Example usage for java.util ArrayList add

List of usage examples for java.util ArrayList add

Introduction

In this page you can find the example usage for java.util ArrayList add.

Prototype

public boolean add(E e) 

Source Link

Document

Appends the specified element to the end of this list.

Usage

From source file:evaluation.evaluation1VMPolicyGeneration.java

public static void main(String[] args) {

    int VMNumber = 5;
    int attributeNumber = 20;

    JSONObject obj = new JSONObject();
    obj.put("name", "clientTemplate");
    obj.put("context", "VM-deployment");
    //obj.put("Context", new Integer);

    HashMap serviceRequirement = new HashMap();

    HashMap serviceDescription = new HashMap();
    serviceRequirement.put("VM1_volume", "1_GB");
    serviceDescription.put("VM1_purpose", "dev");
    serviceDescription.put("VM1_data", "private");
    serviceDescription.put("VM1_application", "internal");

    for (int j = 5; j < attributeNumber; j++) {
        serviceDescription.put("VM1_other" + j, "other");
    }//from   www  .ja  v a  2 s .c o m

    serviceRequirement.put("VM2_volume", "2_GB");
    serviceDescription.put("VM2_purpose", "prod");
    serviceDescription.put("VM2_data", "public");
    serviceDescription.put("VM2_application", "business");

    for (int j = 5; j < attributeNumber; j++) {
        serviceDescription.put("VM2_other" + j, "other");
    }

    serviceRequirement.put("VM3_volume", "1_GB");
    serviceDescription.put("VM3_purpose", "test");
    serviceDescription.put("VM3_data", "public");
    serviceDescription.put("VM3_application", "business");

    for (int j = 5; j < attributeNumber; j++) {
        serviceDescription.put("VM3_other" + j, "other");
    }

    serviceRequirement.put("VM4_volume", "12_GB");
    serviceDescription.put("VM4_purpose", "prod");
    serviceDescription.put("VM4_data", "public");
    serviceDescription.put("VM4_application", "business");

    for (int j = 5; j < attributeNumber; j++) {
        serviceDescription.put("VM4_other" + j, "other");
    }

    for (int i = 5; i < VMNumber; i++) {
        serviceRequirement.put("VM" + i + "_volume", "20_GB");
        serviceDescription.put("VM" + i + "_purpose", "prod");
        serviceDescription.put("VM" + i + "_data", "public");
        serviceDescription.put("VM" + i + "_application", "business");
        for (int j = 5; j < attributeNumber; j++) {
            serviceDescription.put("VM" + i + "_other" + j, "other");
        }

    }

    obj.put("serviceRequirement", serviceRequirement);
    obj.put("serviceDescription", serviceDescription);

    HashMap gauranteeTerm = new HashMap();
    gauranteeTerm.put("VM1_availability", "more_97_percentage");
    gauranteeTerm.put("VM2_availability", "more_99_percentage");
    gauranteeTerm.put("VM3_availability", "more_95_percentage");
    gauranteeTerm.put("VM4_availability", "more_99_percentage");
    obj.put("gauranteeTerm", gauranteeTerm);

    //Constraint1

    HashMap host_rule1 = new HashMap();
    HashMap VM_rule1 = new HashMap();
    host_rule1.put("certificate", "true");
    VM_rule1.put("purpose", "dev");

    ArrayList rule1 = new ArrayList();
    rule1.add("permission");
    rule1.add(host_rule1);
    rule1.add(VM_rule1);

    HashMap host_rule1_2 = new HashMap();
    HashMap VM_rule1_2 = new HashMap();
    host_rule1_2.put("certificate", "true");
    VM_rule1_2.put("purpose", "prod");

    ArrayList rule1_2 = new ArrayList();
    rule1_2.add("permission");
    rule1_2.add(host_rule1_2);
    rule1_2.add(VM_rule1_2);

    HashMap host_rule1_3 = new HashMap();
    HashMap VM_rule1_3 = new HashMap();
    host_rule1_3.put("certificate", "true");
    VM_rule1_3.put("purpose", "test");

    ArrayList rule1_3 = new ArrayList();
    rule1_3.add("permission");
    rule1_3.add(host_rule1_3);
    rule1_3.add(VM_rule1_3);

    HashMap host_rule2 = new HashMap();
    HashMap VM_rule2 = new HashMap();
    host_rule2.put("location", "France");
    VM_rule2.put("ID", "VM2");

    ArrayList rule2 = new ArrayList();
    rule2.add("permission");
    rule2.add(host_rule2);
    rule2.add(VM_rule2);

    HashMap host_rule2_1 = new HashMap();
    HashMap VM_rule2_1 = new HashMap();
    host_rule2_1.put("location", "UK");
    VM_rule2_1.put("ID", "VM2");

    ArrayList rule2_1 = new ArrayList();
    rule2_1.add("permission");
    rule2_1.add(host_rule2_1);
    rule2_1.add(VM_rule2_1);

    HashMap host_rule3 = new HashMap();
    HashMap VM_rule3 = new HashMap();
    host_rule3.put("location", "France");
    VM_rule3.put("application", "business");

    ArrayList rule3 = new ArrayList();
    rule3.add("permission");
    rule3.add(host_rule3);
    rule3.add(VM_rule3);

    HashMap host_rule3_1 = new HashMap();
    HashMap VM_rule3_1 = new HashMap();
    host_rule3_1.put("location", "UK");
    VM_rule3_1.put("application", "business");

