Example usage for java.nio ByteBuffer clear

List of usage examples for java.nio ByteBuffer clear

Introduction

In this page you can find the example usage for java.nio ByteBuffer clear.

Prototype

public final Buffer clear() 

Source Link

Document

Clears this buffer.

Usage

From source file:com.clustercontrol.agent.job.PublicKeyThread.java

/**
 *  ?Authorized_key????<BR>//from w  w  w  . ja  v  a  2 s  . com
 * 
 * @param publicKey
 * @return true : ?false:
 */
private synchronized boolean deleteKey(String publicKey) {
    m_log.debug("delete key start");

    if (SKIP_KEYFILE_UPDATE) {
        m_log.info("skipped deleting publicKey");
        return true;
    }

    Charset charset = Charset.forName("UTF-8");
    CharsetEncoder encoder = charset.newEncoder();
    CharsetDecoder decoder = charset.newDecoder();

    //???
    String fileName = AgentProperties.getProperty(execUser.toLowerCase() + AUTHORIZED_KEY_PATH);
    if (fileName == null || fileName.length() == 0)
        return false;

    //File?
    File fi = new File(fileName);

    RandomAccessFile randomAccessFile = null;
    FileChannel channel = null;
    FileLock lock = null;
    boolean delete = false;
    try {
        //RandomAccessFile?
        randomAccessFile = new RandomAccessFile(fi, "rw");
        //FileChannel?
        channel = randomAccessFile.getChannel();

        // 
        for (int i = 0; i < (FILELOCK_TIMEOUT / FILELOCK_WAIT); i++) {
            if (null != (lock = channel.tryLock())) {
                break;
            }
            m_log.info("waiting for locked file... [" + (i + 1) + "/" + (FILELOCK_TIMEOUT / FILELOCK_WAIT)
                    + " : " + fileName + "]");
            Thread.sleep(FILELOCK_WAIT);
        }
        if (null == lock) {
            m_log.warn("file locking timeout.");
            return false;
        }

        // (?)
        synchronized (authKeyLock) {
            //??
            ByteBuffer buffer = ByteBuffer.allocate((int) channel.size());

            //??
            channel.read(buffer);

            // ???????????0?
            buffer.flip();

            //??
            String contents = decoder.decode(buffer).toString();

            // ?
            m_log.debug("contents " + contents.length() + " : " + contents);

            //??
            List<String> keyCheck = new ArrayList<String>();
            StringTokenizer tokenizer = new StringTokenizer(contents, "\n");
            while (tokenizer.hasMoreTokens()) {
                keyCheck.add(tokenizer.nextToken());
            }

            //??????
            int s = keyCheck.lastIndexOf(publicKey);
            if (s != -1) {
                // ?
                m_log.debug("remobe key : " + keyCheck.get(s));
                keyCheck.remove(s);
            }

            //?????
            encoder.reset();
            buffer.clear();

            int i;
            if (keyCheck.size() > 0) {
                for (i = 0; i < keyCheck.size() - 1; i++) {
                    encoder.encode(CharBuffer.wrap(keyCheck.get(i) + "\n"), buffer, false);
                }
                encoder.encode(CharBuffer.wrap(keyCheck.get(i)), buffer, true);
            }

            //???
            buffer.flip();
            channel.truncate(0);
            channel.position(0);
            channel.write(buffer);
        }

        delete = true;
    } catch (IOException e) {
        m_log.error(e.getMessage(), e);
    } catch (RuntimeException e) {
        m_log.error(e.getMessage(), e);
    } catch (InterruptedException e) {
        m_log.error(e.getMessage(), e);
    } finally {
        try {
            if (channel != null) {
                channel.close();
            }
            if (randomAccessFile != null) {
                randomAccessFile.close();
            }
            //?
            if (lock != null) {
                lock.release();
            }
        } catch (Exception e) {
        }
    }

    return delete;
}

From source file:com.koda.integ.hbase.storage.FileExtStorage.java

@Override
public void flush() throws IOException {
    //TODO this method flashes only internal buffer 
    //and does not touch internal flusher queue
    LOG.info("Flushing internal buffer to the storage");
    long start = System.currentTimeMillis();
    writeLock.writeLock().lock();//from  ww w.  j  a  v  a2  s  .co  m
    try {
        ByteBuffer buf = activeBuffer.get();
        if (bufferOffset.get() == 0) {
            // skip flush
            LOG.info("Skipping flush");
            return;
        }
        if (buf != null) {
            if (buf.position() != 0)
                buf.flip();
            while (buf.hasRemaining()) {
                currentForWrite.getChannel().write(buf);
            }
            buf.clear();
            bufferOffset.set(0);
            // we advance to next file;
        } else {
            LOG.warn("Active buffer is NULL");
        }
    } catch (Exception e) {
        LOG.error(e);
    } finally {
        writeLock.writeLock().unlock();
        // Close file
        currentForWrite.close();
    }
    LOG.info("Flushing completed in " + (System.currentTimeMillis() - start) + "ms");
}

From source file:org.opendaylight.lispflowmapping.lisp.serializer.MapRegisterSerializer.java

public ByteBuffer serialize(MapRegister mapRegister) {
    int size = Length.HEADER_SIZE;
    if (mapRegister.getAuthenticationData() != null) {
        size += mapRegister.getAuthenticationData().length;
    }//w w w. j a va 2 s .  co m
    if (mapRegister.isXtrSiteIdPresent() != null && mapRegister.isXtrSiteIdPresent()) {
        size += Length.XTRID_SIZE + Length.SITEID_SIZE;
    }
    for (MappingRecordItem eidToLocatorRecord : mapRegister.getMappingRecordItem()) {
        size += MappingRecordSerializer.getInstance()
                .getSerializationSize(eidToLocatorRecord.getMappingRecord());
    }

    ByteBuffer registerBuffer = ByteBuffer.allocate(size);
    registerBuffer.put((byte) ((byte) (MessageType.MapRegister.getIntValue() << 4)
            | ByteUtil.boolToBit(BooleanUtils.isTrue(mapRegister.isProxyMapReply()), Flags.PROXY)
            | ByteUtil.boolToBit(BooleanUtils.isTrue(mapRegister.isXtrSiteIdPresent()), Flags.XTRSITEID)));
    registerBuffer.position(registerBuffer.position() + Length.RES);
    registerBuffer.put((byte) (ByteUtil.boolToBit(BooleanUtils.isTrue(mapRegister.isMergeEnabled()),
            Flags.MERGE_ENABLED)
            | ByteUtil.boolToBit(BooleanUtils.isTrue(mapRegister.isWantMapNotify()), Flags.WANT_MAP_NOTIFY)));
    registerBuffer.put((byte) mapRegister.getMappingRecordItem().size());
    registerBuffer.putLong(NumberUtil.asLong(mapRegister.getNonce()));
    registerBuffer.putShort(NumberUtil.asShort(mapRegister.getKeyId()));

    if (mapRegister.getAuthenticationData() != null) {
        registerBuffer.putShort((short) mapRegister.getAuthenticationData().length);
        registerBuffer.put(mapRegister.getAuthenticationData());
    } else {
        registerBuffer.putShort((short) 0);
    }
    for (MappingRecordItem eidToLocatorRecord : mapRegister.getMappingRecordItem()) {
        MappingRecordSerializer.getInstance().serialize(registerBuffer, eidToLocatorRecord.getMappingRecord());
    }

    if (mapRegister.isXtrSiteIdPresent() != null && mapRegister.isXtrSiteIdPresent()) {
        registerBuffer.put(mapRegister.getXtrId().getValue());
        registerBuffer.put(mapRegister.getSiteId().getValue());
    }
    registerBuffer.clear();
    return registerBuffer;
}

