Example usage for java.lang Math pow

List of usage examples for java.lang Math pow

Introduction

In this page you can find the example usage for java.lang Math pow.

Prototype

@HotSpotIntrinsicCandidate
public static double pow(double a, double b) 

Source Link

Document

Returns the value of the first argument raised to the power of the second argument.

Usage

From source file:ch.epfl.lsir.xin.test.GlobalMeanTest.java

/**
 * @param args/* w  w w.j  a  v a 2s  .c om*/
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//GlobalMean");

    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File("conf//GlobalMean.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt");
    loader.readSimple();
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());

    double totalMAE = 0;
    double totalRMSE = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    logger.flush();
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }
    for (int folder = 1; folder <= F; folder++) {
        System.out.println("Folder: " + folder);
        logger.println("Folder: " + folder);
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>();
        HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>();
        for (int i = 0; i < dataset.getUserIDs().size(); i++) {
            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        }
        for (int i = 0; i < dataset.getItemIDs().size(); i++) {
            itemIDIndexMapping.put(dataset.getItemIDs().get(i), i);
        }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());

        logger.println("Initialize a recommendation model based on global average method.");
        GlobalAverage algo = new GlobalAverage(trainRatingMatrix);
        algo.setLogger(logger);
        algo.build();
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();

        System.out.println(trainRatings.size() + " vs. " + testRatings.size());

        double RMSE = 0;
        double MAE = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(rating.getUserID(), rating.getItemID());
            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);

        //         System.out.println("MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " MAE: " + MAE
                + " RMSE: " + RMSE);
        logger.flush();
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Final results: MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F);
    logger.flush();
    logger.close();
    //MAE: 0.9338607074893257 RMSE: 1.1170971131112037 (MovieLens1M)
    //MAE: 0.9446876509332618 RMSE: 1.1256517870920375 (MovieLens100K)

}

From source file:ch.epfl.lsir.xin.test.UserAverageTest.java

/**
 * @param args/*w ww.ja v  a2s. c om*/
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//UserAverage");
    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File(".//conf//UserAverage.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt");
    loader.readSimple();
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }
    for (int folder = 1; folder <= F; folder++) {
        logger.println("Folder: " + folder);
        System.out.println("Folder: " + folder);
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>();
        HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>();
        for (int i = 0; i < dataset.getUserIDs().size(); i++) {
            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        }
        for (int i = 0; i < dataset.getItemIDs().size(); i++) {
            itemIDIndexMapping.put(dataset.getItemIDs().get(i), i);
        }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        trainRatingMatrix.calculateGlobalAverage();
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());

        logger.println("Initialize a recommendation model based on user average method.");
        UserAverage algo = new UserAverage(trainRatingMatrix);
        algo.setLogger(logger);
        algo.build();
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        System.out.println(trainRatings.size() + " vs. " + testRatings.size());

        double RMSE = 0;
        double MAE = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()));
            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);

        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " MAE: " + MAE
                + " RMSE: " + RMSE);
        logger.flush();
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Final results: MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F);
    logger.flush();
    logger.close();
    //MAE: 0.8353035962363073 RMSE: 1.0422971886952053 (MovieLens 100k)
}

From source file:ch.epfl.lsir.xin.test.ItemAverageTest.java

/**
 * @param args/*from w  w  w .  j a va2s  .c om*/
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//ItemAverage");
    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File(".//conf//ItemAverage.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt");
    loader.readSimple();
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }
    for (int folder = 1; folder <= F; folder++) {
        logger.println("Folder: " + folder);
        logger.flush();
        System.out.println("Folder: " + folder);
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>();
        HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>();
        for (int i = 0; i < dataset.getUserIDs().size(); i++) {
            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        }
        for (int i = 0; i < dataset.getItemIDs().size(); i++) {
            itemIDIndexMapping.put(dataset.getItemIDs().get(i), i);
        }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        trainRatingMatrix.calculateGlobalAverage();
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());

        logger.println("Initialize a recommendation model based on item average method.");
        ItemAverage algo = new ItemAverage(trainRatingMatrix);
        algo.setLogger(logger);
        algo.build();
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();
        System.out.println(trainRatings.size() + " vs. " + testRatings.size());

        double RMSE = 0;
        double MAE = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()));
            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);

        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " MAE: " + MAE
                + " RMSE: " + RMSE);
        logger.flush();
        //         System.out.println("MAE: " + MAE + " RMSE: " + RMSE);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Final results: MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F);
    logger.flush();
    //MAE: 0.8173633324758338 RMSE: 1.0251973503888645 (MovieLens 100K)

