List of usage examples for java.math BigDecimal round
public BigDecimal round(MathContext mc)
From source file:org.nd4j.linalg.util.BigDecimalMath.java
/** * The hyperbolic cosine./* w ww . ja v a 2s .c om*/ * * @param x The argument. * @return The cosh(x) = (exp(x)+exp(-x))/2 . */ static public BigDecimal cosh(final BigDecimal x) { if (x.compareTo(BigDecimal.ZERO) < 0) { return cos(x.negate()); } else if (x.compareTo(BigDecimal.ZERO) == 0) { return BigDecimal.ONE; } else { if (x.doubleValue() > 1.5) { /* cosh^2(x) = 1+ sinh^2(x). */ return hypot(1, sinh(x)); } else { BigDecimal xhighpr = scalePrec(x, 2); /* Simple Taylor expansion, sum_{0=1..infinity} x^(2i)/(2i)! */ BigDecimal resul = BigDecimal.ONE; /* x^i */ BigDecimal xpowi = BigDecimal.ONE; /* 2i factorial */ BigInteger ifac = BigInteger.ONE; /* The absolute error in the result is the error in x^2/2 which is x times the error in x. */ double xUlpDbl = 0.5 * x.ulp().doubleValue() * x.doubleValue(); /* The error in the result is set by the error in x^2/2 itself, xUlpDbl. * We need at most k terms to push x^(2k)/(2k)! below this value. * x^(2k) < xUlpDbl; (2k)*log(x) < log(xUlpDbl); */ int k = (int) (Math.log(xUlpDbl) / Math.log(x.doubleValue())) / 2; /* The individual terms are all smaller than 1, so an estimate of 1.0 for * the absolute value will give a safe relative error estimate for the indivdual terms */ MathContext mcTay = new MathContext(err2prec(1., xUlpDbl / k)); for (int i = 1;; i++) { /* TBD: at which precision will 2*i-1 or 2*i overflow? */ ifac = ifac.multiply(new BigInteger("" + (2 * i - 1))); ifac = ifac.multiply(new BigInteger("" + (2 * i))); xpowi = xpowi.multiply(xhighpr).multiply(xhighpr); BigDecimal corr = xpowi.divide(new BigDecimal(ifac), mcTay); resul = resul.add(corr); if (corr.abs().doubleValue() < 0.5 * xUlpDbl) { break; } } /* The error in the result is governed by the error in x itself. */ MathContext mc = new MathContext(err2prec(resul.doubleValue(), xUlpDbl)); return resul.round(mc); } } }
From source file:org.nd4j.linalg.util.BigDecimalMath.java
/** * The inverse trigonometric sine./*from w ww.j a v a 2s. c o m*/ * * @param x the argument. * @return the arcsin(x) in radians. */ static public BigDecimal asin(final BigDecimal x) { if (x.compareTo(BigDecimal.ONE) > 0 || x.compareTo(BigDecimal.ONE.negate()) < 0) { throw new ArithmeticException("Out of range argument " + x.toString() + " of asin"); } else if (x.compareTo(BigDecimal.ZERO) == 0) { return BigDecimal.ZERO; } else if (x.compareTo(BigDecimal.ONE) == 0) { /* arcsin(1) = pi/2 */ double errpi = Math.sqrt(x.ulp().doubleValue()); MathContext mc = new MathContext(err2prec(3.14159, errpi)); return pi(mc).divide(new BigDecimal(2)); } else if (x.compareTo(BigDecimal.ZERO) < 0) { return asin(x.negate()).negate(); } else if (x.doubleValue() > 0.7) { final BigDecimal xCompl = BigDecimal.ONE.subtract(x); final double xDbl = x.doubleValue(); final double xUlpDbl = x.ulp().doubleValue() / 2.; final double eps = xUlpDbl / 2. / Math.sqrt(1. - Math.pow(xDbl, 2.)); final BigDecimal xhighpr = scalePrec(xCompl, 3); final BigDecimal xhighprV = divideRound(xhighpr, 4); BigDecimal resul = BigDecimal.ONE; /* x^(2i+1) */ BigDecimal xpowi = BigDecimal.ONE; /* i factorial */ BigInteger ifacN = BigInteger.ONE; BigInteger ifacD = BigInteger.ONE; for (int i = 1;; i++) { ifacN = ifacN.multiply(new BigInteger("" + (2 * i - 1))); ifacD = ifacD.multiply(new BigInteger("" + i)); if (i == 1) { xpowi = xhighprV; } else { xpowi = multiplyRound(xpowi, xhighprV); } BigDecimal c = divideRound(multiplyRound(xpowi, ifacN), ifacD.multiply(new BigInteger("" + (2 * i + 1)))); resul = resul.add(c); /* series started 1+x/12+... which yields an estimate of the sums error */ if (Math.abs(c.doubleValue()) < xUlpDbl / 120.) { break; } } /* sqrt(2*z)*(1+...) */ xpowi = sqrt(xhighpr.multiply(new BigDecimal(2))); resul = multiplyRound(xpowi, resul); MathContext mc = new MathContext(resul.precision()); BigDecimal pihalf = pi(mc).divide(new BigDecimal(2)); mc = new MathContext(err2prec(resul.doubleValue(), eps)); return pihalf.subtract(resul, mc); } else { /* absolute error in the result is err(x)/sqrt(1-x^2) to lowest order */ final double xDbl = x.doubleValue(); final double xUlpDbl = x.ulp().doubleValue() / 2.; final double eps = xUlpDbl / 2. / Math.sqrt(1. - Math.pow(xDbl, 2.)); final BigDecimal xhighpr = scalePrec(x, 2); final BigDecimal xhighprSq = multiplyRound(xhighpr, xhighpr); BigDecimal resul = xhighpr.plus(); /* x^(2i+1) */ BigDecimal xpowi = xhighpr; /* i factorial */ BigInteger ifacN = BigInteger.ONE; BigInteger ifacD = BigInteger.ONE; for (int i = 1;; i++) { ifacN = ifacN.multiply(new BigInteger("" + (2 * i - 1))); ifacD = ifacD.multiply(new BigInteger("" + (2 * i))); xpowi = multiplyRound(xpowi, xhighprSq); BigDecimal c = divideRound(multiplyRound(xpowi, ifacN), ifacD.multiply(new BigInteger("" + (2 * i + 1)))); resul = resul.add(c); if (Math.abs(c.doubleValue()) < 0.1 * eps) { break; } } MathContext mc = new MathContext(err2prec(resul.doubleValue(), eps)); return resul.round(mc); } }