From source file:com.musicplayer.AudioDecoderThread.java

/**
 * After decoding AAC, Play using Audio Track.
 * /*from  www . j a v a 2  s. c  o m*/
 */

public void processTrack(Uri syncContentUri, final Genre classLabel, Context context,
        ProcessTrackRunnable lock) {

    // INITIALISE EXTRACTOR AND DECODER
    Log.v("", "Break Point 1");

    MediaExtractor extractor = new MediaExtractor();
    int sampleRate = 0;
    Uri contentUri = null;
    synchronized (lock) {
        contentUri = syncContentUri;
    }
    try {
        extractor.setDataSource(context, contentUri, null);
    } catch (IOException e) {
        e.printStackTrace();
    }
    int channel = 0;

    for (int i = 0; i < extractor.getTrackCount(); i++) {
        MediaFormat format = extractor.getTrackFormat(i);
        String mime = format.getString(MediaFormat.KEY_MIME);
        if (mime.startsWith("audio/")) {
            extractor.selectTrack(i);
            Log.d("", "format : " + format);
            //            ByteBuffer csd = format.getByteBuffer("csd-0");
            //            if(csd == null){
            //            Log.v("", "csd is null");
            //            } else{
            //               Log.v("", "csd is not null");
            //            }
            //            for (int k = 0; k < csd.capacity(); ++k) {
            //               Log.v("", "inside for loop 1");
            //               Log.e("TAG", "csd : " + csd.array()[k]);
            //            }
            sampleRate = format.getInteger(MediaFormat.KEY_SAMPLE_RATE);
            channel = format.getInteger(MediaFormat.KEY_CHANNEL_COUNT);
            break;
        }
    }
    //      MediaFormat format = makeAACCodecSpecificData(MediaCodecInfo.CodecProfileLevel.AACObjectLC, mSampleRate, channel);
    //      if (format == null)
    //         return;
    int countt = 0;
    boolean found = false;
    MediaFormat format = null;
    String mime = null;

    while (countt < extractor.getTrackCount() && !found) {
        format = extractor.getTrackFormat(countt);
        mime = format.getString(MediaFormat.KEY_MIME);
        sampleRate = format.getInteger(MediaFormat.KEY_SAMPLE_RATE);
        if (mime.startsWith("audio/")) {
            found = true;
        }
        countt++;
    }
    //format = mExtractor.getTrackFormat(count);
    //MediaCodecInfo codec = selectCodec(mime);
    //String name = codec.getName();
    MediaCodec decoder = MediaCodec.createDecoderByType(mime);

    //mDecoder = MediaCodec.createDecoderByType("audio/mp4a-latm");
    decoder.configure(format, null, null, 0);

    if (decoder == null) {
        Log.e("DecodeActivity", "Can't find video info!");
        return;
    }

    decoder.start();

    Log.v("", "Break Point 2");

    // Get decoded bytes

    ByteBuffer[] inputBuffers = decoder.getInputBuffers();
    ByteBuffer[] outputBuffers = decoder.getOutputBuffers();

    BufferInfo info = new BufferInfo();

    //      int buffsize = AudioTrack.getMinBufferSize(sampleRate, AudioFormat.CHANNEL_OUT_STEREO, AudioFormat.ENCODING_PCM_16BIT);
    //        // create an audiotrack object
    //      AudioTrack audioTrack = new AudioTrack(AudioManager.STREAM_MUSIC, sampleRate,
    //                AudioFormat.CHANNEL_OUT_STEREO,
    //                AudioFormat.ENCODING_PCM_16BIT,
    //                buffsize,
    //                AudioTrack.MODE_STREAM);
    //      audioTrack.play();

    extractor.seekTo(WINDOW_START, MediaExtractor.SEEK_TO_CLOSEST_SYNC);

    long start = SystemClock.elapsedRealtimeNanos();

    Log.v("", "Break Point 3");

    // MUSICAL SURFACE FEATURES

    double[] flux = new double[NUM_CHUNKS];
    double[] zeroCrossings = new double[NUM_CHUNKS];
    double[] centroid = new double[NUM_CHUNKS];
    int[] rolloff = new int[NUM_CHUNKS];
    double[] rolloffFreq = new double[NUM_CHUNKS];
    double lowEnergy = 0.0;

    // Means across all chunks
    double fluxMean = 0.0;
    double zeroCrossingsMean = 0;
    double centroidMean = 0.0;
    double rolloffMean = 0;

    // Standard deviations across all chunks
    double fluxStdDeviation = 0.0;
    double zeroCrossingsStdDeviation = 0;
    double centroidStdDeviation = 0.0;
    double rolloffStdDeviation = 0;

    // Initialise some variables to use while iterating
    double[] fftSums = new double[NUM_CHUNKS];
    int iter = 0;
    int count = 0;
    FastFourierTransformer transformer = new FastFourierTransformer(DftNormalization.STANDARD);
    double po2 = 0.0;
    Complex[] input = null;
    Complex[] output = null;
    Complex[] previousOutput = null;
    Complex[] temp = null;
    double frequency = 0.0;
    double centroidNum = 0.0;
    double centroidDen = 0.0;
    double fftValue = 0.0;
    double fftPrevious = 0.0;
    double fluxSquared = 0.0;
    int r = 0;
    boolean foundRolloff = false;
    double sum = 0;
    ArrayList<Double> data = new ArrayList<Double>();
    ArrayList<Double> currentChunk = new ArrayList<Double>();
    int gap = 0;
    int tempCount = 0;
    byte[] chunk = null;
    ArrayList<Double> outputExample = new ArrayList<Double>();
    double normConst = 0.0;