}

From source file:ch.epfl.lsir.xin.test.ItemBasedCFTest.java

/**
 * @param args//from  w  w w  . j  av  a 2s  .  c  o  m
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//ItemBasedCF");
    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File(".//conf//ItemBasedCF.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt");
    loader.readSimple();
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    double totalPrecision = 0;
    double totalRecall = 0;
    double totalMAP = 0;
    double totalNDCG = 0;
    double totalMRR = 0;
    double totalAUC = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }

    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }

    for (int folder = 1; folder <= F; folder++) {
        logger.println("Folder: " + folder);
        System.out.println("Folder: " + folder);
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>();
        HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>();
        for (int i = 0; i < dataset.getUserIDs().size(); i++) {
            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        }
        for (int i = 0; i < dataset.getItemIDs().size(); i++) {
            itemIDIndexMapping.put(dataset.getItemIDs().get(i), i);
        }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        trainRatingMatrix.calculateGlobalAverage();
        trainRatingMatrix.calculateItemsMean();
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());
        logger.println("Initialize a item based collaborative filtering recommendation model.");
        ItemBasedCF algo = new ItemBasedCF(trainRatingMatrix);
        algo.setLogger(logger);
        algo.build();//if read local model, no need to build the model
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();

        //rating prediction accuracy
        double RMSE = 0;
        double MAE = 0;
        double precision = 0;
        double recall = 0;
        double map = 0;
        double ndcg = 0;
        double mrr = 0;
        double auc = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()), false);
            if (prediction > algo.getMaxRating())
                prediction = algo.getMaxRating();
            if (prediction < algo.getMinRating())
                prediction = algo.getMinRating();

            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
        System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: "
                + MAE + " RMSE: " + RMSE);

        //ranking accuracy
        if (algo.getTopN() > 0) {
            HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>();
            for (int i = 0; i < trainRatingMatrix.getRow(); i++) {
                //               ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
                //               results.put(i, rec);
                ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
                if (rec == null)
                    continue;
                int total = testRatingMatrix.getUserRatingNumber(i);
                if (total == 0)//this user is ignored
                    continue;
                results.put(i, rec);
            }
            RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix,
                    trainRatingMatrix);
            precision = generator.getPrecisionN();
            totalPrecision = totalPrecision + precision;
            recall = generator.getRecallN();
            totalRecall = totalRecall + recall;
            map = generator.getMAPN();
            totalMAP = totalMAP + map;
            ndcg = generator.getNDCGN();
            totalNDCG = totalNDCG + ndcg;
            mrr = generator.getMRRN();
            totalMRR = totalMRR + mrr;
            auc = generator.getAUC();
            totalAUC = totalAUC + auc;
            System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
            logger.append("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc + "\n");
        }
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    System.out.println("Precision@N: " + totalPrecision / F);
    System.out.println("Recall@N: " + totalRecall / F);
    System.out.println("MAP@N: " + totalMAP / F);
    System.out.println("MRR@N: " + totalMRR / F);
    System.out.println("NDCG@N: " + totalNDCG / F);
    System.out.println("AUC@N: " + totalAUC / F);
    System.out.println("similarity: " + config.getString("SIMILARITY"));
    //MAE: 0.7227232762922241 RMSE: 0.9225576790122603 (MovieLens 100K, shrinkage 2500, neighbor size 40, PCC)
    //MAE: 0.7250636319353241 RMSE: 0.9242305485411567 (MovieLens 100K, shrinkage 25, neighbor size 40, PCC)
    //MAE: 0.7477213243604459 RMSE: 0.9512195004171138 (MovieLens 100K, shrinkage 2500, neighbor size 40, COSINE)

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n"
            + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F
            + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F);
    logger.flush();
    logger.close();
}

From source file:ch.epfl.lsir.xin.test.SVDPPTest.java

/**
 * @param args/* w w  w  .j  a  v  a  2s .  c o m*/
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//SVDPP");