    ArrayList rule3_1 = new ArrayList();
    rule3_1.add("permission");
    rule3_1.add(host_rule3_1);
    rule3_1.add(VM_rule3_1);

    HashMap VMSeperation_rule_1_1 = new HashMap();
    HashMap VMSeperation_rule_1_2 = new HashMap();

    VMSeperation_rule_1_1.put("ID", "VM1");
    VMSeperation_rule_1_2.put("ID", "VM3");

    ArrayList rule4 = new ArrayList();
    rule4.add("separation");
    rule4.add(VMSeperation_rule_1_1);
    rule4.add(VMSeperation_rule_1_2);

    ArrayList policyInConstraint1 = new ArrayList();
    policyInConstraint1.add(rule1);
    policyInConstraint1.add(rule1_2);
    policyInConstraint1.add(rule1_3);

    policyInConstraint1.add(rule2);
    policyInConstraint1.add(rule2_1);

    policyInConstraint1.add(rule3);
    policyInConstraint1.add(rule3_1);

    policyInConstraint1.add(rule4);

    ArrayList creationConstraint1 = new ArrayList();
    creationConstraint1.add("RP4");
    creationConstraint1.add("true");
    creationConstraint1.add("true");
    creationConstraint1.add(policyInConstraint1);

    ArrayList totalConstraint = new ArrayList();
    totalConstraint.add(creationConstraint1);

    obj.put("creationConstraint", totalConstraint);

    try {

        FileWriter file = new FileWriter("confClient" + File.separator + "test3.json");
        file.write(obj.toJSONString());
        file.flush();
        file.close();

    } catch (IOException e) {
        e.printStackTrace();
    }

    System.out.print(obj);

    /*
            
    JSONParser parser = new JSONParser();
            
    try {
            
    Object obj2 = parser.parse(new FileReader("test2.json"));
            
    JSONObject jsonObject = (JSONObject) obj2;
            
        HashMap serviceDescription2=(HashMap) jsonObject.get("serviceDescription");
                 
        method.printHashMap(serviceDescription2);
                
                
        HashMap gauranteeTerm2=(HashMap) jsonObject.get("gauranteeTerm");
                 
        method.printHashMap(gauranteeTerm2);
                
                
                
        ArrayList creationConstraint=(ArrayList) jsonObject.get("creationConstraint");
                
        method.printArrayList(creationConstraint);
            
            
    } catch (FileNotFoundException e) {
    e.printStackTrace();
    } catch (IOException e) {
    e.printStackTrace();
    } catch (ParseException e) {
    e.printStackTrace();
    }
            
            
            
            
            
    */

}

From source file:unalcol.termites.boxplots.MessagesSent1.java

/**
 * For testing from the command line./* ww  w  .j  a  v  a 2  s . co  m*/
 *
 * @param args ignored.
 */
public static void main(final String[] args) {
    //        double pf = Double.valueOf(args[0]);
    //       System.out.println("pf:" + args[0]);
    /* double pf = 0;
     ArrayList<Double> pf0 = new ArrayList<>();
     ArrayList<Double> pfg1 = new ArrayList<>();
     ArrayList<Double> pfg2 = new ArrayList<>();
     ArrayList<Double> pfg3 = new ArrayList<>();
            
     pf0.add(0.0);
     pfg1.add(1.0E-4);
     pfg1.add(3.0E-4);
            
     pfg2.add(5.0E-4);
     pfg2.add(7.0E-4);
            
     pfg3.add(9.0E-4);
     //pfg3.add(1.0E-3);
            
     //Log.getInstance().addTarget(new PrintStreamLogTarget(System.out));
     final MessagesSent1 demo = new MessagesSent1("Messages Number", pf0);
     final MessagesSent1 demo1 = new MessagesSent1("Messages Number", pfg1);
     final MessagesSent1 demo2 = new MessagesSent1("Messages Number", pfg2);
     final MessagesSent1 demo3 = new MessagesSent1("Messages Number", pfg3);
            
     //demo.pack();
     //RefineryUtilities.centerFrameOnScreen(demo);
     //demo.setVisible(true);
     */

    if (args.length > 0) {
        experimentsDir = args[0];
    }

    if (args.length > 1) {
        mazeMode = args[1];
    }

    aMode = new String[args.length - 2];

    for (int i = 2; i < args.length; i++) {
        aMode[i - 2] = args[i];
    }

    ArrayList<Double> failureProbs = getFailureProbs();

    for (Double pf : failureProbs) {
        ArrayList<Double> pfi = new ArrayList<>();
        pfi.add(pf);
        final MessagesSent1 demo = new MessagesSent1("Messages Number", pfi);
    }
    /*double pf = 0;
     ArrayList<Double> pf0 = new ArrayList<>();
     ArrayList<Double> pf1 = new ArrayList<>();
     ArrayList<Double> pf3 = new ArrayList<>();
     ArrayList<Double> pf5 = new ArrayList<>();
     ArrayList<Double> pf7 = new ArrayList<>();
     ArrayList<Double> pf9 = new ArrayList<>();
     ArrayList<Double> pf01 = new ArrayList<>();
            
     pf0.add(0.0);
     pf1.add(1.0E-4);
     pf3.add(3.0E-4);
     pf5.add(5.0E-4);
     pf7.add(7.0E-4);
     pf9.add(9.0E-4);
     pf01.add(1.0E-3);
     */
    //pfg3.add(1.0E-3);
    //Log.getInstance().addTarget(new PrintStreamLogTarget(System.out));
}