    // Iterate through the chunks
    Log.v("", "count: " + String.valueOf(count));
    while (!eosReceived && count < NUM_CHUNKS) {
        Log.v("", "Break Point " + String.valueOf(count + 4));
        Log.v("", "Inside While Loop Break Point 1");
        if (count == 0) {
            //   Log.v("", "Timestamp of chunk 0: " + String.valueOf(extractor.getSampleTime()));
        }

        int inIndex = decoder.dequeueInputBuffer(TIMEOUT_US);
        if (inIndex >= 0) {
            ByteBuffer buffer = inputBuffers[inIndex];
            int sampleSize = extractor.readSampleData(buffer, 0);
            if (sampleSize < 0) {
                // We shouldn't stop the playback at this point, just pass the EOS
                // flag to mDecoder, we will get it again from the
                // dequeueOutputBuffer
                //Log.d("DecodeActivity", "InputBuffer BUFFER_FLAG_END_OF_STREAM");
                decoder.queueInputBuffer(inIndex, 0, 0, 0, MediaCodec.BUFFER_FLAG_END_OF_STREAM);

            } else {
                decoder.queueInputBuffer(inIndex, 0, sampleSize, extractor.getSampleTime(), 0);
                extractor.advance();
            }

            int outIndex = decoder.dequeueOutputBuffer(info, TIMEOUT_US);
            Log.v("", "Inside While Loop Break Point 2");
            switch (outIndex) {
            case MediaCodec.INFO_OUTPUT_BUFFERS_CHANGED:
                Log.d("DecodeActivity", "INFO_OUTPUT_BUFFERS_CHANGED");
                outputBuffers = decoder.getOutputBuffers();
                break;

            case MediaCodec.INFO_OUTPUT_FORMAT_CHANGED:
                MediaFormat mediaFormat = decoder.getOutputFormat();
                Log.d("DecodeActivity", "New format " + mediaFormat);
                //   audioTrack.setPlaybackRate(mediaFormat.getInteger(MediaFormat.KEY_SAMPLE_RATE));

                break;
            case MediaCodec.INFO_TRY_AGAIN_LATER:
                Log.d("DecodeActivity", "dequeueOutputBuffer timed out!");
                break;

            default:

                Log.v("", "Inside While Loop Break Point 3");
                ByteBuffer outBuffer = outputBuffers[outIndex];
                //Log.v("DecodeActivity", "We can't use this buffer but render it due to the API limit, " + outBuffer);

                chunk = new byte[info.size];
                if (chunk.length == 0) {
                    continue;
                }
                outBuffer.get(chunk); // Read the buffer all at once
                outBuffer.clear(); // ** MUST DO!!! OTHERWISE THE NEXT TIME YOU GET THIS SAME BUFFER BAD THINGS WILL HAPPEN

                gap = chunk.length / DOWN_FACTOR;
                currentChunk.clear();
                Log.v("", "Inside While Loop Break Point 4a");
                // ZERO CROSSINGS

                int increment = 1;
                if (chunk.length > 1000) {
                    increment = (int) ((double) chunk.length / ((double) 1000));
                }

                // Downsampling
                for (int i = 0; i < chunk.length; i = i + increment) {
                    data.add((double) chunk[i]);
                    currentChunk.add((double) chunk[i]);
                    tempCount++;

                    if (currentChunk.size() > 1) {
                        iter += FastMath.abs(sign(currentChunk.get(currentChunk.size() - 1))
                                - sign(currentChunk.get(currentChunk.size() - 2)));

                    }
                }
                increment = 0;

                tempCount = 0;
                zeroCrossings[count] = 0.5 * iter;

                po2 = FastMath.ceil(FastMath.log(currentChunk.size()) / FastMath.log(2));
                input = new Complex[(int) (FastMath.pow(2.0, po2))];

                Log.v("", "chunk length: " + chunk.length);
                Log.v("", "input length: " + input.length);
                for (int i = 0; i < input.length; i++) {
                    if (i < currentChunk.size()) {
                        input[i] = new Complex((double) currentChunk.get(i));
                    } else {
                        input[i] = new Complex(0.0);
                    }
                }

                // FFT
                output = transformer.transform(input, TransformType.FORWARD);

                outputExample.add(centroidDen);

                // CENTROID AND FLUX      

                for (int i = 0; i < output.length; i++) {

                    if (count > 0) {
                        fftPrevious = fftValue;
                    }
                    fftValue = FastMath.hypot(output[i].getReal(), output[i].getImaginary());
                    fluxSquared += (fftValue - fftPrevious) * (fftValue - fftPrevious);

                    centroidNum += i * fftValue;
                    centroidDen += fftValue;

                }

                //               for(int i = 0; i < output.length; i++){
                //                  
                //                  normConst += FastMath.hypot(output[i].getReal(), output[i].getImaginary()) *
                //                        FastMath.hypot(output[i].getReal(), output[i].getImaginary());
                //                  
                //                  
                //               }

                //               fluxSquared = fluxSquared / normConst;
                flux[count] = FastMath.sqrt(fluxSquared) / 1000.0;

                // ROLLOFF

                while (!foundRolloff && r < output.length - 1) {
                    r++;
                    sum += FastMath.hypot(output[r].getReal(), output[r].getImaginary());
                    foundRolloff = checkRolloff(ROLLOFF_PROPORTIONAL_ERROR, sum, centroidDen);
                }

                fftSums[count] = centroidDen;
                if (centroidDen != 0.0) {
                    centroid[count] = centroidNum / centroidDen;
                } else {
                    centroid[count] = 0.0;
                }
                rolloff[count] = r;

                iter = 0;
                fluxSquared = 0.0;
                centroidNum = 0.0;
                centroidDen = 0.0;
                r = 0;
                sum = 0.0;
                foundRolloff = false;
                count++;
                //audioTrack.write(chunk, info.offset, info.offset + info.size); // AudioTrack write data
                decoder.releaseOutputBuffer(outIndex, false);

                break;
            }

            // All decoded frames have been rendered, we can stop playing now
            if ((info.flags & MediaCodec.BUFFER_FLAG_END_OF_STREAM) != 0) {
                Log.d("DecodeActivity", "OutputBuffer BUFFER_FLAG_END_OF_STREAM");
                break;
            }

            if (count > 0) {
                previousOutput = output;
                output = null;
            }
        }
        if (count == NUM_CHUNKS) {
            //   Log.v("", "Timestamp of last chunk: " + String.valueOf(extractor.getSampleTime()));
            decoder.stop();
            decoder.release();
            extractor.release();
        }

    } // while loop

    currentChunk.clear();
    currentChunk = null;

    //      for(int i = 0; i < centroid.length; i++){
    //      Log.v("", "centroid: " + String.valueOf(centroid[i]));
    //      }
    double energySum = 0.0;
    double energyAverage = 0.0;
    int lowEnergyCount = 0;

    for (int i = 0; i < NUM_CHUNKS; i++) {
        energySum += fftSums[i];
    }

    energyAverage = energySum / NUM_CHUNKS;
    for (int i = 0; i < NUM_CHUNKS; i++) {
        if (fftSums[i] < energyAverage) {
            lowEnergyCount++;
        }
    }

    lowEnergy = 100.0 * (((double) lowEnergyCount) / ((double) NUM_CHUNKS));