    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File("conf//SVDPlusPlus.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    logger.flush();
    DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt");
    loader.readSimple();
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    double totalPrecision = 0;
    double totalRecall = 0;
    double totalMAP = 0;
    double totalNDCG = 0;
    double totalMRR = 0;
    double totalAUC = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    logger.flush();
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }

    for (int folder = 1; folder <= F; folder++) {
        System.out.println("Folder: " + folder);
        logger.println("Folder: " + folder);
        logger.flush();
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>();
        HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>();
        for (int i = 0; i < dataset.getUserIDs().size(); i++) {
            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        }
        for (int i = 0; i < dataset.getItemIDs().size(); i++) {
            itemIDIndexMapping.put(dataset.getItemIDs().get(i), i);
        }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            if (testRatings.get(i).getValue() < 5)
                continue;
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());

        logger.println("Initialize a SVD++ recommendation model.");
        logger.flush();
        SVDPlusPlus algo = new SVDPlusPlus(trainRatingMatrix, false,
                ".//localModels//" + config.getString("NAME"));
        algo.setLogger(logger);
        algo.build();
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();

        //rating prediction accuracy
        double RMSE = 0;
        double MAE = 0;
        double precision = 0;
        double recall = 0;
        double map = 0;
        double ndcg = 0;
        double mrr = 0;
        double auc = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()), false);
            if (prediction > algo.getMaxRating())
                prediction = algo.getMaxRating();
            if (prediction < algo.getMinRating())
                prediction = algo.getMinRating();
            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
        System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: "
                + MAE + " RMSE: " + RMSE);
        //ranking accuracy
        if (algo.getTopN() > 0) {
            HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>();
            for (int i = 0; i < trainRatingMatrix.getRow(); i++) {
                ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
                if (rec == null)
                    continue;
                int total = testRatingMatrix.getUserRatingNumber(i);
                if (total == 0)//this user is ignored
                    continue;
                results.put(i, rec);
            }
            RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix);
            precision = generator.getPrecisionN();
            totalPrecision = totalPrecision + precision;
            recall = generator.getRecallN();
            totalRecall = totalRecall + recall;
            map = generator.getMAPN();
            totalMAP = totalMAP + map;
            ndcg = generator.getNDCGN();
            totalNDCG = totalNDCG + ndcg;
            mrr = generator.getMRRN();
            totalMRR = totalMRR + mrr;
            auc = generator.getAUC();
            totalAUC = totalAUC + auc;
            System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
            logger.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
        }

        logger.flush();
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    System.out.println("Precision@N: " + totalPrecision / F);
    System.out.println("Recall@N: " + totalRecall / F);
    System.out.println("MAP@N: " + totalMAP / F);
    System.out.println("MRR@N: " + totalMRR / F);
    System.out.println("NDCG@N: " + totalNDCG / F);
    System.out.println("AUC@N: " + totalAUC / F);

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n"
            + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F
            + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F);
    logger.flush();
    logger.close();
}

From source file:ch.epfl.lsir.xin.test.BiasedMFTest.java

/**
 * @param args/*from   ww  w. ja  v  a 2 s .  c  o m*/
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//BiasedMF");

    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File("conf//biasedMF.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    logger.flush();
    DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt");
    loader.readSimple();
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    double totalPrecision = 0;
    double totalRecall = 0;
    double totalMAP = 0;
    double totalNDCG = 0;
    double totalMRR = 0;
    double totalAUC = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    logger.flush();
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }

    for (int folder = 1; folder <= F; folder++) {
        System.out.println("Folder: " + folder);
        logger.println("Folder: " + folder);
        logger.flush();
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>();
        HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>();
        for (int i = 0; i < dataset.getUserIDs().size(); i++) {
            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        }
        for (int i = 0; i < dataset.getItemIDs().size(); i++) {
            itemIDIndexMapping.put(dataset.getItemIDs().get(i), i);
        }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            //            if( testRatings.get(i).getValue() < 5 )
            //               continue;
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());

        logger.println("Initialize a biased matrix factorization recommendation model.");
        logger.flush();
        BiasedMF algo = new BiasedMF(trainRatingMatrix, false, ".//localModels//" + config.getString("NAME"));
        algo.setLogger(logger);
        algo.build();
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();

