnbChannelMap.Add("lithiumBatteryVoltage"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getLithiumBatteryVoltage() }); // double // add the operatingCurrent field data channelIndex = rbnbChannelMap.Add("operatingCurrent"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getOperatingCurrent() }); // double // add the pumpCurrent field data channelIndex = rbnbChannelMap.Add("pumpCurrent"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getPumpCurrent() }); // double // add the channels01ExternalCurrent field data channelIndex = rbnbChannelMap.Add("channels01ExternalCurrent"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getChannels01ExternalCurrent() }); // double // add the channels23ExternalCurrent field data channelIndex = rbnbChannelMap.Add("channels23ExternalCurrent"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getChannels23ExternalCurrent() }); // double // add the loggingStatus field data channelIndex = rbnbChannelMap.Add("loggingStatus"); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutDataAsString(channelIndex, this.ctdParser.getLoggingStatus()); // String // add the numberOfScansToAverage field data channelIndex = rbnbChannelMap.Add("numberOfScansToAverage"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsInt32(channelIndex, new int[] { this.ctdParser.getNumberOfScansToAverage() }); // int // add the numberOfSamples field data channelIndex = rbnbChannelMap.Add("numberOfSamples"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsInt32(channelIndex, new int[] { this.ctdParser.getNumberOfSamples() }); // int // add the numberOfAvailableSamples field data channelIndex = rbnbChannelMap.Add("numberOfAvailableSamples"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsInt32(channelIndex, new int[] { this.ctdParser.getNumberOfAvailableSamples() }); // int // add the sampleInterval field data channelIndex = rbnbChannelMap.Add("sampleInterval"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsInt32(channelIndex, new int[] { this.ctdParser.getSampleInterval() }); // int // add the measurementsPerSample field data channelIndex = rbnbChannelMap.Add("measurementsPerSample"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsInt32(channelIndex, new int[] { this.ctdParser.getMeasurementsPerSample() }); // int // add the transmitRealtime field data channelIndex = rbnbChannelMap.Add("transmitRealtime"); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutDataAsString(channelIndex, this.ctdParser.getTransmitRealtime()); // String // add the numberOfCasts field data channelIndex = rbnbChannelMap.Add("numberOfCasts"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsInt32(channelIndex, new int[] { this.ctdParser.getNumberOfCasts() }); // int // add the minimumConductivityFrequency field data channelIndex = rbnbChannelMap.Add("minimumConductivityFrequency"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsInt32(channelIndex, new int[] { this.ctdParser.getMinimumConductivityFrequency() }); // int // add the pumpDelay field data channelIndex = rbnbChannelMap.Add("pumpDelay"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsInt32(channelIndex, new int[] { this.ctdParser.getPumpDelay() }); // int // add the automaticLogging field data channelIndex = rbnbChannelMap.Add("automaticLogging"); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutDataAsString(channelIndex, this.ctdParser.getAutomaticLogging()); // String // add the ignoreMagneticSwitch field data channelIndex = rbnbChannelMap.Add("ignoreMagneticSwitch"); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutDataAsString(channelIndex, this.ctdParser.getIgnoreMagneticSwitch()); // String // add the batteryType field data channelIndex = rbnbChannelMap.Add("batteryType"); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutDataAsString(channelIndex, this.ctdParser.getBatteryType()); // String // add the batteryCutoff field data channelIndex = rbnbChannelMap.Add("batteryCutoff"); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutDataAsString(channelIndex, this.ctdParser.getBatteryCutoff()); // String // add the pressureSensorType field data channelIndex = rbnbChannelMap.Add("pressureSensorType"); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutDataAsString(channelIndex, this.ctdParser.getPressureSensorType()); // String // add the pressureSensorRange field data channelIndex = rbnbChannelMap.Add("pressureSensorRange"); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutDataAsString(channelIndex, this.ctdParser.getPressureSensorRange()); // String // add the sbe38TemperatureSensor field data channelIndex = rbnbChannelMap.Add("sbe38TemperatureSensor"); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutDataAsString(channelIndex, this.ctdParser.getSbe38TemperatureSensor()); // String // add the gasTensionDevice field data channelIndex = rbnbChannelMap.Add("gasTensionDevice"); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutDataAsString(channelIndex, this.ctdParser.getGasTensionDevice()); // String // add the externalVoltageChannelZero field data channelIndex = rbnbChannelMap.Add("externalVoltageChannelZero"); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutDataAsString(channelIndex, this.ctdParser.getExternalVoltageChannelZero()); // String // add the externalVoltageChannelOne field data channelIndex = rbnbChannelMap.Add("externalVoltageChannelOne"); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutDataAsString(channelIndex, this.ctdParser.getExternalVoltageChannelOne()); // String // add the externalVoltageChannelTwo field data channelIndex = rbnbChannelMap.Add("externalVoltageChannelTwo"); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutDataAsString(channelIndex, this.ctdParser.getExternalVoltageChannelTwo()); // String // add the externalVoltageChannelThree field data channelIndex = rbnbChannelMap.Add("externalVoltageChannelThree"); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutDataAsString(channelIndex, this.ctdParser.getExternalVoltageChannelThree()); // String // add the echoCommands field data channelIndex = rbnbChannelMap.Add("echoCommands"); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutDataAsString(channelIndex, this.ctdParser.getEchoCommands()); // String // add the outputFormat field data channelIndex = rbnbChannelMap.Add("outputFormat"); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutDataAsString(channelIndex, this.ctdParser.getOutputFormat()); // String // add the temperatureCalibrationDate field data channelIndex = rbnbChannelMap.Add("temperatureCalibrationDate"); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutDataAsString(channelIndex, this.ctdParser.getTemperatureCalibrationDate()); // String // add the temperatureCoefficientTA0 field data channelIndex = rbnbChannelMap.Add("temperatureCoefficientTA0"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getTemperatureCoefficientTA0() }); // double // add the temperatureCoefficientTA1 field data channelIndex = rbnbChannelMap.Add("temperatureCoefficientTA1"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getTemperatureCoefficientTA1() }); // double // add the temperatureCoefficientTA2 field data channelIndex = rbnbChannelMap.Add("temperatureCoefficientTA2"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getTemperatureCoefficientTA2() }); // double // add the temperatureCoefficientTA3 field data channelIndex = rbnbChannelMap.Add("temperatureCoefficientTA3"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getTemperatureCoefficientTA3() }); // double // add the temperatureOffsetCoefficient field data channelIndex = rbnbChannelMap.Add("temperatureOffsetCoefficient"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getTemperatureOffsetCoefficient() }); // double // add the conductivityCalibrationDate field data channelIndex = rbnbChannelMap.Add("conductivityCalibrationDate"); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutDataAsString(channelIndex, this.ctdParser.getConductivityCalibrationDate()); // String // add the conductivityCoefficientG field data channelIndex = rbnbChannelMap.Add("conductivityCoefficientG"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getConductivityCoefficientG() }); // double // add the conductivityCoefficientH field data channelIndex = rbnbChannelMap.Add("conductivityCoefficientH"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getConductivityCoefficientH() }); // double // add the conductivityCoefficientI field data channelIndex = rbnbChannelMap.Add("conductivityCoefficientI"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getConductivityCoefficientI() }); // double // add the conductivityCoefficientJ field data channelIndex = rbnbChannelMap.Add("conductivityCoefficientJ"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getConductivityCoefficientJ() }); // double // add the conductivityCoefficientCF0 field data channelIndex = rbnbChannelMap.Add("conductivityCoefficientCF0"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getConductivityCoefficientCF0() }); // double // add the conductivityCoefficientCPCOR field data channelIndex = rbnbChannelMap.Add("conductivityCoefficientCPCOR"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getConductivityCoefficientCPCOR() }); // double // add the conductivityCoefficientCTCOR field data channelIndex = rbnbChannelMap.Add("conductivityCoefficientCTCOR"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getConductivityCoefficientCTCOR() }); // double // add the conductivityCoefficientCSLOPE field data channelIndex = rbnbChannelMap.Add("conductivityCoefficientCSLOPE"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getConductivityCoefficientCSLOPE() }); // double // add the pressureSerialNumber field data channelIndex = rbnbChannelMap.Add("pressureSerialNumber"); rbnbChannelMap.PutMime(channelIndex, "text/plain"); rbnbChannelMap.PutDataAsString(channelIndex, this.ctdParser.getPressureSerialNumber()); // String // add the