    // Work out the means and standard deviations

    for (int i = 0; i < NUM_CHUNKS; i++) {

        fluxMean += flux[i];
        zeroCrossingsMean += zeroCrossings[i];
        centroidMean += centroid[i];
        rolloffMean += rolloff[i];

    }

    fluxMean = fluxMean / flux.length;
    zeroCrossingsMean = zeroCrossingsMean / zeroCrossings.length;
    centroidMean = centroidMean / centroid.length;
    rolloffMean = rolloffMean / rolloff.length;

    for (int i = 0; i < NUM_CHUNKS; i++) {

        fluxStdDeviation += (flux[i] - fluxMean) * (flux[i] - fluxMean);
        zeroCrossingsStdDeviation += (zeroCrossings[i] - zeroCrossingsMean)
                * (zeroCrossings[i] - zeroCrossingsMean);
        centroidStdDeviation += (centroid[i] - centroidMean) * (centroid[i] - centroidMean);
        rolloffStdDeviation += (rolloff[i] - rolloffMean) * (rolloff[i] - rolloffMean);

    }

    fluxStdDeviation = Math.sqrt(fluxStdDeviation / flux.length);
    zeroCrossingsStdDeviation = Math.sqrt(zeroCrossingsStdDeviation / zeroCrossings.length);
    centroidStdDeviation = Math.sqrt(centroidStdDeviation / centroid.length);
    rolloffStdDeviation = Math.sqrt(rolloffStdDeviation / rolloff.length);

    Log.v("", "fluxMean: " + String.valueOf(fluxMean));
    Log.v("", "zeroCrossingsMean: " + String.valueOf(zeroCrossingsMean));
    Log.v("", "centroidMean: " + String.valueOf(centroidMean));
    Log.v("", "rolloffMean: " + String.valueOf(rolloffMean));

    Log.v("", "fluxStdDeviation: " + String.valueOf(fluxStdDeviation));
    Log.v("", "zeroCrossingsStdDeviation: " + String.valueOf(zeroCrossingsStdDeviation));
    Log.v("", "centroidStdDeviation: " + String.valueOf(centroidStdDeviation));
    Log.v("", "rolloffStdDeviation: " + String.valueOf(rolloffStdDeviation));

    Log.v("", "lowEnergy: " + String.valueOf(lowEnergy));

    Log.v("", "data size: " + String.valueOf(data.size()));

    // BEAT ANALYSIS

    Transform t = new Transform(new FastWaveletTransform(new Daubechies4()));

    double[] dataArray = new double[data.size()];
    for (int i = 0; i < data.size(); i++) {
        dataArray[i] = data.get(i);
    }
    data.clear();
    data = null;

    double powerOf2 = FastMath.ceil(FastMath.log(chunk.length) / FastMath.log(2));
    double[] dataArrayPo2 = Arrays.copyOf(dataArray, (int) (FastMath.pow(2.0, powerOf2)));
    dataArray = null;

    double[] dataCurrentInputArray = null;
    double[] dataCurrentOutputArray = null;
    double[] dataCumulativeArray = new double[dataArrayPo2.length];
    for (int i = 0; i < dataCumulativeArray.length; i++) {
        dataCumulativeArray[i] = 0.0;
    }
    double temp1 = 0.0;
    double temp2 = 0.0;
    ArrayList<Double> tempList = new ArrayList<Double>();
    int k = 16; // Downsampling factor
    int tempCount1 = 0;
    double mean = 0.0;
    for (int level = 0; level < (int) FastMath.log(2.0, dataArrayPo2.length); level++) {

        dataCurrentInputArray = t.forward(dataArrayPo2, level);
        dataCurrentOutputArray = dataCurrentInputArray;
        dataCurrentOutputArray[0] = 0.0;
        for (int i = 1; i < dataCurrentOutputArray.length; i++) {
            temp1 = FastMath.abs(dataCurrentInputArray[i]); // Full-wave rectification
            dataCurrentOutputArray[i] = (1.0 - ALPHA) * temp1 - ALPHA * dataCurrentOutputArray[i - 1]; // Low-pass filtering
        }
        tempCount1 = 0;
        mean = 0.0;
        while (k * tempCount1 < dataCurrentOutputArray.length) {
            tempList.add(dataCurrentOutputArray[k * tempCount1]); // Downsampling by k
            mean += dataCurrentOutputArray[k * tempCount1];
            tempCount1++;
        }
        mean = mean / dataCurrentOutputArray.length;

        tempCount1 = 0;
        while (k * tempCount1 < dataCurrentOutputArray.length) {
            dataCumulativeArray[k * tempCount1] += tempList.get(tempCount1) - mean; // Mean removal
            tempCount1++;
        }

    }
    int N = dataCumulativeArray.length;
    ArrayList<Double> dataList = new ArrayList<Double>();
    double dataElement = 0.0;

    for (int i = 0; i < N; i++) {
        if (dataCumulativeArray[i] != 0.0) {
            dataElement = autocorrelate(i, N, dataCumulativeArray);
            dataList.add(dataElement);
            Log.v("", "dataList: " + String.valueOf(dataElement));
        }
    }

    PeakDetector peakDetector = new PeakDetector(dataList);
    int[] peakIndices = peakDetector.process(5, 2);
    HashSet<Integer> hs = new HashSet<Integer>();
    for (int i = 0; i < peakIndices.length; i++) {
        hs.add(peakIndices[i]);
    }
    ArrayList<Integer> indicesList = new ArrayList<Integer>();
    ArrayList<Double> valuesList = new ArrayList<Double>();

    indicesList.addAll(hs);
    Double tempDoub = 0.0;

    HashMap<Double, Integer> hm = new HashMap<Double, Integer>();
    for (int i = 0; i < indicesList.size(); i++) {
        tempDoub = dataList.get(indicesList.get(i));
        hm.put(tempDoub, indicesList.get(i));
    }

    indicesList.clear();
    valuesList.clear();

    Entry<Double, Integer> tempEntry = null;
    Iterator<Entry<Double, Integer>> it = hm.entrySet().iterator();
    while (it.hasNext()) {
        tempEntry = (Entry<Double, Integer>) it.next();
        if (tempEntry.getValue() < 75) {
            it.remove();
        } else {
            //indicesList.add(tempEntry.getValue());
            valuesList.add(tempEntry.getKey());
        }
    }