        //rating prediction accuracy
        double RMSE = 0;
        double MAE = 0;
        double precision = 0;
        double recall = 0;
        double map = 0;
        double ndcg = 0;
        double mrr = 0;
        double auc = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()), false);
            if (prediction > algo.getMaxRating())
                prediction = algo.getMaxRating();
            if (prediction < algo.getMinRating())
                prediction = algo.getMinRating();
            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
        System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: "
                + MAE + " RMSE: " + RMSE);
        //ranking accuracy
        if (algo.getTopN() > 0) {
            HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>();
            for (int i = 0; i < trainRatingMatrix.getRow(); i++) {
                ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
                if (rec == null)
                    continue;
                int total = testRatingMatrix.getUserRatingNumber(i);
                if (total == 0)//this user is ignored
                    continue;
                results.put(i, rec);
            }
            RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix,
                    trainRatingMatrix);
            precision = generator.getPrecisionN();
            totalPrecision = totalPrecision + precision;
            recall = generator.getRecallN();
            totalRecall = totalRecall + recall;
            map = generator.getMAPN();
            totalMAP = totalMAP + map;
            ndcg = generator.getNDCGN();
            totalNDCG = totalNDCG + ndcg;
            mrr = generator.getMRRN();
            totalMRR = totalMRR + mrr;
            auc = generator.getAUC();
            totalAUC = totalAUC + auc;
            System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
            logger.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
        }

        logger.flush();
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    System.out.println("Precision@N: " + totalPrecision / F);
    System.out.println("Recall@N: " + totalRecall / F);
    System.out.println("MAP@N: " + totalMAP / F);
    System.out.println("MRR@N: " + totalMRR / F);
    System.out.println("NDCG@N: " + totalNDCG / F);
    System.out.println("AUC@N: " + totalAUC / F);

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n"
            + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F
            + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F);
    logger.flush();
    logger.close();
}

From source file:ch.epfl.lsir.xin.test.MFTest.java

/**
 * @param args// ww w.j a  v  a2s.com
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//MF");

    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File("conf//MF.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    logger.flush();
    DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt");
    loader.readSimple();
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    double totalPrecision = 0;
    double totalRecall = 0;
    double totalMAP = 0;
    double totalNDCG = 0;
    double totalMRR = 0;
    double totalAUC = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    logger.flush();
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }

    for (int folder = 1; folder <= F; folder++) {
        System.out.println("Folder: " + folder);
        logger.println("Folder: " + folder);
        logger.flush();
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>();
        HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>();
        for (int i = 0; i < dataset.getUserIDs().size(); i++) {
            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        }
        for (int i = 0; i < dataset.getItemIDs().size(); i++) {
            itemIDIndexMapping.put(dataset.getItemIDs().get(i), i);
        }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            //            if( testRatings.get(i).getValue() < 5 )
            //               continue;
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());

        logger.println("Initialize a matrix factorization based recommendation model.");
        logger.flush();
        MatrixFactorization algo = new MatrixFactorization(trainRatingMatrix, false,
                ".//localModels//" + config.getString("NAME"));
        algo.setLogger(logger);
        algo.build();
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();

        //rating prediction accuracy
        double RMSE = 0;
        double MAE = 0;
        double precision = 0;
        double recall = 0;
        double map = 0;
        double ndcg = 0;
        double mrr = 0;
        double auc = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()), false);
            if (prediction > algo.getMaxRating())
                prediction = algo.getMaxRating();
            if (prediction < algo.getMinRating())
                prediction = algo.getMinRating();
            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
        System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: "
                + MAE + " RMSE: " + RMSE);
        //ranking accuracy
        if (algo.getTopN() > 0) {
            HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>();
            for (int i = 0; i < trainRatingMatrix.getRow(); i++) {
                ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
                if (rec == null)
                    continue;
                int total = testRatingMatrix.getUserRatingNumber(i);
                if (total == 0)//this user is ignored
                    continue;
                results.put(i, rec);
                //               for( Map.Entry<Integer, Double> entry : testRatingMatrix.getRatingMatrix().get(i).entrySet() )
                //               {
                //                  System.out.print( entry.getKey() + "(" + entry.getValue() + ") , ");
                //               }
                //               System.out.println();
                //               for( int j = 0 ; j < rec.size() ; j++ )
                //               {
                //                  System.out.print(rec.get(j).getItemIndex() + "(" + rec.get(j).getPrediciton() +
                //                        ") , ");
                //               }
                //               System.out.println("**********");
            }
            RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix,
                    trainRatingMatrix);
            precision = generator.getPrecisionN();
            totalPrecision = totalPrecision + precision;
            recall = generator.getRecallN();
            totalRecall = totalRecall + recall;
            map = generator.getMAPN();
            totalMAP = totalMAP + map;
            ndcg = generator.getNDCGN();
            totalNDCG = totalNDCG + ndcg;
            mrr = generator.getMRRN();
            totalMRR = totalMRR + mrr;
            auc = generator.getAUC();
            totalAUC = totalAUC + auc;
            System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
            logger.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
        }

