List of usage examples for java.nio.file Paths get
public static Path get(URI uri)
From source file:acromusashi.stream.resource.ResourceResolver.java
/** * Return target file path from class and resource's path. * * @param clazz Target class//from w w w . java 2 s .c om * @param path resource's path * @return File object */ public static File resolve(Class<?> clazz, String path) { URL url = clazz.getResource(path); if (url == null) { return null; } File result; try { result = Paths.get(url.toURI()).toFile(); } catch (URISyntaxException ex) { return null; } return result; }
From source file:cc.kave.commons.pointsto.evaluation.ProjectTrainValidateEvaluation.java
public static void main(String[] args) throws IOException { Locale.setDefault(Locale.US); Path baseDir = Paths.get("E:\\Coding\\MT"); Path usageStoresDir = baseDir.resolve("Usages"); Path resultFile = baseDir.resolve("EvaluationResults").resolve("TrainValidate.txt"); ProjectTrainValidateEvaluation evaluator = INJECTOR.getInstance(ProjectTrainValidateEvaluation.class); evaluator.run(usageStoresDir);//from w w w.j a v a 2s . c o m INJECTOR.getInstance(ResultExporter.class).export(resultFile, evaluator.getResults().entrySet().stream() .flatMap(e -> e.getValue().stream().map(er -> ImmutablePair.of(e.getKey(), er))).map(p -> { return new String[] { CoReNames.vm2srcQualifiedType(p.left), p.right.training, p.right.validation, String.format(Locale.US, "%.3f", p.right.score), Integer.toString(p.right.numTrainingUsages), Integer.toString(p.right.numValidationUsages) }; })); INJECTOR.getInstance(ExecutorService.class).shutdown(); }
From source file:com.rom.jmultipatcher.Utils.java
public static void copyFile(final String sourcefile, final String targetfile, final boolean addNameSignature) { final Path sourcePath = Paths.get(sourcefile); final Path targetPath = Paths.get(targetfile); try {//from w w w . j a va 2 s.c o m Files.copy(sourcePath, targetPath, COPY_ATTRIBUTES, REPLACE_EXISTING); } catch (IOException ex) { throw new IllegalArgumentException(ex); } }
From source file:cloudlens.parser.FileReader.java
public static InputStream fetchFile(String urlString) { try {//from ww w .jav a 2s . co m InputStream inputStream; URL url; if (urlString.startsWith("local:")) { final String path = urlString.replaceFirst("local:", ""); inputStream = Files.newInputStream(Paths.get(path)); } else if (urlString.startsWith("file:")) { url = new URL(urlString); inputStream = Files.newInputStream(Paths.get(url.toURI())); } else if (urlString.startsWith("http:") || urlString.startsWith("https:")) { url = new URL(urlString); final HttpURLConnection conn = (HttpURLConnection) url.openConnection(); conn.setDoInput(true); final Matcher matcher = Pattern.compile("//([^@]+)@").matcher(urlString); if (matcher.find()) { final String encoding = Base64.getEncoder().encodeToString(matcher.group(1).getBytes()); conn.setRequestProperty("Authorization", "Basic " + encoding); } conn.setRequestMethod("GET"); inputStream = conn.getInputStream(); } else { throw new CLException("supported protocols are: http, https, file, and local."); } return inputStream; } catch (IOException | URISyntaxException e) { throw new CLException(e.getMessage()); } }
From source file:com.playonlinux.core.utils.FileAnalyser.java
private static MagicMatch getMatch(File inputFile) throws PlayOnLinuxException, MagicMatchNotFoundException { final Path path = Paths.get(inputFile.getAbsolutePath()); try {/* ww w. java 2 s . com*/ byte[] data = Files.readAllBytes(path); return Magic.getMagicMatch(data); } catch (MagicException | MagicParseException | IOException e) { throw new PlayOnLinuxException("Unable to detect mimetype of the file", e); } }
From source file:com.github.blindpirate.gogradle.util.StringUtils.java
public static boolean pathStartsWith(String a, String b) { Path aPath = Paths.get(a); Path bPath = Paths.get(b); return aPath.startsWith(bPath); }
From source file:com.wavemaker.commons.util.WMFileUtils.java