    Collections.sort(valuesList);
    for (int i = 0; i < valuesList.size(); i++) {
        indicesList.add(hm.get(valuesList.get(i)));
    }

    double valuesSum = 0.0;
    double histogramSum = 0.0;

    double beatStrength = 0.0;
    double P1 = 0.0;
    double P2 = 0.0;
    double A1 = 0.0;
    double A2 = 0.0;
    double RA = 0.0;

    for (int i = 0; i < dataList.size(); i++) {
        histogramSum += dataList.get(i);
    }

    for (int i = 0; i < valuesList.size(); i++) {
        valuesSum += valuesList.get(i);
    }

    //      if(histogramSum != 0.0 && valuesList.size() != 0){
    //         SUM = (1000.0 * valuesSum) / (histogramSum * valuesList.size());
    //      }
    if (valuesList.size() != 0) {
        beatStrength = valuesSum / valuesList.size();
    }

    if (indicesList.size() > 0) {

        // Set P1 as the largest peak
        P1 = (double) indicesList.get(indicesList.size() - 1);

    }

    if (indicesList.size() > 1) {
        int beatCount = indicesList.size() - 2;
        boolean beatFound = false;

        // Start with P2 as the second largest peak
        P2 = (double) indicesList.get(indicesList.size() - 2);
        double diff = 0;

        // Iterate backwards through the peaks, largest to smallest
        while (!beatFound && beatCount > -1) {
            diff = ((double) indicesList.get(beatCount)) - P1;

            if (FastMath.abs(diff) / P1 > 0.3) {
                // Set P2 as the period of the first peak that is reasonably different from P1
                P2 = (double) indicesList.get(beatCount);
                beatFound = true;
            }
            beatCount--;
        }
    }

    if (indicesList.size() > 0) {

        A1 = FastMath.abs(dataList.get((int) P1)) / histogramSum;
        if (P2 != 0.0) {
            A2 = FastMath.abs(dataList.get((int) P2)) / histogramSum;
        }

        if (A1 != 0.0) {
            RA = A2 / A1;

        }
    }

    for (int i = 0; i < valuesList.size(); i++) {
        Log.v("", String.valueOf(i) + ") valuesList: " + String.valueOf(valuesList.get(i)));
    }
    Log.v("", "P1: " + String.valueOf(P1));
    Log.v("", "P2: " + String.valueOf(P2));
    Log.v("", "A1: " + String.valueOf(A1));
    Log.v("", "A2: " + String.valueOf(A2));
    Log.v("", "RA: " + String.valueOf(RA));
    Log.v("", "SUM: " + String.valueOf(histogramSum));
    Log.v("", "Number of Peaks: " + String.valueOf(valuesList.size()));
    double[] result = { fluxMean, zeroCrossingsMean, centroidMean, rolloffMean, fluxStdDeviation,
            zeroCrossingsStdDeviation, centroidStdDeviation, rolloffStdDeviation, lowEnergy, P1, P2, A1, A2, RA,
            histogramSum, valuesList.size() };
    final DenseInstance denseInstance = new DenseInstance(result);
    if (P1 + P2 + A1 + A2 + RA != 0.0) {
        Handler handler = new Handler(Looper.getMainLooper());
        handler.post(new ReturnResultsRunnable(lock, mAudioCallback, denseInstance, classLabel));

    } else {
        Log.v("", "Track could not be classified!");
    }

    //      for(int i = 0; i < dataList.size(); i++){
    //         Log.v("", String.valueOf(i) + ") autocorrelation: " + String.valueOf(dataList.get(i)));
    //         histogramSum += dataList.get(i);
    //      }
    //      Log.v("", "indicesList size: " + String.valueOf(indicesList.size()));
    //      for(int i = 0; i < valuesList.size(); i++){
    //         Log.v("", "indicesList: " + String.valueOf(indicesList.get(i)) + ", value: " + String.valueOf(valuesList.get(i)));
    //         valuesSum += valuesList.get(i);
    //      }
    //Classifier c = new KNearestNeighbors(5);

    //      double A0 = valuesList.get(valuesList.size() - 1) / valuesSum;
    //      double A1 = valuesList.get(valuesList.size() - 2) / valuesSum;
    //      double RA = A1 / A0;
    //      double P0 = 1 / ((double) indicesList.get(indicesList.size() - 1));
    //      double P1 = 1 / ((double) indicesList.get(indicesList.size() - 2));
    //      
    //      Log.v("", "A0: " + String.valueOf(A0));
    //      Log.v("", "A1: " + String.valueOf(A1));
    //      Log.v("", "RA: " + String.valueOf(RA));
    //      Log.v("", "P0: " + String.valueOf(P0));
    //      Log.v("", "P1: " + String.valueOf(P1));
    //      Log.v("", "SUM: " + String.valueOf(histogramSum));

    long durationUs = SystemClock.elapsedRealtimeNanos() - start;
    double durationSecs = ((double) durationUs) / 1000000000.0;
    Log.v("", "count = " + String.valueOf(count) + ", Sample rate: " + String.valueOf(sampleRate)
            + ", Duration: " + String.valueOf(durationSecs));

    //      audioTrack.stop();
    //      audioTrack.release();
    //      audioTrack = null;
}

From source file:org.apache.nifi.processors.standard.TailFile.java

/**
 * Read new lines from the given FileChannel, copying it to the given Output
 * Stream. The Checksum is used in order to later determine whether or not
 * data has been consumed.//from   www .j  ava2  s.c  o  m
 *
 * @param reader The FileChannel to read data from
 * @param buffer the buffer to use for copying data
 * @param out the OutputStream to copy the data to
 * @param checksum the Checksum object to use in order to calculate checksum
 * for recovery purposes
 *
 * @return The new position after the lines have been read
 * @throws java.io.IOException if an I/O error occurs.
 */
private long readLines(final FileChannel reader, final ByteBuffer buffer, final OutputStream out,
        final Checksum checksum) throws IOException {
    getLogger().debug("Reading lines starting at position {}", new Object[] { reader.position() });

    try (final ByteArrayOutputStream baos = new ByteArrayOutputStream()) {
        long pos = reader.position();
        long rePos = pos; // position to re-read

        int num;
        int linesRead = 0;
        boolean seenCR = false;
        buffer.clear();

        while (((num = reader.read(buffer)) != -1)) {
            buffer.flip();

            for (int i = 0; i < num; i++) {
                byte ch = buffer.get(i);

                switch (ch) {
                case '\n': {
                    baos.write(ch);
                    seenCR = false;
                    baos.writeTo(out);
                    final byte[] baosBuffer = baos.toByteArray();
                    checksum.update(baosBuffer, 0, baos.size());
                    if (getLogger().isTraceEnabled()) {
                        getLogger().trace("Checksum updated to {}", new Object[] { checksum.getValue() });
                    }

                    baos.reset();
                    rePos = pos + i + 1;
                    linesRead++;
                    break;
                }
                case '\r': {
                    baos.write(ch);
                    seenCR = true;
                    break;
                }
                default: {
                    if (seenCR) {
                        seenCR = false;
                        baos.writeTo(out);
                        final byte[] baosBuffer = baos.toByteArray();
                        checksum.update(baosBuffer, 0, baos.size());
                        if (getLogger().isTraceEnabled()) {
                            getLogger().trace("Checksum updated to {}", new Object[] { checksum.getValue() });
                        }