        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " MAE: " + MAE
                + " RMSE: " + RMSE);
        logger.flush();
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    System.out.println("Precision@N: " + totalPrecision / F);
    System.out.println("Recall@N: " + totalRecall / F);
    System.out.println("MAP@N: " + totalMAP / F);
    System.out.println("MRR@N: " + totalMRR / F);
    System.out.println("NDCG@N: " + totalNDCG / F);
    System.out.println("AUC@N: " + totalAUC / F);

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n"
            + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F
            + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F);
    logger.flush();
    logger.close();

}

From source file:ch.epfl.lsir.xin.test.UserBasedCFTest.java

/**
 * @param args/*from   ww  w.  ja  v  a  2 s  . c  o  m*/
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//UserBasedCF");
    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File(".//conf//UserBasedCF.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt");
    loader.readSimple();
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    double totalPrecision = 0;
    double totalRecall = 0;
    double totalMAP = 0;
    double totalNDCG = 0;
    double totalMRR = 0;
    double totalAUC = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }

    for (int folder = 1; folder <= F; folder++) {
        logger.println("Folder: " + folder);
        System.out.println("Folder: " + folder);
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>();
        HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>();
        for (int i = 0; i < dataset.getUserIDs().size(); i++) {
            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        }
        for (int i = 0; i < dataset.getItemIDs().size(); i++) {
            itemIDIndexMapping.put(dataset.getItemIDs().get(i), i);
        }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        trainRatingMatrix.calculateGlobalAverage();
        trainRatingMatrix.calculateUsersMean();
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            //            if( testRatings.get(i).getValue() < 5 )
            //               continue;
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        logger.println("Initialize a user based collaborative filtering recommendation model.");
        UserBasedCF algo = new UserBasedCF(trainRatingMatrix, false,
                ".//localModels//" + config.getString("NAME"));
        algo.setLogger(logger);
        algo.build();//if read local model, no need to build the model
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        System.out.println(trainRatings.size() + " vs. " + testRatings.size());
        logger.flush();

        //rating prediction accuracy
        double RMSE = 0;
        double MAE = 0;
        double precision = 0;
        double recall = 0;
        double map = 0;
        double ndcg = 0;
        double mrr = 0;
        double auc = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()), false);

            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            if (prediction > algo.getMaxRating())
                prediction = algo.getMaxRating();
            if (prediction < algo.getMinRating())
                prediction = algo.getMinRating();
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
        System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: "
                + MAE + " RMSE: " + RMSE);
        logger.flush();
        //ranking accuracy
        if (algo.getTopN() > 0) {
            HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>();
            for (int i = 0; i < testRatingMatrix.getRow(); i++) {
                ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
                if (rec == null)
                    continue;
                int total = testRatingMatrix.getUserRatingNumber(i);
                if (total == 0)//this user is ignored
                    continue;
                results.put(i, rec);
                //               for( Map.Entry<Integer, Double> entry : testRatingMatrix.getRatingMatrix().get(i).entrySet() )
                //               {
                //                  System.out.print( entry.getKey() + "(" + entry.getValue() + ") , ");
                //               }
                //               System.out.println();
                //               for( int j = 0 ; j < rec.size() ; j++ )
                //               {
                //                  System.out.print(rec.get(j).getItemIndex() + "(" + rec.get(j).getPrediciton() +
                //                        ") , ");
                //               }
                //               System.out.println("**********");
            }
            RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix,
                    trainRatingMatrix);
            precision = generator.getPrecisionN();
            totalPrecision = totalPrecision + precision;
            recall = generator.getRecallN();
            totalRecall = totalRecall + recall;
            map = generator.getMAPN();
            totalMAP = totalMAP + map;
            ndcg = generator.getNDCGN();
            totalNDCG = totalNDCG + ndcg;
            mrr = generator.getMRRN();
            totalMRR = totalMRR + mrr;
            auc = generator.getAUC();
            totalAUC = totalAUC + auc;
            System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
            logger.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
        }
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    System.out.println("Precision@N: " + totalPrecision / F);
    System.out.println("Recall@N: " + totalRecall / F);
    System.out.println("MAP@N: " + totalMAP / F);
    System.out.println("MRR@N: " + totalMRR / F);
    System.out.println("NDCG@N: " + totalNDCG / F);
    System.out.println("AUC@N: " + totalAUC / F);
    // MovieLens100k
    //MAE: 0.7343907480119425 RMSE: 0.9405808357192891 (MovieLens 100K, shrinkage 25, neighbor size 60, PCC)
    //MAE: 0.7522376630596646 RMSE: 0.9520931265724659 (MovieLens 100K, no shrinkage , neighbor size 40, COSINE)
    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n"
            + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F
            + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F);
    logger.flush();
    logger.close();