From source file:ch.epfl.lsir.xin.test.ItemBasedCFTest.java

/**
 * @param args//from w  w  w .  ja v a  2  s.c  o  m
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//ItemBasedCF");
    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File(".//conf//ItemBasedCF.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt");
    loader.readSimple();
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    double totalPrecision = 0;
    double totalRecall = 0;
    double totalMAP = 0;
    double totalNDCG = 0;
    double totalMRR = 0;
    double totalAUC = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }

    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }

    for (int folder = 1; folder <= F; folder++) {
        logger.println("Folder: " + folder);
        System.out.println("Folder: " + folder);
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>();
        HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>();
        for (int i = 0; i < dataset.getUserIDs().size(); i++) {
            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        }
        for (int i = 0; i < dataset.getItemIDs().size(); i++) {
            itemIDIndexMapping.put(dataset.getItemIDs().get(i), i);
        }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        trainRatingMatrix.calculateGlobalAverage();
        trainRatingMatrix.calculateItemsMean();
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());
        logger.println("Initialize a item based collaborative filtering recommendation model.");
        ItemBasedCF algo = new ItemBasedCF(trainRatingMatrix);
        algo.setLogger(logger);
        algo.build();//if read local model, no need to build the model
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();

        //rating prediction accuracy
        double RMSE = 0;
        double MAE = 0;
        double precision = 0;
        double recall = 0;
        double map = 0;
        double ndcg = 0;
        double mrr = 0;
        double auc = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()), false);
            if (prediction > algo.getMaxRating())
                prediction = algo.getMaxRating();
            if (prediction < algo.getMinRating())
                prediction = algo.getMinRating();

            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
        System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: "
                + MAE + " RMSE: " + RMSE);

        //ranking accuracy
        if (algo.getTopN() > 0) {
            HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>();
            for (int i = 0; i < trainRatingMatrix.getRow(); i++) {
                //               ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
                //               results.put(i, rec);
                ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
                if (rec == null)
                    continue;
                int total = testRatingMatrix.getUserRatingNumber(i);
                if (total == 0)//this user is ignored
                    continue;
                results.put(i, rec);
            }
            RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix,
                    trainRatingMatrix);
            precision = generator.getPrecisionN();
            totalPrecision = totalPrecision + precision;
            recall = generator.getRecallN();
            totalRecall = totalRecall + recall;
            map = generator.getMAPN();
            totalMAP = totalMAP + map;
            ndcg = generator.getNDCGN();
            totalNDCG = totalNDCG + ndcg;
            mrr = generator.getMRRN();
            totalMRR = totalMRR + mrr;
            auc = generator.getAUC();
            totalAUC = totalAUC + auc;
            System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
            logger.append("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc + "\n");
        }
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    System.out.println("Precision@N: " + totalPrecision / F);
    System.out.println("Recall@N: " + totalRecall / F);
    System.out.println("MAP@N: " + totalMAP / F);
    System.out.println("MRR@N: " + totalMRR / F);
    System.out.println("NDCG@N: " + totalNDCG / F);
    System.out.println("AUC@N: " + totalAUC / F);
    System.out.println("similarity: " + config.getString("SIMILARITY"));
    //MAE: 0.7227232762922241 RMSE: 0.9225576790122603 (MovieLens 100K, shrinkage 2500, neighbor size 40, PCC)
    //MAE: 0.7250636319353241 RMSE: 0.9242305485411567 (MovieLens 100K, shrinkage 25, neighbor size 40, PCC)
    //MAE: 0.7477213243604459 RMSE: 0.9512195004171138 (MovieLens 100K, shrinkage 2500, neighbor size 40, COSINE)

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n"
            + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F
            + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F);
    logger.flush();
    logger.close();
}

From source file:ch.epfl.lsir.xin.test.SocialRegTest.java

/**
 * @param args/*from  ww w  .j a  v a  2  s.com*/
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//SocialReg");
    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File("conf//SocialReg.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    logger.flush();
    DataLoaderFile loader = new DataLoaderFile(".//data//Epinions-ratings.txt");
    loader.readSimple();
    //read social information
    loader.readRelation(".//data//Epinions-trust.txt");
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    double totalPrecision = 0;
    double totalRecall = 0;
    double totalMAP = 0;
    double totalNDCG = 0;
    double totalMRR = 0;
    double totalAUC = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    logger.flush();
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }

    for (int folder = 1; folder <= F; folder++) {
        System.out.println("Folder: " + folder);
        logger.println("Folder: " + folder);
        logger.flush();
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = dataset.getUserIDMapping();
        HashMap<String, Integer> itemIDIndexMapping = dataset.getItemIDMapping();
        //         for( int i = 0 ; i < dataset.getUserIDs().size() ; i++ )
        //         {
        //            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        //         }
        //         for( int i = 0 ; i < dataset.getItemIDs().size() ; i++ )
        //         {
        //            itemIDIndexMapping.put(dataset.getItemIDs().get(i) , i);
        //         }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());

        logger.println("Initialize a social regularization recommendation model.");
        logger.flush();
        SocialReg algo = new SocialReg(trainRatingMatrix, dataset.getRelationships(), false,
                ".//localModels//" + config.getString("NAME"));
        algo.setLogger(logger);
        algo.build();
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();

        System.out.println(trainRatings.size() + " vs. " + testRatings.size());

