List of usage examples for java.lang StrictMath PI
double PI
To view the source code for java.lang StrictMath PI.
Click Source Link
From source file:Main.java
public static void main(String[] args) { System.out.println("StrictMath.PI:" + StrictMath.PI); }
From source file:org.deidentifier.arx.risk.Gamma.java
/** * Approximates the digamma function. Java port of the * "The Lightspeed Matlab toolbox" version 2.7 by Tom Minka see: * http://research.microsoft.com/en-us/um/people/minka/software/lightspeed/ * /*from w ww.j a v a2 s . co m*/ * @param x * input value * @return approximation of digamma for x */ static double digamma(double x) { /* Illegal arguments */ if (Double.isInfinite(x) || Double.isNaN(x)) { return Double.NaN; } /* Singularities */ if (x == 0.0d) { return Double.NEGATIVE_INFINITY; } /* Negative values */ /* * Use the reflection formula (Jeffrey 11.1.6): digamma(-x) = * digamma(x+1) + pi*cot(pi*x) * * This is related to the identity digamma(-x) = digamma(x+1) - * digamma(z) + digamma(1-z) where z is the fractional part of x For * example: digamma(-3.1) = 1/3.1 + 1/2.1 + 1/1.1 + 1/0.1 + * digamma(1-0.1) = digamma(4.1) - digamma(0.1) + digamma(1-0.1) Then we * use digamma(1-z) - digamma(z) = pi*cot(pi*z) */ if (x < 0.0d) { return digamma(1.0d - x) + (StrictMath.PI / StrictMath.tan(-StrictMath.PI * x)); } /* Use Taylor series if argument <= small */ if (x <= SMALL_DIGAMMA) { return (DIGAMMA_1 - (1.0d / x)) + (TRIGAMMA_1 * x); } double result = 0.0d; /* Reduce to digamma(X + N) where (X + N) >= large */ while (x < LARGE_DIGAMMA) { result -= 1.0d / x; x++; } /* Use de Moivre's expansion if argument >= C */ /* This expansion can be computed in Maple via asympt(Psi(x),x) */ if (x >= LARGE_DIGAMMA) { double r = 1.0d / x; result += StrictMath.log(x) - (0.5d * r); r *= r; result -= r * (S3 - (r * (S4 - (r * (S5 - (r * (S6 - (r * S7)))))))); } return result; }
From source file:org.deidentifier.arx.risk.Gamma.java
/** * Approximates the trigamma function. Java port of the * "The Lightspeed Matlab toolbox" version 2.7 by Tom Minka see: * http://research.microsoft.com/en-us/um/people/minka/software/lightspeed/ * /*from w w w . ja va 2 s .c o m*/ * @param x * input value * @return approximation of trigamma for x */ static double trigamma(double x) { /* Illegal arguments */ if (Double.isInfinite(x) || Double.isNaN(x)) { return Double.NaN; } /* Singularities */ if (x == 0.0d) { return Double.NEGATIVE_INFINITY; } /* Negative values */ /* * Use the derivative of the digamma reflection formula: -trigamma(-x) = * trigamma(x+1) - (pi*csc(pi*x))^2 */ if (x < 0.0d) { double r = StrictMath.PI / StrictMath.sin(-StrictMath.PI * x); return -trigamma(1.0d - x) + (r * r); } /* Use Taylor series if argument <= small */ if (x <= SMALL_TRIGAMMA) { return (1.0d / (x * x)) + TRIGAMMA_1 + (TETRAGAMMA_1 * x); } double result = 0.0d; /* Reduce to trigamma(x+n) where ( X + N ) >= B */ while (x < LARGE_TRIGAMMA) { result += 1.0d / (x * x); x++; } /* Apply asymptotic formula when X >= B */ /* This expansion can be computed in Maple via asympt(Psi(1,x),x) */ if (x >= LARGE_DIGAMMA) { double r = 1.0d / (x * x); result += (0.5d * r) + ((1.0d + (r * (B2 + (r * (B4 + (r * (B6 + (r * (B8 + (r * B10)))))))))) / x); } return result; }