                        linesRead++;
                        baos.reset();
                        baos.write(ch);
                        rePos = pos + i;
                    } else {
                        baos.write(ch);
                    }
                }
                }
            }

            pos = reader.position();
        }

        if (rePos < reader.position()) {
            getLogger().debug("Read {} lines; repositioning reader from {} to {}",
                    new Object[] { linesRead, pos, rePos });
            reader.position(rePos); // Ensure we can re-read if necessary
        }

        return rePos;
    }
}

From source file:com.healthmarketscience.jackcess.impl.TableImpl.java

/**
 * Writes a new table defined by the given TableCreator to the database.
 * @usage _advanced_method_//from ww w  .j  ava  2  s.co  m
 */
protected static void writeTableDefinition(TableCreator creator) throws IOException {
    // first, create the usage map page
    createUsageMapDefinitionBuffer(creator);

    // next, determine how big the table def will be (in case it will be more
    // than one page)
    JetFormat format = creator.getFormat();
    int idxDataLen = (creator.getIndexCount() * (format.SIZE_INDEX_DEFINITION + format.SIZE_INDEX_COLUMN_BLOCK))
            + (creator.getLogicalIndexCount() * format.SIZE_INDEX_INFO_BLOCK);
    int colUmapLen = creator.getLongValueColumns().size() * 10;
    int totalTableDefSize = format.SIZE_TDEF_HEADER
            + (format.SIZE_COLUMN_DEF_BLOCK * creator.getColumns().size()) + idxDataLen + colUmapLen
            + format.SIZE_TDEF_TRAILER;

    // total up the amount of space used by the column and index names (2
    // bytes per char + 2 bytes for the length)
    for (ColumnBuilder col : creator.getColumns()) {
        int nameByteLen = (col.getName().length() * JetFormat.TEXT_FIELD_UNIT_SIZE);
        totalTableDefSize += nameByteLen + 2;
    }

    for (IndexBuilder idx : creator.getIndexes()) {
        int nameByteLen = (idx.getName().length() * JetFormat.TEXT_FIELD_UNIT_SIZE);
        totalTableDefSize += nameByteLen + 2;
    }

    // now, create the table definition
    PageChannel pageChannel = creator.getPageChannel();
    ByteBuffer buffer = PageChannel.createBuffer(Math.max(totalTableDefSize, format.PAGE_SIZE));
    writeTableDefinitionHeader(creator, buffer, totalTableDefSize);

    if (creator.hasIndexes()) {
        // index row counts
        IndexData.writeRowCountDefinitions(creator, buffer);
    }

    // column definitions
    ColumnImpl.writeDefinitions(creator, buffer);

    if (creator.hasIndexes()) {
        // index and index data definitions
        IndexData.writeDefinitions(creator, buffer);
        IndexImpl.writeDefinitions(creator, buffer);
    }

    // write long value column usage map references
    for (ColumnBuilder lvalCol : creator.getLongValueColumns()) {
        buffer.putShort(lvalCol.getColumnNumber());
        TableCreator.ColumnState colState = creator.getColumnState(lvalCol);

        // owned pages umap (both are on same page)
        buffer.put(colState.getUmapOwnedRowNumber());
        ByteUtil.put3ByteInt(buffer, colState.getUmapPageNumber());
        // free space pages umap
        buffer.put(colState.getUmapFreeRowNumber());
        ByteUtil.put3ByteInt(buffer, colState.getUmapPageNumber());
    }

    //End of tabledef
    buffer.put((byte) 0xff);
    buffer.put((byte) 0xff);

    // write table buffer to database
    if (totalTableDefSize <= format.PAGE_SIZE) {

        // easy case, fits on one page
        buffer.putShort(format.OFFSET_FREE_SPACE, (short) (buffer.remaining() - 8)); // overwrite page free space
        // Write the tdef page to disk.
        pageChannel.writePage(buffer, creator.getTdefPageNumber());

    } else {

        // need to split across multiple pages
        ByteBuffer partialTdef = pageChannel.createPageBuffer();
        buffer.rewind();
        int nextTdefPageNumber = PageChannel.INVALID_PAGE_NUMBER;
        while (buffer.hasRemaining()) {

            // reset for next write
            partialTdef.clear();

            if (nextTdefPageNumber == PageChannel.INVALID_PAGE_NUMBER) {

                // this is the first page.  note, the first page already has the
                // page header, so no need to write it here
                nextTdefPageNumber = creator.getTdefPageNumber();

            } else {

                // write page header
                writeTablePageHeader(partialTdef);
            }

            // copy the next page of tdef bytes
            int curTdefPageNumber = nextTdefPageNumber;
            int writeLen = Math.min(partialTdef.remaining(), buffer.remaining());
            partialTdef.put(buffer.array(), buffer.position(), writeLen);
            ByteUtil.forward(buffer, writeLen);

            if (buffer.hasRemaining()) {
                // need a next page
                nextTdefPageNumber = pageChannel.allocateNewPage();
                partialTdef.putInt(format.OFFSET_NEXT_TABLE_DEF_PAGE, nextTdefPageNumber);
            }

            // update page free space
            partialTdef.putShort(format.OFFSET_FREE_SPACE, (short) (partialTdef.remaining() - 8)); // overwrite page free space

            // write partial page to disk
            pageChannel.writePage(partialTdef, curTdefPageNumber);
        }

    }
}

From source file:automenta.knowtention.channel.LineFileChannel.java

@Override
public void run() {

    FileInputStream fileInputStream = null;
    FileChannel channel = null;//  ww w .  j  a  va2 s  . c o  m
    ByteBuffer buffer = null;
    LinkedList<String> lines = new LinkedList();
    StringBuilder builder = new StringBuilder();
    long lastSize = -1, lastLastModified = -1;

    while (running) {
        try {
            Thread.sleep(delayPeriodMS);
        } catch (InterruptedException ex) {
        }

        lines.clear();
        try {
            fileInputStream = new FileInputStream(file);

            channel = fileInputStream.getChannel();

            long lastModified = file.lastModified();
            long csize = channel.size();
            if ((lastModified == lastLastModified) && (csize == lastSize)) { //also check file update time?
                fileInputStream.close();
                continue;
            }

            int currentPos = (int) csize;

            buffer = channel.map(FileChannel.MapMode.READ_ONLY, 0, csize);
            buffer.position(currentPos);
            lastSize = csize;
            lastLastModified = lastModified;

            int count = 0;

            for (long i = csize - 1; i >= 0; i--) {

                char c = (char) buffer.get((int) i);

                if (c == '\n') {
                    count++;
                    builder.reverse();
                    lines.addFirst(builder.toString());
                    if (count == numLines) {
                        break;
                    }
                    builder.setLength(0);
                } else
                    builder.append(c);
            }

            update(lines);

            lines.clear();
            buffer.clear();
            channel.close();
            fileInputStream.close();
            fileInputStream = null;