        //rating prediction accuracy
        double RMSE = 0;
        double MAE = 0;
        double precision = 0;
        double recall = 0;
        double map = 0;
        double ndcg = 0;
        double mrr = 0;
        double auc = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()));
            if (prediction > algo.getMaxRating())
                prediction = algo.getMaxRating();
            if (prediction < algo.getMinRating())
                prediction = algo.getMinRating();
            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
        System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: "
                + MAE + " RMSE: " + RMSE);
        //ranking accuracy
        //         if( algo.getTopN() > 0 )
        //         {
        //            HashMap<Integer , ArrayList<ResultUnit>> results = new HashMap<Integer , ArrayList<ResultUnit>>();
        //            for( int i = 0 ; i < trainRatingMatrix.getRow() ; i++ )
        //            {
        //               ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
        //               results.put(i, rec);
        //            }
        //            RankResultGenerator generator = new RankResultGenerator(results , algo.getTopN() , testRatingMatrix);
        //            precision = generator.getPrecisionN();
        //            totalPrecision = totalPrecision + precision;
        //            recall = generator.getRecallN();
        //            totalRecall = totalRecall + recall;
        //            map = generator.getMAPN();
        //            totalMAP = totalMAP + map;
        //            ndcg = generator.getNDCGN();
        //            totalNDCG = totalNDCG + ndcg;
        //            mrr = generator.getMRRN();
        //            totalMRR = totalMRR + mrr;
        //            auc = generator.getAUC();
        //            totalAUC = totalAUC + auc;
        //            System.out.println("Folder --- precision: " + precision + " recall: " + 
        //            recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
        //            logger.println("Folder --- precision: " + precision + " recall: " + 
        //                  recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + 
        //                  mrr + " auc: " + auc);
        //         }

        logger.flush();
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    System.out.println("Precision@N: " + totalPrecision / F);
    System.out.println("Recall@N: " + totalRecall / F);
    System.out.println("MAP@N: " + totalMAP / F);
    System.out.println("MRR@N: " + totalMRR / F);
    System.out.println("NDCG@N: " + totalNDCG / F);
    System.out.println("AUC@N: " + totalAUC / F);

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n"
            + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F
            + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F);
    logger.flush();
    logger.close();
}

From source file:ch.epfl.lsir.xin.test.BiasedMFTest.java

/**
 * @param args/*from   w ww  .j  av a  2  s .  c o  m*/
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//BiasedMF");

    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File("conf//biasedMF.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    logger.flush();
    DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt");
    loader.readSimple();
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    double totalPrecision = 0;
    double totalRecall = 0;
    double totalMAP = 0;
    double totalNDCG = 0;
    double totalMRR = 0;
    double totalAUC = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    logger.flush();
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }

    for (int folder = 1; folder <= F; folder++) {
        System.out.println("Folder: " + folder);
        logger.println("Folder: " + folder);
        logger.flush();
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>();
        HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>();
        for (int i = 0; i < dataset.getUserIDs().size(); i++) {
            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        }
        for (int i = 0; i < dataset.getItemIDs().size(); i++) {
            itemIDIndexMapping.put(dataset.getItemIDs().get(i), i);
        }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            //            if( testRatings.get(i).getValue() < 5 )
            //               continue;
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());

        logger.println("Initialize a biased matrix factorization recommendation model.");
        logger.flush();
        BiasedMF algo = new BiasedMF(trainRatingMatrix, false, ".//localModels//" + config.getString("NAME"));
        algo.setLogger(logger);
        algo.build();
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();

        //rating prediction accuracy
        double RMSE = 0;
        double MAE = 0;
        double precision = 0;
        double recall = 0;
        double map = 0;
        double ndcg = 0;
        double mrr = 0;
        double auc = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()), false);
            if (prediction > algo.getMaxRating())
                prediction = algo.getMaxRating();
            if (prediction < algo.getMinRating())
                prediction = algo.getMinRating();
            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
        System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: "
                + MAE + " RMSE: " + RMSE);
        //ranking accuracy
        if (algo.getTopN() > 0) {
            HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>();
            for (int i = 0; i < trainRatingMatrix.getRow(); i++) {
                ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
                if (rec == null)
                    continue;
                int total = testRatingMatrix.getUserRatingNumber(i);
                if (total == 0)//this user is ignored
                    continue;
                results.put(i, rec);
            }
            RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix,
                    trainRatingMatrix);
            precision = generator.getPrecisionN();
            totalPrecision = totalPrecision + precision;
            recall = generator.getRecallN();
            totalRecall = totalRecall + recall;
            map = generator.getMAPN();
            totalMAP = totalMAP + map;
            ndcg = generator.getNDCGN();
            totalNDCG = totalNDCG + ndcg;
            mrr = generator.getMRRN();
            totalMRR = totalMRR + mrr;
            auc = generator.getAUC();
            totalAUC = totalAUC + auc;
            System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
            logger.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
        }

        logger.flush();
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    System.out.println("Precision@N: " + totalPrecision / F);
    System.out.println("Recall@N: " + totalRecall / F);
    System.out.println("MAP@N: " + totalMAP / F);
    System.out.println("MRR@N: " + totalMRR / F);
    System.out.println("NDCG@N: " + totalNDCG / F);
    System.out.println("AUC@N: " + totalAUC / F);

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n"
            + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F
            + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F);
    logger.flush();
    logger.close();
}

From source file:de.prozesskraft.pkraft.Waitinstance.java

public static void main(String[] args) throws org.apache.commons.cli.ParseException, IOException {