}

From source file:ch.epfl.lsir.xin.test.SocialRegTest.java

/**
 * @param args/* ww w .j  a  v a2s. co  m*/
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//SocialReg");
    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File("conf//SocialReg.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    logger.flush();
    DataLoaderFile loader = new DataLoaderFile(".//data//Epinions-ratings.txt");
    loader.readSimple();
    //read social information
    loader.readRelation(".//data//Epinions-trust.txt");
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    double totalPrecision = 0;
    double totalRecall = 0;
    double totalMAP = 0;
    double totalNDCG = 0;
    double totalMRR = 0;
    double totalAUC = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    logger.flush();
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }

    for (int folder = 1; folder <= F; folder++) {
        System.out.println("Folder: " + folder);
        logger.println("Folder: " + folder);
        logger.flush();
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = dataset.getUserIDMapping();
        HashMap<String, Integer> itemIDIndexMapping = dataset.getItemIDMapping();
        //         for( int i = 0 ; i < dataset.getUserIDs().size() ; i++ )
        //         {
        //            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        //         }
        //         for( int i = 0 ; i < dataset.getItemIDs().size() ; i++ )
        //         {
        //            itemIDIndexMapping.put(dataset.getItemIDs().get(i) , i);
        //         }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());

        logger.println("Initialize a social regularization recommendation model.");
        logger.flush();
        SocialReg algo = new SocialReg(trainRatingMatrix, dataset.getRelationships(), false,
                ".//localModels//" + config.getString("NAME"));
        algo.setLogger(logger);
        algo.build();
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();

        System.out.println(trainRatings.size() + " vs. " + testRatings.size());

        //rating prediction accuracy
        double RMSE = 0;
        double MAE = 0;
        double precision = 0;
        double recall = 0;
        double map = 0;
        double ndcg = 0;
        double mrr = 0;
        double auc = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()));
            if (prediction > algo.getMaxRating())
                prediction = algo.getMaxRating();
            if (prediction < algo.getMinRating())
                prediction = algo.getMinRating();
            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
        System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: "
                + MAE + " RMSE: " + RMSE);
        //ranking accuracy
        //         if( algo.getTopN() > 0 )
        //         {
        //            HashMap<Integer , ArrayList<ResultUnit>> results = new HashMap<Integer , ArrayList<ResultUnit>>();
        //            for( int i = 0 ; i < trainRatingMatrix.getRow() ; i++ )
        //            {
        //               ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
        //               results.put(i, rec);
        //            }
        //            RankResultGenerator generator = new RankResultGenerator(results , algo.getTopN() , testRatingMatrix);
        //            precision = generator.getPrecisionN();
        //            totalPrecision = totalPrecision + precision;
        //            recall = generator.getRecallN();
        //            totalRecall = totalRecall + recall;
        //            map = generator.getMAPN();
        //            totalMAP = totalMAP + map;
        //            ndcg = generator.getNDCGN();
        //            totalNDCG = totalNDCG + ndcg;
        //            mrr = generator.getMRRN();
        //            totalMRR = totalMRR + mrr;
        //            auc = generator.getAUC();
        //            totalAUC = totalAUC + auc;
        //            System.out.println("Folder --- precision: " + precision + " recall: " + 
        //            recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
        //            logger.println("Folder --- precision: " + precision + " recall: " + 
        //                  recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + 
        //                  mrr + " auc: " + auc);
        //         }

        logger.flush();
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    System.out.println("Precision@N: " + totalPrecision / F);
    System.out.println("Recall@N: " + totalRecall / F);
    System.out.println("MAP@N: " + totalMAP / F);
    System.out.println("MRR@N: " + totalMRR / F);
    System.out.println("NDCG@N: " + totalNDCG / F);
    System.out.println("AUC@N: " + totalAUC / F);

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n"
            + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F
            + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F);
    logger.flush();
    logger.close();
}

From source file:Main.java

public static double tile2lon(int x, int aZoom) {
    return (x / Math.pow(2.0, aZoom) * 360.0) - 180;
}