public static Collection<String> findMatchedRelativePaths(String pattern, String basePath) { FilePatternMatchVisitor filePatternMatchVisitor = new FilePatternMatchVisitor(pattern, basePath); try {/* www .ja va2s . c o m*/ Files.walkFileTree(Paths.get(basePath), filePatternMatchVisitor); Collection<Path> matchedFiles = filePatternMatchVisitor.getMatchedPaths(); List<String> matchedFilePaths = new ArrayList<>(matchedFiles.size()); for (Path path : matchedFiles) { matchedFilePaths.add(path.toString()); } return matchedFilePaths; } catch (IOException e) { throw new WMRuntimeException("Failed to find matched ignore patterns for " + pattern, e); } }
From source file:com.yqboots.fss.util.ZipUtils.java
/** * Compresses the specified directory to a zip file * * @param dir the directory to compress/* ww w .j ava 2 s.c o m*/ * @return the compressed file * @throws IOException */ public static Path compress(Path dir) throws IOException { Assert.isTrue(Files.exists(dir), "The directory does not exist: " + dir.toAbsolutePath()); Assert.isTrue(Files.isDirectory(dir), "Should be a directory: " + dir.toAbsolutePath()); Path result = Paths.get(dir.toAbsolutePath() + FileType.DOT_ZIP); try (final ZipOutputStream out = new ZipOutputStream( new BufferedOutputStream(new FileOutputStream(result.toFile())))) { // out.setMethod(ZipOutputStream.DEFLATED); final byte data[] = new byte[BUFFER]; // get a list of files from current directory Files.walkFileTree(dir, new SimpleFileVisitor<Path>() { @Override public FileVisitResult visitFile(final Path path, final BasicFileAttributes attrs) throws IOException { final File file = path.toFile(); // compress to relative directory, not absolute final String root = StringUtils.substringAfter(file.getParent(), dir.toString()); try (final BufferedInputStream origin = new BufferedInputStream(new FileInputStream(file), BUFFER)) { final ZipEntry entry = new ZipEntry(root + File.separator + path.getFileName()); out.putNextEntry(entry); int count; while ((count = origin.read(data, 0, BUFFER)) != -1) { out.write(data, 0, count); } } return FileVisitResult.CONTINUE; } }); } return result; }
From source file:com.yahoo.labs.yamall.local.Yamall.java
public static void main(String[] args) { String[] remainingArgs = null; String inputFile = null;/* w ww. j a v a 2s .c om*/ String predsFile = null; String saveModelFile = null; String initialModelFile = null; String lossName = null; String parserName = null; String linkName = null; String invertHashName = null; double learningRate = 1; String minPredictionString = null; String maxPredictionString = null; String fmNumberFactorsString = null; int bitsHash; int numberPasses; int holdoutPeriod = 10; boolean testOnly = false; boolean exponentialProgress; double progressInterval; options.addOption("h", "help", false, "displays this help"); options.addOption("t", false, "ignore label information and just test"); options.addOption(Option.builder().hasArg(false).required(false).longOpt("binary") .desc("reports loss as binary classification with -1,1 labels").build()); options.addOption( Option.builder().hasArg(false).required(false).longOpt("solo").desc("uses SOLO optimizer").build()); options.addOption(Option.builder().hasArg(false).required(false).longOpt("pcsolo") .desc("uses Per Coordinate SOLO optimizer").build()); options.addOption(Option.builder().hasArg(false).required(false).longOpt("pistol") .desc("uses PiSTOL optimizer").build()); options.addOption(Option.builder().hasArg(false).required(false).longOpt("kt") .desc("(EXPERIMENTAL) uses KT optimizer").build()); options.addOption(Option.builder().hasArg(false).required(false).longOpt("pckt") .desc("(EXPERIMENTAL) uses Per Coordinate KT optimizer").build()); options.addOption(Option.builder().hasArg(false).required(false).longOpt("pccocob") .desc("(EXPERIMENTAL) uses Per Coordinate COCOB optimizer").build()); options.addOption(Option.builder().hasArg(false).required(false).longOpt("cocob") .desc("(EXPERIMENTAL) uses COCOB optimizer").build()); options.addOption( Option.builder().hasArg(false).required(false).longOpt("fm").desc("Factorization Machine").build()); options.addOption(Option.builder("f").hasArg(true).required(false).desc("final regressor to save") .type(String.class).longOpt("final_regressor").build()); options.addOption(Option.builder("p").hasArg(true).required(false).desc("file to output predictions to") .longOpt("predictions").type(String.class).build()); options.addOption( Option.builder("i").hasArg(true).required(false).desc("initial