    /*----------------------------
      get options from ini-file/*  w w  w .ja va  2s. c  o m*/
    ----------------------------*/
    java.io.File inifile = new java.io.File(WhereAmI.getInstallDirectoryAbsolutePath(Waitinstance.class) + "/"
            + "../etc/pkraft-waitinstance.ini");

    if (inifile.exists()) {
        try {
            ini = new Ini(inifile);
        } catch (InvalidFileFormatException e1) {
            // TODO Auto-generated catch block
            e1.printStackTrace();
        } catch (IOException e1) {
            // TODO Auto-generated catch block
            e1.printStackTrace();
        }
    } else {
        System.err.println("ini file does not exist: " + inifile.getAbsolutePath());
        System.exit(1);
    }

    /*----------------------------
      create boolean options
    ----------------------------*/
    Option ohelp = new Option("help", "print this message");
    Option ov = new Option("v", "prints version and build-date");

    /*----------------------------
      create argument options
    ----------------------------*/
    Option oinstance = OptionBuilder.withArgName("FILE").hasArg().withDescription(
            "[mandatory if no -scandir] instance file (process.pmb) that this program will wait till its status is 'error' or 'finished'")
            //            .isRequired()
            .create("instance");

    Option oscandir = OptionBuilder.withArgName("DIR").hasArg().withDescription(
            "[mandatory if no -instance] directory tree with instances (process.pmb). the first instance found will be tracked.")
            //            .isRequired()
            .create("scandir");

    Option omaxrun = OptionBuilder.withArgName("INTEGER").hasArg().withDescription(
            "[optional, default: 4320] time period (in minutes, default: 3 days) this program waits till it aborts further waiting.")
            //            .isRequired()
            .create("maxrun");

    /*----------------------------
      create options object
    ----------------------------*/
    Options options = new Options();

    options.addOption(ohelp);
    options.addOption(ov);
    options.addOption(oinstance);
    options.addOption(oscandir);
    options.addOption(omaxrun);

    /*----------------------------
      create the parser
    ----------------------------*/
    CommandLineParser parser = new GnuParser();
    // parse the command line arguments
    commandline = parser.parse(options, args);

    /*----------------------------
      usage/help
    ----------------------------*/
    if (commandline.hasOption("help")) {
        HelpFormatter formatter = new HelpFormatter();
        formatter.printHelp("waitinstance", options);
        System.exit(0);
    }

    if (commandline.hasOption("v")) {
        System.out.println("author:  alexander.vogel@caegroup.de");
        System.out.println("version: [% version %]");
        System.out.println("date:    [% date %]");
        System.exit(0);
    }
    /*----------------------------
      ueberpruefen ob eine schlechte kombination von parametern angegeben wurde
    ----------------------------*/
    Integer maxrun = new Integer(4320);
    String pathInstance = null;
    String pathScandir = null;

    // instance & scandir
    if (!(commandline.hasOption("instance")) && !(commandline.hasOption("scandir"))) {
        System.err.println("one of the options -instance/-scandir is mandatory");
        exiter();
    } else if ((commandline.hasOption("instance")) && (commandline.hasOption("scandir"))) {
        System.err.println("both options -instance/-scandir are not allowed");
        exiter();
    } else if (commandline.hasOption("instance")) {
        pathInstance = commandline.getOptionValue("instance");
    } else if (commandline.hasOption("scandir")) {
        pathScandir = commandline.getOptionValue("scandir");
    }

    // maxrun
    if (commandline.hasOption("maxrun")) {
        maxrun = new Integer(commandline.getOptionValue("maxrun"));
    }
    /*----------------------------
      die lizenz ueberpruefen und ggf abbrechen
    ----------------------------*/

    // check for valid license
    ArrayList<String> allPortAtHost = new ArrayList<String>();
    allPortAtHost.add(ini.get("license-server", "license-server-1"));
    allPortAtHost.add(ini.get("license-server", "license-server-2"));
    allPortAtHost.add(ini.get("license-server", "license-server-3"));

    MyLicense lic = new MyLicense(allPortAtHost, "1", "user-edition", "0.1");

    // lizenz-logging ausgeben
    for (String actLine : (ArrayList<String>) lic.getLog()) {
        System.err.println(actLine);
    }

    // abbruch, wenn lizenz nicht valide
    if (!lic.isValid()) {
        System.exit(1);
    }

    /*----------------------------
      die eigentliche business logic
    ----------------------------*/

    // scannen nach dem ersten process.pmb 
    if ((pathScandir != null) && (pathInstance == null)) {
        String[] allBinariesOfScanDir = getProcessBinaries(pathScandir);

        if (allBinariesOfScanDir.length == 0) {
            System.err.println("no instance (process.pmb) found in directory tree " + pathScandir);
            exiter();
        } else {
            pathInstance = allBinariesOfScanDir[0];
            System.err.println("found instance: " + pathInstance);
        }
    }

    // ueberpruefen ob instance file existiert
    java.io.File fileInstance = new java.io.File(pathInstance);

    if (!fileInstance.exists()) {
        System.err.println("instance file does not exist: " + fileInstance.getAbsolutePath());
        exiter();
    }

    if (!fileInstance.isFile()) {
        System.err.println("instance file is not a file: " + fileInstance.getAbsolutePath());
        exiter();
    }

    // zeitpunkt wenn spaetestens beendet werden soll
    long runTill = System.currentTimeMillis() + (maxrun * 60 * 1000);

