List of usage examples for java.math BigInteger remainder
public BigInteger remainder(BigInteger val)
From source file:Main.java
public static void main(String[] args) { BigInteger bi1 = new BigInteger("-100"); BigInteger bi2 = new BigInteger("3"); // perform remainder operation on bi1 using bi2 BigInteger bi3 = bi1.remainder(bi2); System.out.println(bi3);//from w w w . j a v a 2 s . c o m }
From source file:Main.java
public static boolean isDivisible(BigInteger a, BigInteger b) { return a.remainder(b).compareTo(ZERO) == 0; }
From source file:net.ripe.ipresource.IpRange.java
private boolean canBeDividedByThePowerOfTwo(BigInteger number, int power) { return number.remainder(BigInteger.valueOf(2).pow(power)).equals(BigInteger.ZERO); }
From source file:piuk.blockchain.android.util.WalletUtils.java
public static String formatValue(final BigInteger value, final String plusSign, final String minusSign) { final boolean negative = value.compareTo(BigInteger.ZERO) < 0; final BigInteger absValue = value.abs(); final String sign = negative ? minusSign : plusSign; final int coins = absValue.divide(Utils.COIN).intValue(); final int cents = absValue.remainder(Utils.COIN).intValue(); if (cents % 1000000 == 0) return String.format("%s%d.%02d", sign, coins, cents / 1000000); else if (cents % 10000 == 0) return String.format("%s%d.%04d", sign, coins, cents / 10000); else// w w w . j a va 2 s . com return String.format("%s%d.%08d", sign, coins, cents); }
From source file:test.be.fedict.eid.applet.RSATest.java
@Test public void testManualEncryption() throws Exception { while (true) { KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA", BouncyCastleProvider.PROVIDER_NAME); SecureRandom random = new SecureRandom(); int keySize = 128; keyPairGenerator.initialize(new RSAKeyGenParameterSpec(keySize, RSAKeyGenParameterSpec.F0), random); KeyPair keyPair = keyPairGenerator.generateKeyPair(); PrivateKey privateKey = keyPair.getPrivate(); PublicKey publicKey = keyPair.getPublic(); RSAPrivateCrtKey rsaPrivateKey = (RSAPrivateCrtKey) privateKey; LOG.debug("private key modulus: " + rsaPrivateKey.getModulus()); RSAPublicKey rsaPublicKey = (RSAPublicKey) publicKey; LOG.debug("public key modulus: " + rsaPublicKey.getModulus()); LOG.debug("public key exponent: " + rsaPublicKey.getPublicExponent()); LOG.debug("modulus size: " + rsaPublicKey.getModulus().toByteArray().length); Cipher cipher = Cipher.getInstance("RSA/ECB/PKCS1Padding"); cipher.init(Cipher.ENCRYPT_MODE, privateKey); int dataSize = keySize / 8 - 11; byte[] data1 = new byte[dataSize]; for (int i = 0; i < data1.length; i++) { data1[i] = 0x00;/*from ww w .ja v a 2s . c o m*/ } byte[] data2 = new byte[dataSize]; for (int i = 0; i < data2.length; i++) { data2[i] = 0x00; } data2[data2.length - 1] = 0x07; byte[] signatureValue1 = cipher.doFinal(data1); LOG.debug("signature size: " + signatureValue1.length); cipher = Cipher.getInstance("RSA/ECB/PKCS1Padding"); cipher.init(Cipher.ENCRYPT_MODE, privateKey); byte[] signatureValue2 = cipher.doFinal(data2); BigInteger sigBigInt1 = new BigInteger(signatureValue1); BigInteger sigBigInt2 = new BigInteger(signatureValue2); BigInteger msgBigInt1 = sigBigInt1.modPow(rsaPublicKey.getPublicExponent(), rsaPublicKey.getModulus()); BigInteger msgBigInt2 = sigBigInt2.modPow(rsaPublicKey.getPublicExponent(), rsaPublicKey.getModulus()); LOG.debug("msg big int: " + msgBigInt1); byte[] msgBytes1 = msgBigInt1.toByteArray(); LOG.debug("original message size: " + msgBytes1.length); LOG.debug("original message1: " + new String(Hex.encodeHex(msgBytes1))); LOG.debug("original message2: " + new String(Hex.encodeHex(msgBigInt2.toByteArray()))); LOG.debug("msg1 prime: " + msgBigInt1.isProbablePrime(100)); LOG.debug("msg2 prime: " + msgBigInt2.isProbablePrime(100)); // BigInteger.pow offers a very naive implementation LOG.debug("calculating s1^e..."); BigInteger s1_e = sigBigInt1.pow(rsaPublicKey.getPublicExponent().intValue()); LOG.debug("s1^e: " + s1_e); LOG.debug("calculating s2^e..."); BigInteger s2_e = sigBigInt2.pow(rsaPublicKey.getPublicExponent().intValue()); LOG.debug("s2^e: " + s2_e); LOG.debug("calculating GCD..."); LOG.debug("msg1: " + msgBigInt1); LOG.debug("msg2: " + msgBigInt2); BigInteger a = s1_e.subtract(msgBigInt1); BigInteger b = s2_e.subtract(msgBigInt2); LOG.debug("a: " + a); LOG.debug("b: " + b); BigInteger candidateModulus = a.gcd(b); LOG.debug("candidate modulus: " + candidateModulus); LOG.debug("candidate modulus size: " + candidateModulus.toByteArray().length); BigInteger s_e = s1_e.multiply(s2_e); BigInteger m = msgBigInt1.multiply(msgBigInt2); while (false == rsaPublicKey.getModulus().equals(candidateModulus)) { LOG.error("incorrect candidate modulus"); LOG.debug("modulus | candidate modulus: " + candidateModulus.remainder(rsaPublicKey.getModulus()).equals(BigInteger.ZERO)); s_e = s_e.multiply(s1_e); m = m.multiply(msgBigInt1); BigInteger n1 = s_e.subtract(m).gcd(a); BigInteger n2 = s_e.subtract(m).gcd(b); candidateModulus = n1.gcd(n2); // try / 2 LOG.debug("new modulus: " + n1); LOG.debug("new modulus: " + n2); LOG.debug("candidate modulus: " + candidateModulus); LOG.debug("actual mod: " + rsaPublicKey.getModulus()); } } }