regressor(s) to load into memory") .longOpt("initial_regressor").type(String.class).build()); options.addOption(Option.builder().hasArg(true).required(false).desc( "specify the loss function to be used. Currently available ones are: absolute, squared (default), hinge, logistic") .longOpt("loss_function").type(String.class).build()); options.addOption(Option.builder().hasArg(true).required(false).desc( "specify the link function used in the output of the predictions. Currently available ones are: identity (default), logistic") .longOpt("link").type(String.class).build()); options.addOption(Option.builder().hasArg(true).required(false) .desc("output human-readable final regressor with feature names").longOpt("invert_hash") .type(String.class).build()); options.addOption( Option.builder("l").hasArg(true).required(false).desc("set (initial) learning Rate, default = 1.0") .longOpt("learning_rate").type(String.class).build()); options.addOption(Option.builder("b").hasArg(true).required(false) .desc("number of bits in the feature table, default = 18").longOpt("bit_precision") .type(String.class).build()); options.addOption(Option.builder("P").hasArg(true).required(false) .desc("progress update frequency, integer: additive; float: multiplicative, default = 2.0") .longOpt("progress").type(String.class).build()); options.addOption(Option.builder().hasArg(true).required(false) .desc("smallest prediction to output, before the link function, default = -50") .longOpt("min_prediction").type(String.class).build()); options.addOption(Option.builder().hasArg(true).required(false) .desc("smallest prediction to output, before the link function, default = 50") .longOpt("max_prediction").type(String.class).build()); options.addOption(Option.builder().hasArg(true).required(false) .desc("ignore namespaces beginning with the characters in <arg>").longOpt("ignore") .type(String.class).build()); options.addOption(Option.builder().hasArg(true).required(false).desc("number of training passes") .longOpt("passes").type(String.class).build()); options.addOption( Option.builder().hasArg(true).required(false).desc("holdout period for test only, default = 10") .longOpt("holdout_period").type(String.class).build()); options.addOption(Option.builder().hasArg(true).required(false) .desc("number of factors for Factorization Machines default = 8").longOpt("fmNumberFactors") .type(String.class).build()); options.addOption(Option.builder().hasArg(true).required(false) .desc("specify the parser to use. Currently available ones are: vw (default), libsvm, tsv") .longOpt("parser").type(String.class).build()); options.addOption(Option.builder().hasArg(true).required(false).desc("schema file for the TSV input") .longOpt("schema").type(String.class).build()); CommandLineParser parser = new DefaultParser(); CommandLine cmd = null; try { cmd = parser.parse(options, args); } catch (ParseException e) { System.out.println("Unrecognized option"); help(); } if (cmd.hasOption("h")) help(); if (cmd.hasOption("t")) testOnly = true; if (cmd.hasOption("binary")) { binary = true; System.out.println("Reporting binary loss"); } initialModelFile = cmd.getOptionValue("i"); predsFile = cmd.getOptionValue("p"); lossName = cmd.getOptionValue("loss_function", "squared"); linkName = cmd.getOptionValue("link", "identity"); saveModelFile = cmd.getOptionValue("f"); learningRate = Double.parseDouble(cmd.getOptionValue("l", "1.0")); bitsHash = Integer.parseInt(cmd.getOptionValue("b", "18")); invertHashName = cmd.getOptionValue("invert_hash"); minPredictionString = cmd.getOptionValue("min_prediction", "-50"); maxPredictionString = cmd.getOptionValue("max_prediction", "50"); fmNumberFactorsString = cmd.getOptionValue("fmNumberFactors", "8"); parserName = cmd.getOptionValue("parser", "vw"); numberPasses = Integer.parseInt(cmd.getOptionValue("passes", "1")); System.out.println("Number of passes = " + numberPasses); if (numberPasses > 1) { holdoutPeriod = Integer.parseInt(cmd.getOptionValue("holdout_period", "10")); System.out.println("Holdout period = " + holdoutPeriod); } remainingArgs = cmd.getArgs(); if (remainingArgs.length == 1) inputFile = remainingArgs[0]; InstanceParser instanceParser = null; if (parserName.equals("vw")) instanceParser = new VWParser(bitsHash, cmd.getOptionValue("ignore"), (invertHashName != null)); else if (parserName.equals("libsvm")) instanceParser = new LIBSVMParser(bitsHash, (invertHashName != null)); else if (parserName.equals("tsv")) { String schema = cmd.getOptionValue("schema"); if (schema == null) { System.out.println("TSV parser requires a schema file."); System.exit(0); } else { String spec = null; try { spec = new String(Files.readAllBytes(Paths.get(schema))); } catch (IOException e) { System.out.println("Error reading the TSV schema file."); e.printStackTrace(); System.exit(0); } instanceParser = new TSVParser(bitsHash, cmd.getOptionValue("ignore"), (invertHashName != null), spec); } } else { System.out.println("Unknown parser."); System.exit(0); } System.out.println("Num weight bits = " + bitsHash); // setup progress String progress = cmd.getOptionValue("P", "2.0"); if (progress.indexOf('.') >= 0) { exponentialProgress = true; progressInterval = (double) Double.parseDouble(progress); } else { exponentialProgress = false; progressInterval = (double) Integer.parseInt(progress); } // min and max predictions minPrediction = (double) Double.parseDouble(minPredictionString); maxPrediction = (double) Double.parseDouble(maxPredictionString); // number of factors for Factorization Machines fmNumberFactors = (int) Integer.parseInt(fmNumberFactorsString); // configure the learner Loss lossFnc = null; LinkFunction link = null; if (initialModelFile == null) { if (cmd.hasOption("kt")) { learner = new KT(bitsHash); } else if (cmd.hasOption("pckt")) { learner = new PerCoordinateKT(bitsHash); } else if (cmd.hasOption("pcsolo")) { learner = new PerCoordinateSOLO(bitsHash); } else if (cmd.hasOption("solo")) { learner = new SOLO(bitsHash); } else if (cmd.hasOption("pccocob")) { learner = new PerCoordinateCOCOB(bitsHash); } else if (cmd.hasOption("cocob")) { learner = new COCOB(bitsHash); } else if (cmd.hasOption("pistol")) { learner = new PerCoordinatePiSTOL(bitsHash); } else if (cmd.hasOption("fm")) { learner = new SGD_FM(bitsHash, fmNumberFactors); } else learner = new SGD_VW(bitsHash); } else { learner = IOLearner.loadLearner(initialModelFile); } // setup link function if (linkName.equals("identity")) { link = new IdentityLinkFunction(); } else if (linkName.equals("logistic")) { link = new LogisticLinkFunction(); } else { System.out.println("Unknown link function."); System.exit(0); } // setup loss function if (lossName.equals("squared")) { lossFnc = new SquareLoss(); } else if (lossName.equals("hinge")) { lossFnc = new HingeLoss(); } else if (lossName.equals("logistic")) { lossFnc = new LogisticLoss(); } else if (lossName.equals("absolute")) { lossFnc = new AbsLoss(); } else { System.out.println("Unknown loss function."); System.exit(0); } learner.setLoss(lossFnc); learner.setLearningRate(learningRate); // maximum range predictions System.out.println("Max prediction = " + maxPrediction + ", Min Prediction = " + minPrediction); // print information about the learner System.out.println(learner.toString()); // print information about the link function System.out.println(link.toString()); // print information about the parser System.out.println(instanceParser.toString()); // print information about ignored namespaces System.out.println("Ignored namespaces = " + cmd.getOptionValue("ignore", "")); long start = System.nanoTime(); FileInputStream fstream; try { BufferedReader br = null; if (inputFile != null) { fstream = new FileInputStream(inputFile); System.out.println("Reading datafile = " + inputFile); br = new BufferedReader(new InputStreamReader(fstream)); } else { System.out.println("Reading from console"); br = new BufferedReader(new InputStreamReader(System.in)); } File fout = null; FileOutputStream fos = null; BufferedWriter bw = null; if (predsFile != null) { fout = new File(predsFile); fos = new FileOutputStream(fout); bw = new BufferedWriter(new OutputStreamWriter(fos)); } try { System.out.println("average example current current current"); System.out.println("loss counter label predict features"); int iter = 0; double cumLoss = 0; double weightedSampleSum = 0; double sPlus = 0; double sMinus = 0; Instance sample = null; boolean justPrinted = false; int pass = 0; ObjectOutputStream