    // logging
    System.err.println("waiting for instance: " + fileInstance.getAbsolutePath());
    System.err.println("checking its status every 5 minutes");
    System.err.println("now is: " + new Timestamp(startInMillis).toString());
    System.err.println("maxrun till: " + new Timestamp(runTill).toString());

    // instanz einlesen
    Process p1 = new Process();
    p1.setInfilebinary(fileInstance.getAbsolutePath());
    Process p2 = p1.readBinary();

    // schleife, die prozess einliest und ueberprueft ob er noch laeuft
    while (!(p2.getStatus().equals("error") || p2.getStatus().equals("finished"))) {
        // logging
        System.err.println(new Timestamp(System.currentTimeMillis()) + " instance status: " + p2.getStatus());

        // 5 minuten schlafen: 300000 millis
        try {
            Thread.sleep(300000);
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }

        // ist die maximale laufzeit von this erreicht, dann soll beendet werden (3 tage)
        if (System.currentTimeMillis() > runTill) {
            System.err
                    .println("exiting because of maxrun. now is: " + new Timestamp(System.currentTimeMillis()));
            System.exit(2);
        }

        // den prozess frisch einlesen
        p2 = p1.readBinary();
    }

    System.err.println("exiting because instance status is: " + p2.getStatus());
    System.err.println("now is: " + new Timestamp(System.currentTimeMillis()).toString());
    System.exit(0);

}

From source file:at.tuwien.ifs.somtoolbox.apps.helper.VectorFileSubsetGenerator.java

public static void main(String[] args) throws IOException, SOMToolboxException {
    // register and parse all options
    JSAPResult config = OptionFactory.parseResults(args, OPTIONS);

    String inputFileName = AbstractOptionFactory.getFilePath(config, "input");
    String classInformationFileName = AbstractOptionFactory.getFilePath(config, "classInformationFile");
    String outputFileName = AbstractOptionFactory.getFilePath(config, "output");

    String[] keepClasses = config.getStringArray("classList");

    boolean skipInstanceNames = false;// config.getBoolean("skipInstanceNames");
    boolean skipInputsWithoutClass = false;// config.getBoolean("skipInputsWithoutClass");
    boolean tabSeparatedClassFile = false;// config.getBoolean("tabSeparatedClassFile");

    String inputFormat = config.getString("inputFormat");
    if (inputFormat == null) {
        inputFormat = InputDataFactory.detectInputFormatFromExtension(inputFileName, "input");
    }// w w w  .  j  a  v a2s  .  c o m
    String outputFormat = config.getString("outputFormat");
    if (outputFormat == null) {
        outputFormat = InputDataFactory.detectInputFormatFromExtension(outputFileName, "output");
    }

    InputData data = InputDataFactory.open(inputFormat, inputFileName);
    if (classInformationFileName != null) {
        SOMLibClassInformation classInfo = new SOMLibClassInformation(classInformationFileName);
        data.setClassInfo(classInfo);
    }
    if (data.classInformation() == null) {
        throw new SOMToolboxException("Need to provide a class information file.");
    }

    Logger.getLogger("at.tuwien.ifs.somtoolbox")
            .info("Retaining elements of classes: " + Arrays.toString(keepClasses));

    ArrayList<InputDatum> subData = new ArrayList<InputDatum>();
    for (int i = 0; i < data.numVectors(); i++) {
        InputDatum datum = data.getInputDatum(i);
        String className = data.classInformation().getClassName(datum.getLabel());
        System.out.println(datum.getLabel() + "=>" + className);
        if (ArrayUtils.contains(keepClasses, className)) {
            subData.add(datum);
        }
    }

    InputData subset = new SOMLibSparseInputData(subData.toArray(new InputDatum[subData.size()]),
            data.classInformation());
    InputDataWriter.write(outputFileName, subset, outputFormat, tabSeparatedClassFile, skipInstanceNames,
            skipInputsWithoutClass);
}

From source file:unalcol.termites.boxplots.InformationCollected1.java

/**
 * For testing from the command line./*from w  ww .jav  a  2  s . c om*/
 *
 * @param args ignored.
 */
public static void main(final String[] args) {
    //double pf = Double.valueOf(args[0]);
    //       System.out.println("pf:" + args[0]);
    //double pf = 0;
    /* For the Paper */

    /*
     ArrayList<Double> pf0 = new ArrayList<>();
     ArrayList<Double> pfg1 = new ArrayList<>();
     ArrayList<Double> pfg2 = new ArrayList<>();
     ArrayList<Double> pfg3 = new ArrayList<>();
            
            
     pf0.add(0.0);
     pfg1.add(1.0E-4);
     pfg1.add(3.0E-4);
     pfg2.add(5.0E-4);
     pfg2.add(7.0E-4);
     pfg3.add(9.0E-4);
            
     //pfg3.add(1.0E-3);
     //Log.getInstance().addTarget(new PrintStreamLogTarget(System.out));
     final InformationCollected1 demo = new InformationCollected1("Information Collected", pf0);
     final InformationCollected1 demo1 = new InformationCollected1("Information Collected", pfg1);
     final InformationCollected1 demo2 = new InformationCollected1("Information Collected", pfg2);
     final InformationCollected1 demo3 = new InformationCollected1("Information Collected", pfg3);
     //demo.pack();
     //RefineryUtilities.centerFrameOnScreen(demo);
     //demo.setVisible(true);
     **/
    if (args.length > 0) {
        experimentsDir = args[0];
    }

    if (args.length > 1) {
        mazeMode = args[1];
    }

    aMode = new String[args.length - 2];

    for (int i = 2; i < args.length; i++) {
        aMode[i - 2] = args[i];
    }

    ArrayList<Double> failureProbs = getFailureProbs();

    for (Double pf : failureProbs) {
        ArrayList<Double> pfi = new ArrayList<>();
        pfi.add(pf);
        final InformationCollected1 demo = new InformationCollected1("Information Collected", pfi);
    }