pressureCoefficientPA0 field data channelIndex = rbnbChannelMap.Add("pressureCoefficientPA0"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getPressureCoefficientPA0() }); // double // add the pressureCoefficientPA1 field data channelIndex = rbnbChannelMap.Add("pressureCoefficientPA1"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getPressureCoefficientPA1() }); // double // add the pressureCoefficientPA2 field data channelIndex = rbnbChannelMap.Add("pressureCoefficientPA2"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getPressureCoefficientPA2() }); // double // add the pressureCoefficientPTCA0 field data channelIndex = rbnbChannelMap.Add("pressureCoefficientPTCA0"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getPressureCoefficientPTCA0() }); // double // add the pressureCoefficientPTCA1 field data channelIndex = rbnbChannelMap.Add("pressureCoefficientPTCA1"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getPressureCoefficientPTCA1() }); // double // add the pressureCoefficientPTCA2 field data channelIndex = rbnbChannelMap.Add("pressureCoefficientPTCA2"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getPressureCoefficientPTCA2() }); // double // add the pressureCoefficientPTCB0 field data channelIndex = rbnbChannelMap.Add("pressureCoefficientPTCB0"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getPressureCoefficientPTCB0() }); // double // add the pressureCoefficientPTCB1 field data channelIndex = rbnbChannelMap.Add("pressureCoefficientPTCB1"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getPressureCoefficientPTCB1() }); // double // add the pressureCoefficientPTCB2 field data channelIndex = rbnbChannelMap.Add("pressureCoefficientPTCB2"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getPressureCoefficientPTCB2() }); // double // add the pressureCoefficientPTEMPA0 field data channelIndex = rbnbChannelMap.Add("pressureCoefficientPTEMPA0"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getPressureCoefficientPTEMPA0() }); // double // add the pressureCoefficientPTEMPA1 field data channelIndex = rbnbChannelMap.Add("pressureCoefficientPTEMPA1"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getPressureCoefficientPTEMPA1() }); // double // add the pressureCoefficientPTEMPA2 field data channelIndex = rbnbChannelMap.Add("pressureCoefficientPTEMPA2"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getPressureCoefficientPTEMPA2() }); // double // add the pressureOffsetCoefficient field data channelIndex = rbnbChannelMap.Add("pressureOffsetCoefficient"); rbnbChannelMap.PutMime(channelIndex, "application/octet-stream"); rbnbChannelMap.PutDataAsFloat64(channelIndex, new double[] { this.ctdParser.getPressureOffsetCoefficient() }); // double } // send the sample to the data turbine getSource().Flush(rbnbChannelMap); logger.info("Sent sample to the DataTurbine: " + this.responseString); // reset variables for the next sample sampleBuffer.clear(); sampleByteCount = 0; channelIndex = 0; rbnbChannelMap.Clear(); logger.debug("Cleared b1,b2,b3,b4. Cleared sampleBuffer. Cleared rbnbChannelMap."); // check if the clock needs syncing (daily) if (this.enableSendCommands) { // get the current datetime Calendar currentCalendar = Calendar.getInstance(); currentCalendar.setTime(new Date()); Calendar lastSyncedCalendar = Calendar.getInstance(); lastSyncedCalendar.setTime(this.clockSyncDate); // round the dates to the day currentCalendar.clear(Calendar.MILLISECOND); currentCalendar.clear(Calendar.SECOND); currentCalendar.clear(Calendar.MINUTE); currentCalendar.clear(Calendar.HOUR); lastSyncedCalendar.clear(Calendar.MILLISECOND); lastSyncedCalendar.clear(Calendar.SECOND); lastSyncedCalendar.clear(Calendar.MINUTE); lastSyncedCalendar.clear(Calendar.HOUR); // sync the clock daily if (currentCalendar.before(lastSyncedCalendar)) { this.state = 8; } } // otherwise stay in state = 11 break; // the sample looks more like an instrument message, don't flush } else { logger.info("This string does not look like a sample, " + "and was not sent to the DataTurbine."); logger.info("Skipping sample: " + this.responseString); // reset variables for the next sample sampleBuffer.clear(); sampleByteCount = 0; //rbnbChannelMap.Clear(); logger.debug("Cleared b1,b2,b3,b4. Cleared sampleBuffer. Cleared rbnbChannelMap."); this.state = 11; break; } } else { // not 0x0A0D // still in the middle of the sample, keep adding bytes sampleByteCount++; // add each byte found if (sampleBuffer.remaining() > 0) { sampleBuffer.put(byteOne); } else { sampleBuffer.compact(); logger.debug("Compacting sampleBuffer ..."); sampleBuffer.put(byteOne); } break; } // end if for 0x0A0D EOL case 12: // alternatively use legacy DS and DCal commands if (this.enableSendCommands) { // start by getting the DS status output this.command = this.commandPrefix + this.displayStatusCommand + this.commandSuffix; this.sentCommand = queryInstrument(command); streamingThread.sleep(5000); this.state = 13; break; } else { this.state = 0; break; } case 13: // handle the DS command response // command should end with the S> prompt if (byteOne == 0x7E && byteTwo == 0x53) { // handle instrument status response sampleByteCount++; // add the last byte found to the count // add the last byte found to the sample buffer if (sampleBuffer.remaining() > 0) { sampleBuffer.put(byteOne); } else { sampleBuffer.compact(); sampleBuffer.put(byteOne); } // extract the sampleByteCount length from the sampleBuffer sampleArray = new byte[sampleByteCount - 2]; //subtract "S>" sampleBuffer.flip(); sampleBuffer.get(sampleArray); this.responseString = new String(sampleArray, "US-ASCII"); // reset variables for the next sample sampleBuffer.clear(); sampleByteCount = 0; // then get the instrument calibration metadata this.command = this.commandPrefix + this.displayCalibrationCommand + this.commandSuffix; this.sentCommand = queryInstrument(command); streamingThread.sleep(5000); this.state = 14; break; } else { break; // continue reading bytes } case 14: // handle the DCal command response // command should end with the S> prompt if (byteOne == 0x7E && byteTwo == 0x53) { // handle instrument status response sampleByteCount++; // add the last byte found to the count // add the last byte found to the sample buffer if (sampleBuffer.remaining() > 0) { sampleBuffer.put(byteOne); } else { sampleBuffer.compact(); sampleBuffer.put(byteOne); } // extract the sampleByteCount length from the sampleBuffer sampleArray = new byte[sampleByteCount - 2]; // subtract "S>" sampleBuffer.flip(); sampleBuffer.get(sampleArray); // append the DCal output to the DS output this.responseString = this.responseString.concat(new String(sampleArray, "US-ASCII")); // and add the data delimiter expected in the CTDParser this.responseString = this.responseString.concat("*END*\r\n\r\n"); // build the CTDParser object with legacy DS and DCal metadata this.ctdParser = new CTDParser(this.responseString); // reset variables for the next sample sampleBuffer.clear(); sampleByteCount = 0; this.state = 9; // set the clock and start sampling break; } else { break; // continue reading bytes } } // end switch statement // shift the bytes in the FIFO window byteFour = byteThree; byteThree = byteTwo; byteTwo = byteOne; } //end while (more unread bytes) // prepare the buffer to read in more bytes from the stream buffer.compact(); } // end while (more channel bytes to read) this.channel.close(); } catch (IOException e) { // handle exceptions // In the event of an i/o exception, log the exception, and allow execute() // to return false, which will prompt a retry. failed = true; this.state = 0; // close the serial or socket channel if (this.channel != null && this.channel.isOpen()) { try { this.channel.close(); } catch (IOException cioe) { logger.debug("An error occurred trying to close the byte channel. " + " The error message was: " + cioe.getMessage()); } } // disconnect from the RBNB if (isConnected()) { disconnect(); } e.printStackTrace(); return !failed; } catch (InterruptedException intde) { // in the event that the streamingThread is interrupted failed = true; this.state = 0; // close the serial or socket channel if (this.channel != null && this.channel.isOpen()) { try { this.channel.close(); } catch (IOException cioe) { logger.debug("An error occurred trying to close the byte channel. " + " The error message was: " + cioe.getMessage()); } } // disconnect from the RBNB if (isConnected()) { disconnect(); } intde.printStackTrace(); return !failed; } catch (SAPIException sapie) { // In the event of an RBNB communication exception, log the exception, // and allow execute() to return false, which will prompt a retry. //this.channel.close(); failed = true; this.state = 0; // close the serial or socket channel if (this.channel != null && this.channel.isOpen()) { try { this.channel.close(); } catch (IOException cioe) { logger.debug("An error occurred trying to close the byte channel. " + " The error message was: " + cioe.getMessage()); } } // disconnect from the RBNB if (isConnected()) { disconnect(); } sapie.printStackTrace(); return !failed; } catch (ParseException pe) { failed = true; this.state = 0; // close the serial or socket channel if (this.channel != null && this.channel.isOpen()) { try { this.channel.close(); } catch (IOException cioe) { logger.debug("An error occurred trying to close the byte channel. " + " The error message was: " + cioe.getMessage()); } } // disconnect from the RBNB if (isConnected()) { disconnect(); } logger.info("There was an error parsing the metadata response. " + "The error message was: " + pe.getMessage()); return !failed; } finally { this.state = 0; // close the serial or socket channel if (this.channel != null && this.channel.isOpen()) { try { this.channel.close(); } catch (IOException cioe) { logger.debug("An error occurred trying to close the byte channel. " + " The error message was: " + cioe.getMessage()); } } } return !failed; }