ooutTr = null; ObjectOutputStream ooutHO = null; ObjectInputStream oinTr = null; double pred = 0; int limit = 1; double hError = Double.MAX_VALUE; double lastHError = Double.MAX_VALUE; int numTestSample = 0; int numTrainingSample = 0; int idx = 0; if (numberPasses > 1) { ooutTr = new ObjectOutputStream(new FileOutputStream("cache_training.bin")); ooutHO = new ObjectOutputStream(new FileOutputStream("cache_holdout.bin")); oinTr = new ObjectInputStream(new FileInputStream("cache_training.bin")); } do { while (true) { double score; if (pass > 0 && numberPasses > 1) { Instance tmp = (Instance) oinTr.readObject(); if (tmp != null) sample = tmp; else break; } else { String strLine = br.readLine(); if (strLine != null) sample = instanceParser.parse(strLine); else break; } justPrinted = false; idx++; if (numberPasses > 1 && pass == 0 && idx % holdoutPeriod == 0) { // store the current sample for the holdout set ooutHO.writeObject(sample); ooutHO.reset(); numTestSample++; } else { if (numberPasses > 1 && pass == 0) { ooutTr.writeObject(sample); ooutTr.reset(); numTrainingSample++; } iter++; if (testOnly) { // predict the sample score = learner.predict(sample); } else { // predict the sample and update the classifier using the sample score = learner.update(sample); } score = Math.min(Math.max(score, minPrediction), maxPrediction); pred = link.apply(score); if (!binary) cumLoss += learner.getLoss().lossValue(score, sample.getLabel()) * sample.getWeight(); else if (Math.signum(score) != sample.getLabel()) cumLoss += sample.getWeight(); weightedSampleSum += sample.getWeight(); if (sample.getLabel() > 0) sPlus = sPlus + sample.getWeight(); else sMinus = sMinus + sample.getWeight(); // output predictions to file if (predsFile != null) { bw.write(String.format("%.6f %s", pred, sample.getTag())); bw.newLine(); } // print statistics to screen if (iter == limit) { justPrinted = true; System.out.printf("%.6f %12d % .4f % .4f %d\n", cumLoss / weightedSampleSum, iter, sample.getLabel(), pred, sample.getVector().size()); if (exponentialProgress) limit *= progressInterval; else limit += progressInterval; } } } if (numberPasses > 1) { if (pass == 0) { // finished first pass of many // write a null at the end of the files ooutTr.writeObject(null); ooutHO.writeObject(null); ooutTr.flush(); ooutHO.flush(); ooutTr.close(); ooutHO.close(); System.out.println("finished first epoch"); System.out.println(numTrainingSample + " training samples"); System.out.println(numTestSample + " holdout samples saved"); } lastHError = hError; hError = evalHoldoutError(); } if (numberPasses > 1) { System.out.printf("Weighted loss on holdout on epoch %d = %.6f\n", pass + 1, hError); oinTr.close(); oinTr = new ObjectInputStream(new FileInputStream("cache_training.bin")); if (hError > lastHError) { System.out.println("Early stopping"); break; } } pass++; } while (pass < numberPasses); if (justPrinted == false) { System.out.printf("%.6f %12d % .4f % .4f %d\n", cumLoss / weightedSampleSum, iter, sample.getLabel(), pred, sample.getVector().size()); } System.out.println("finished run"); System.out.println(String.format("average loss best constant predictor: %.6f", lossFnc.lossConstantBinaryLabels(sPlus, sMinus))); if (saveModelFile != null) IOLearner.saveLearner(learner, saveModelFile); if (invertHashName != null) IOLearner.saveInvertHash(learner.getWeights(), instanceParser.getInvertHashMap(), invertHashName); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (ClassNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } // close the input stream try { br.close(); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } // close the output stream if (predsFile != null) { try { bw.close(); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } long millis = System.nanoTime() - start; System.out.printf("Elapsed time: %d min, %d sec\n", TimeUnit.NANOSECONDS.toMinutes(millis), TimeUnit.NANOSECONDS.toSeconds(millis) - 60 * TimeUnit.NANOSECONDS.toMinutes(millis)); } catch ( FileNotFoundException e) { System.out.println("Error opening the input file"); e.printStackTrace(); } }
From source file:by.creepid.docsreporter.converter.images.ImageConverterImplTest.java
@BeforeClass public static void setUpClass() { path = Paths.get(target); }