        } catch (Exception ex) {
            Logger.getLogger(LineFileChannel.class.getName()).log(Level.SEVERE, null, ex);
        }
    }
    try {
        channel.close();
    } catch (IOException ex) {
        Logger.getLogger(LineFileChannel.class.getName()).log(Level.SEVERE, null, ex);
    }
}

From source file:org.sglover.checksum.ChecksumServiceImpl.java

@Override
public NodeChecksums getChecksums(final Node node, final InputStream in) {
    final String nodeId = node.getNodeId();
    final Long nodeVersion = node.getNodeVersion();
    final Long nodeInternalId = node.getNodeInternalId();
    final String versionLabel = node.getVersionLabel();
    int x = 0;/*from   ww  w.  j av a2 s.c  om*/

    NodeChecksums documentChecksums = new NodeChecksums(nodeId, nodeInternalId, nodeVersion, versionLabel,
            blockSize);

    try (ReadableByteChannel fc = getChannel(in)) {
        ByteBuffer data = ByteBuffer.allocate(blockSize * 20);
        int bytesRead = -1;
        int blockNum = 1; // starts at 1

        do {
            bytesRead = fc.read(data);
            if (bytesRead > 0) {
                x += bytesRead;

                data.flip();

                long numBlocks = data.limit() / blockSize + (data.limit() % blockSize > 0 ? 1 : 0);

                // spin through the data and create checksums for each block
                for (int i = 0; i < numBlocks; i++) {
                    int start = i * blockSize;
                    int end = start + blockSize - 1;

                    if (end >= data.limit()) {
                        end = data.limit() - 1;
                    }

                    // calculate the adler32 checksum
                    Adler32 adlerInfo = new Adler32(data, start, end, hasher);

                    // calculate the full md5 checksum
                    String md5sum = hasher.md5(data, start, end);
                    Checksum checksum = new Checksum(blockNum, start, end, adlerInfo.getHash(),
                            adlerInfo.getAdler32(), md5sum);
                    if (blockNum < 2) {
                        System.out.println(checksum);
                    }
                    documentChecksums.addChecksum(checksum);

                    blockNum++;
                }

                data.clear();
            }
        } while (bytesRead > 0);
    } catch (NoSuchAlgorithmException | IOException e) {
        throw new RuntimeException(e);
    }

    return documentChecksums;
}

From source file:edu.hawaii.soest.kilonalu.ctd.SBE37Source.java

/**
 * A method that executes the streaming of data from the source to the RBNB
 * server after all configuration of settings, connections to hosts, and
 * thread initiatizing occurs.  This method contains the detailed code for 
 * streaming the data and interpreting the stream.
 *//*from   w  w  w.  j  a v a 2 s  .co m*/
protected boolean execute() {
    logger.debug("SBE37Source.execute() called.");
    // do not execute the stream if there is no connection
    if (!isConnected())
        return false;

    boolean failed = false;

    // while data are being sent, read them into the buffer
    try {

        this.socketChannel = getSocketConnection();

        // create four byte placeholders used to evaluate up to a four-byte 
        // window.  The FIFO layout looks like:
        //           -------------------------
        //   in ---> | One | Two |Three|Four |  ---> out
        //           -------------------------
        byte byteOne = 0x00, // set initial placeholder values
                byteTwo = 0x00, byteThree = 0x00, byteFour = 0x00;

        // Create a buffer that will store the sample bytes as they are read
        ByteBuffer sampleBuffer = ByteBuffer.allocate(getBufferSize());

        // create a byte buffer to store bytes from the TCP stream
        ByteBuffer buffer = ByteBuffer.allocateDirect(getBufferSize());

        // create a character string to store characters from the TCP stream
        StringBuilder responseString = new StringBuilder();

        // add a channel of data that will be pushed to the server.  
        // Each sample will be sent to the Data Turbine as an rbnb frame.
        ChannelMap rbnbChannelMap = new ChannelMap();
        int channelIndex = rbnbChannelMap.Add(getRBNBChannelName());

        // wake the instrument with an initial take sample command
        this.command = this.commandPrefix + getInstrumentID() + "TS" + this.commandSuffix;
        this.sentCommand = queryInstrument(this.command);

        // verify the instrument ID is correct
        while (getInstrumentID() == null) {
            // allow time for the instrument response
            streamingThread.sleep(2000);
            buffer.clear();
            // send the command and update the sentCommand status
            this.sentCommand = queryInstrument(this.command);

            // read the response into the buffer. Note that the streamed bytes
            // are 8-bit, not 16-bit Unicode characters.  Use the US-ASCII
            // encoding instead.
            while (this.socketChannel.read(buffer) != -1 || buffer.position() > 0) {

                buffer.flip();
                while (buffer.hasRemaining()) {
                    String nextCharacter = new String(new byte[] { buffer.get() }, "US-ASCII");
                    responseString.append(nextCharacter);
                }
                // look for the command line ending
                if (responseString.toString().indexOf("S>") > 0) {

                    // parse the ID from the idCommand response
                    int idStartIndex = responseString.indexOf("=") + 2;
                    int idStopIndex = responseString.indexOf("=") + 4;
                    String idString = responseString.substring(idStartIndex, idStopIndex);
                    // test that the ID is a valid number and set the instrument ID
                    if ((new Integer(idString)).intValue() > 0) {
                        setInstrumentID(idString);
                        buffer.clear();
                        logger.debug("Instrument ID is " + getInstrumentID() + ".");
                        break;

                    } else {
                        logger.debug("Instrument ID \"" + idString + "\" was not set.");
                    }

                } else {
                    break;
                }

                buffer.compact();
                if (getInstrumentID() != null) {
                    break;
                }
            }
        }

        // instrumentID is set

        // allow time for the instrument response
        streamingThread.sleep(5000);
        this.command = this.commandPrefix + getInstrumentID() + this.takeSampleCommand + this.commandSuffix;
        this.sentCommand = queryInstrument(command);

        // while there are bytes to read from the socket ...
        while (this.socketChannel.read(buffer) != -1 || buffer.position() > 0) {
            // prepare the buffer for reading
            buffer.flip();

