List of usage examples for java.math BigInteger min
public BigInteger min(BigInteger val)
From source file:Main.java
public static void main(String[] args) { BigInteger bi1 = new BigInteger("123"); BigInteger bi2 = new BigInteger("1000"); // assign the min value of bi1, bi2 to bi3 BigInteger bi3 = bi1.min(bi2); System.out.println(bi3);//from w w w.java 2s. c o m }
From source file:org.limewire.mojito.util.DHTSizeEstimator.java
/** * Computes and returns the approximate DHT size based * on the given List of Contacts./* w w w.j a va 2 s . co m*/ */ public synchronized BigInteger computeSize(Collection<? extends Contact> nodes) { // Works only with more than two Nodes if (nodes.size() < MIN_NODE_COUNT) { // There's always us! return BigInteger.ONE.max(BigInteger.valueOf(nodes.size())); } // Get the Iterator. We assume the Contacts are sorted by // their xor distance! Iterator<? extends Contact> contacts = nodes.iterator(); // See Azureus DHTControlImpl.estimateDHTSize() // Di = nearestId xor NodeIDi // Dc = sum(i * Di) / sum(i * i) // Size = 2**160 / Dc BigInteger sum1 = BigInteger.ZERO; BigInteger sum2 = BigInteger.ZERO; // The algorithm works relative to the ID space. KUID nearestId = contacts.next().getNodeID(); // We start 1 because the nearest Node is the 0th item! for (int i = 1; contacts.hasNext(); i++) { Contact node = contacts.next(); BigInteger distance = nearestId.xor(node.getNodeID()).toBigInteger(); BigInteger j = BigInteger.valueOf(i); sum1 = sum1.add(j.multiply(distance)); sum2 = sum2.add(j.pow(2)); } BigInteger estimatedSize = BigInteger.ZERO; if (!sum1.equals(BigInteger.ZERO)) { estimatedSize = KUID.MAXIMUM.toBigInteger().multiply(sum2).divide(sum1); } // And there is always us! estimatedSize = BigInteger.ONE.max(estimatedSize); // Get the average of the local estimations BigInteger localSize = BigInteger.ZERO; localSizeHistory.add(estimatedSize); // Adjust the size of the List. The Setting is SIMPP-able // and may change! int maxLocalHistorySize = ContextSettings.MAX_LOCAL_HISTORY_SIZE.getValue(); while (localSizeHistory.size() > maxLocalHistorySize && !localSizeHistory.isEmpty()) { localSizeHistory.remove(0); } if (!localSizeHistory.isEmpty()) { BigInteger localSizeSum = BigInteger.ZERO; for (BigInteger size : localSizeHistory) { localSizeSum = localSizeSum.add(size); } localSize = localSizeSum.divide(BigInteger.valueOf(localSizeHistory.size())); } // Get the combined average // S = (localEstimation + sum(remoteEstimation[i]))/count BigInteger combinedSize = localSize; if (ContextSettings.COUNT_REMOTE_SIZE.getValue()) { // Prune all duplicates and sort the values Set<BigInteger> remoteSizeSet = new TreeSet<BigInteger>(remoteSizeHistory); if (remoteSizeSet.size() >= 3) { BigInteger[] remote = remoteSizeSet.toArray(new BigInteger[0]); // Skip the smallest and largest values int count = 1; int skip = ContextSettings.SKIP_REMOTE_ESTIMATES.getValue(); for (int i = skip; (skip >= 0) && (i < (remote.length - skip)); i++) { combinedSize = combinedSize.add(remote[i]); count++; } combinedSize = combinedSize.divide(BigInteger.valueOf(count)); // Make sure we didn't exceed the MAXIMUM number as // we made an addition with the local estimation which // might be already 2**160 bit! combinedSize = combinedSize.min(MAXIMUM); } } // There is always us! return BigInteger.ONE.max(combinedSize); }