    /* Main with all Pictures by pf */
    /*ArrayList<Double> pf0 = new ArrayList<>();
     ArrayList<Double> pf1 = new ArrayList<>();
     ArrayList<Double> pf3 = new ArrayList<>();
     ArrayList<Double> pf5 = new ArrayList<>();
     ArrayList<Double> pf7 = new ArrayList<>();
     ArrayList<Double> pf9 = new ArrayList<>();
     ArrayList<Double> pf01 = new ArrayList<>();
            
     /* For the Paper */
    /*pf0.add(0.0);
     pf1.add(1.0E-4);
     pf3.add(3.0E-4);
     pf5.add(5.0E-4);
     pf7.add(7.0E-4);
     pf9.add(9.0E-4);
     pf01.add(1.0E-3);
            
     //pfg3.add(1.0E-3);
     //Log.getInstance().addTarget(new PrintStreamLogTarget(System.out));
     final InformationCollected1 demo = new InformationCollected1("Information Collected", pf0);
     final InformationCollected1 demo1 = new InformationCollected1("Information Collected", pf1);
     final InformationCollected1 demo2 = new InformationCollected1("Information Collected", pf3);
     final InformationCollected1 demo3 = new InformationCollected1("Information Collected", pf5);
     final InformationCollected1 demo4 = new InformationCollected1("Information Collected", pf7);
     final InformationCollected1 demo5 = new InformationCollected1("Information Collected", pf9);
     final InformationCollected1 demo6 = new InformationCollected1("Information Collected", pf01);
     */
}

From source file:org.hammer.santamaria.mapper.dataset.CKANDataSetInput.java

@SuppressWarnings({ "rawtypes", "unchecked" })
public static void main(String[] pArgs) throws Exception {
    String id = "proportion-of-children-under-5-years-who-have-ever-breastfed-by-county-xls-2005-6";
    String sId = EncodeURIComponent(id);
    String url = "https://africaopendata.org/api/action";

    BSONObject dataset = new BasicBSONObject();
    dataset.put("datasource", "Test");
    dataset.put("id", id);

    LOG.info("---> id " + id + " - " + sId);

    HttpClient client = new HttpClient();
    client.getHttpConnectionManager().getParams().setParameter(ClientPNames.HANDLE_REDIRECTS, false);
    LOG.info(/*  w  ww  .  j av a  2  s  .  c  o  m*/
            "******************************************************************************************************");
    LOG.info(" ");
    LOG.info(url + PACKAGE_GET + sId);
    LOG.info(" ");
    LOG.info(
            "******************************************************************************************************");

    GetMethod method = new GetMethod(url + PACKAGE_GET + sId);

    method.setRequestHeader("User-Agent", "Hammer Project - SantaMaria crawler");
    method.getParams().setParameter(HttpMethodParams.USER_AGENT, "Hammer Project - SantaMaria crawler");
    method.getParams().setParameter(HttpMethodParams.RETRY_HANDLER,
            new DefaultHttpMethodRetryHandler(3, false));

    try {
        int statusCode = client.executeMethod(method);
        if (statusCode != HttpStatus.SC_OK) {
            throw new Exception("Method failed: " + method.getStatusLine());
        }
        byte[] responseBody = method.getResponseBody();
        LOG.debug(new String(responseBody));
        Document doc = Document.parse(new String(responseBody));

        if (doc != null && doc.containsKey("result")) {
            Document result = new Document();
            LOG.info(doc.get("result").getClass().toString());
            if (doc.get("result") instanceof Document) {
                LOG.info("!!! Document result !!!!");
                result = (Document) doc.get("result");
            } else if (doc.get("result") instanceof ArrayList) {
                LOG.info("!!! Document list !!!!");

                result = (Document) (((ArrayList) doc.get("result")).get(0));
            } else {
                LOG.info("!!! NOT FOUND !!!!");
                result = null;
            }
            LOG.info("result find!");
            if (result != null) {
                dataset.put("title", result.get("title"));
                dataset.put("author", result.get("author"));
                dataset.put("author_email", result.get("author_email"));
                dataset.put("license_id", result.get("license_id"));
            }

            ArrayList<String> tags = new ArrayList<String>();
            ArrayList<String> meta = new ArrayList<String>();
            ArrayList<String> other_tags = new ArrayList<String>();

            if (result.containsKey("author") && result.get("author") != null)
                other_tags.add(result.get("author").toString());
            if (result.containsKey("title") && result.get("title") != null)
                other_tags.addAll(DSSUtils.GetKeyWordsFromText(result.get("title").toString()));
            if (result.containsKey("description") && result.get("description") != null)
                other_tags.addAll(DSSUtils.GetKeyWordsFromText(result.get("description").toString()));