            // while there are unread bytes in the ByteBuffer
            while (buffer.hasRemaining()) {
                byteOne = buffer.get();
                //logger.debug("b1: " + new String(Hex.encodeHex((new byte[]{byteOne})))   + "\t" + 
                //             "b2: " + new String(Hex.encodeHex((new byte[]{byteTwo})))   + "\t" + 
                //             "b3: " + new String(Hex.encodeHex((new byte[]{byteThree}))) + "\t" + 
                //             "b4: " + new String(Hex.encodeHex((new byte[]{byteFour})))  + "\t" +
                //             "sample pos: "   + sampleBuffer.position()                  + "\t" +
                //             "sample rem: "   + sampleBuffer.remaining()                 + "\t" +
                //             "sample cnt: "   + sampleByteCount                          + "\t" +
                //             "buffer pos: "   + buffer.position()                        + "\t" +
                //             "buffer rem: "   + buffer.remaining()                       + "\t" +
                //             "state: "        + state
                //);

                // Use a State Machine to process the byte stream.
                // Start building an rbnb frame for the entire sample, first by 
                // inserting a timestamp into the channelMap.  This time is merely
                // the time of insert into the data turbine, not the time of
                // observations of the measurements.  That time should be parsed out
                // of the sample in the Sink client code

                switch (state) {

                case 0:

                    // sample line is begun by S>
                    // note bytes are in reverse order in the FIFO window
                    if (byteOne == 0x3E && byteTwo == 0x53) {
                        // we've found the beginning of a sample, move on
                        state = 1;
                        break;

                    } else {
                        break;
                    }

                case 1: // read the rest of the bytes to the next EOL characters

                    // sample line is terminated by S>
                    // note bytes are in reverse order in the FIFO window
                    if (byteOne == 0x3E && byteTwo == 0x53) {

                        sampleByteCount++; // add the last byte found to the count

                        // add the last byte found to the sample buffer
                        if (sampleBuffer.remaining() > 0) {
                            sampleBuffer.put(byteOne);

                        } else {
                            sampleBuffer.compact();
                            sampleBuffer.put(byteOne);

                        }

                        // extract just the length of the sample bytes (less 2 bytes
                        // to exclude the 'S>' prompt characters) out of the
                        // sample buffer, and place it in the channel map as a 
                        // byte array.  Then, send it to the data turbine.
                        byte[] sampleArray = new byte[sampleByteCount - 2];
                        sampleBuffer.flip();
                        sampleBuffer.get(sampleArray);

                        // send the sample to the data turbine
                        rbnbChannelMap.PutTimeAuto("server");
                        String sampleString = new String(sampleArray, "US-ASCII");
                        rbnbChannelMap.PutMime(channelIndex, "text/plain");
                        rbnbChannelMap.PutDataAsString(channelIndex, sampleString);
                        getSource().Flush(rbnbChannelMap);
                        logger.info("Sample: " + sampleString);
                        logger.info("flushed data to the DataTurbine. ");

                        byteOne = 0x00;
                        byteTwo = 0x00;
                        byteThree = 0x00;
                        byteFour = 0x00;
                        sampleBuffer.clear();
                        sampleByteCount = 0;
                        //rbnbChannelMap.Clear();                      
                        //logger.debug("Cleared b1,b2,b3,b4. Cleared sampleBuffer. Cleared rbnbChannelMap.");
                        //state = 0;

                        // Once the sample is flushed, take a new sample
                        if (getInstrumentID() != null) {
                            // allow time for the instrument response
                            streamingThread.sleep(2000);
                            this.command = this.commandPrefix + getInstrumentID() + this.takeSampleCommand
                                    + this.commandSuffix;
                            this.sentCommand = queryInstrument(command);
                        }

                    } else { // not 0x0A0D

                        // still in the middle of the sample, keep adding bytes
                        sampleByteCount++; // add each byte found

                        if (sampleBuffer.remaining() > 0) {
                            sampleBuffer.put(byteOne);
                        } else {
                            sampleBuffer.compact();
                            logger.debug("Compacting sampleBuffer ...");
                            sampleBuffer.put(byteOne);

                        }

                        break;
                    } // end if for 0x0A0D EOL

                } // end switch statement

                // shift the bytes in the FIFO window
                byteFour = byteThree;
                byteThree = byteTwo;
                byteTwo = byteOne;

            } //end while (more unread bytes)

            // prepare the buffer to read in more bytes from the stream
            buffer.compact();

        } // end while (more socket bytes to read)
        this.socketChannel.close();

    } catch (IOException e) {
        // handle exceptions
        // In the event of an i/o exception, log the exception, and allow execute()
        // to return false, which will prompt a retry.
        failed = true;
        e.printStackTrace();
        return !failed;
    } catch (SAPIException sapie) {
        // In the event of an RBNB communication  exception, log the exception, 
        // and allow execute() to return false, which will prompt a retry.
        failed = true;
        sapie.printStackTrace();
        return !failed;
    } catch (java.lang.InterruptedException ie) {
        ie.printStackTrace();
    }

    return !failed;
}

From source file:com.koda.integ.hbase.storage.FileExtStorage.java

@Override
public StorageHandle getData(StorageHandle storeHandle, ByteBuffer buf) {
    FileStorageHandle fsh = (FileStorageHandle) storeHandle;

    // Check if current file and offset > currentFileOffset
    int id = maxId.get();
    if (fsh.getId() > id || (fsh.getId() == id && fsh.getOffset() >= currentFileOffset.get())) {
        // not found
        buf.putInt(0, 0);/*from   ww w .  ja  va2 s .co  m*/
        return fsh;
    }

    RandomAccessFile file = getFile(fsh.getId());//openFile(fsh.getId(), "r");

    boolean needSecondChance = needSecondChance(fsh.getId());

    try {
        if (file == null) {
            // return null
            buf.putInt(0, 0);
        } else {
            buf.clear();
            int toRead = fsh.getSize();
            buf.putInt(fsh.getSize());
            buf.limit(4 + toRead);
            try {
                FileChannel fc = file.getChannel();
                int total = 0;
                int c = 0;
                // offset start with overall object length .add +4
                int off = fsh.getOffset() + 4;
                while (total < toRead) {
                    c = fc.read(buf, off);
                    off += c;
                    if (c < 0) {
                        // return not found
                        buf.putInt(0, 0);
                        break;
                    }
                    total += c;
                }
            } catch (IOException e) {
                // return not found
                if (fsh.getId() > minId.get()) {
                    e.printStackTrace();
                }
                buf.putInt(0, 0);
            }
        }
        if (buf.getInt(0) != 0 && needSecondChance) {
            // store again
            fsh = (FileStorageHandle) storeData(buf);
        }
        return fsh;

    } finally {
        if (file != null) {
            // return file back
            // PUT we need for old version
            putFile(fsh.getId(), file);
        }
    }

}