            ArrayList<Document> resources = new ArrayList<Document>();
            if (result != null && result.containsKey("resources")) {
                resources = (ArrayList<Document>) result.get("resources");
                for (Document resource : resources) {
                    if (resource.getString("format").toUpperCase().equals("JSON")) {
                        dataset.put("dataset-type", "JSON");
                        dataset.put("url", resource.get("url"));
                        dataset.put("created", resource.get("created"));
                        dataset.put("description", resource.get("description"));
                        dataset.put("revision_timestamp", resource.get("revision_timestamp"));
                        meta = DSSUtils.GetMetaByResource(resource.get("url").toString());
                    }
                }
            }

            if (result != null && result.containsKey("tags")) {
                ArrayList<Document> tagsFromCKAN = (ArrayList<Document>) result.get("tags");
                for (Document tag : tagsFromCKAN) {
                    if (tag.containsKey("state") && tag.getString("state").toUpperCase().equals("ACTIVE")) {
                        tags.add(tag.getString("display_name").trim().toLowerCase());
                    } else if (tag.containsKey("display_name")) {
                        tags.add(tag.getString("display_name").trim().toLowerCase());
                    }
                }

            }

            dataset.put("tags", tags);
            dataset.put("meta", meta);
            dataset.put("resources", resources);
            dataset.put("other_tags", other_tags);

        }

    } catch (Exception e) {
        e.printStackTrace();
        LOG.error(e);
    } finally {
        method.releaseConnection();
    }

    //GetMetaByDocument("http://catalog.data.gov/api/action/package_show?id=1e68f387-5f1c-46c0-a0d1-46044ffef5bf");
}

From source file:ch.epfl.lsir.xin.test.UserBasedCFTest.java

/**
 * @param args/* w w w  . j a  v a2 s .c  o  m*/
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//UserBasedCF");
    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File(".//conf//UserBasedCF.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt");
    loader.readSimple();
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    double totalPrecision = 0;
    double totalRecall = 0;
    double totalMAP = 0;
    double totalNDCG = 0;
    double totalMRR = 0;
    double totalAUC = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }

    for (int folder = 1; folder <= F; folder++) {
        logger.println("Folder: " + folder);
        System.out.println("Folder: " + folder);
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>();
        HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>();
        for (int i = 0; i < dataset.getUserIDs().size(); i++) {
            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        }
        for (int i = 0; i < dataset.getItemIDs().size(); i++) {
            itemIDIndexMapping.put(dataset.getItemIDs().get(i), i);
        }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        trainRatingMatrix.calculateGlobalAverage();
        trainRatingMatrix.calculateUsersMean();
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            //            if( testRatings.get(i).getValue() < 5 )
            //               continue;
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        logger.println("Initialize a user based collaborative filtering recommendation model.");
        UserBasedCF algo = new UserBasedCF(trainRatingMatrix, false,
                ".//localModels//" + config.getString("NAME"));
        algo.setLogger(logger);
        algo.build();//if read local model, no need to build the model
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        System.out.println(trainRatings.size() + " vs. " + testRatings.size());
        logger.flush();

        //rating prediction accuracy
        double RMSE = 0;
        double MAE = 0;
        double precision = 0;
        double recall = 0;
        double map = 0;
        double ndcg = 0;
        double mrr = 0;
        double auc = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()), false);

            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            if (prediction > algo.getMaxRating())
                prediction = algo.getMaxRating();
            if (prediction < algo.getMinRating())
                prediction = algo.getMinRating();
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
        System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: "
                + MAE + " RMSE: " + RMSE);
        logger.flush();
        //ranking accuracy
        if (algo.getTopN() > 0) {
            HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>();
            for (int i = 0; i < testRatingMatrix.getRow(); i++) {
                ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
                if (rec == null)
                    continue;
                int total = testRatingMatrix.getUserRatingNumber(i);
                if (total == 0)//this user is ignored
                    continue;
                results.put(i, rec);
                //               for( Map.Entry<Integer, Double> entry : testRatingMatrix.getRatingMatrix().get(i).entrySet() )
                //               {
                //                  System.out.print( entry.getKey() + "(" + entry.getValue() + ") , ");
                //               }
                //               System.out.println();
                //               for( int j = 0 ; j < rec.size() ; j++ )
                //               {
                //                  System.out.print(rec.get(j).getItemIndex() + "(" + rec.get(j).getPrediciton() +
                //                        ") , ");
                //               }
                //               System.out.println("**********");
            }
            RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix,
                    trainRatingMatrix);
            precision = generator.getPrecisionN();
            totalPrecision = totalPrecision + precision;
            recall = generator.getRecallN();
            totalRecall = totalRecall + recall;
            map = generator.getMAPN();
            totalMAP = totalMAP + map;
            ndcg = generator.getNDCGN();
            totalNDCG = totalNDCG + ndcg;
            mrr = generator.getMRRN();
            totalMRR = totalMRR + mrr;
            auc = generator.getAUC();
            totalAUC = totalAUC + auc;
            System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
            logger.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
        }
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    System.out.println("Precision@N: " + totalPrecision / F);
    System.out.println("Recall@N: " + totalRecall / F);
    System.out.println("MAP@N: " + totalMAP / F);
    System.out.println("MRR@N: " + totalMRR / F);
    System.out.println("NDCG@N: " + totalNDCG / F);
    System.out.println("AUC@N: " + totalAUC / F);
    // MovieLens100k
    //MAE: 0.7343907480119425 RMSE: 0.9405808357192891 (MovieLens 100K, shrinkage 25, neighbor size 60, PCC)
    //MAE: 0.7522376630596646 RMSE: 0.9520931265724659 (MovieLens 100K, no shrinkage , neighbor size 40, COSINE)
    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n"
            + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F
            + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F);
    logger.flush();
    logger.close();

}