Example usage for java.lang Long MIN_VALUE

List of usage examples for java.lang Long MIN_VALUE

Introduction

In this page you can find the example usage for java.lang Long MIN_VALUE.

Prototype

long MIN_VALUE

To view the source code for java.lang Long MIN_VALUE.

Click Source Link

Document

A constant holding the minimum value a long can have, -263.

Usage

From source file:com.palantir.atlasdb.keyvalue.impl.InMemoryKeyValueService.java

@Override
public Multimap<Cell, Long> getAllTimestamps(String tableName, Set<Cell> cells, long ts) {
    Multimap<Cell, Long> multimap = HashMultimap.create();
    ConcurrentSkipListMap<Key, byte[]> table = getTableMap(tableName).entries;
    for (Cell key : cells) {
        for (Key entry : table.subMap(new Key(key, Long.MIN_VALUE), new Key(key, ts)).keySet()) {
            multimap.put(key, entry.ts);
        }/*w  ww  . j av a  2 s .  c om*/
    }
    return multimap;
}

From source file:com.navercorp.pinpoint.common.buffer.FixedBufferTest.java

@Test
public void testPutVLong() throws Exception {
    checkVLong(1);/* w ww .  ja v  a 2  s.co m*/
    checkVLong(-1);

    checkVLong(Long.MAX_VALUE);
    checkVLong(Long.MIN_VALUE);

    checkVLong(Long.MAX_VALUE / 2);
    checkVLong(Long.MIN_VALUE / 2);

    checkVLong(Long.MAX_VALUE / 128);

    checkVLong(Long.MAX_VALUE / 102400);

    checkVLong(900719925474L);
    checkVLong(9007199254L);
    checkVLong(225179981);
    checkVLong(1179981);
    checkVLong(9981);
    checkVLong(127);
    checkVLong(-127);

    checkVLong(0L);
    checkVLong(127L);
    checkVLong(128L);
    checkVLong(16383L);
    checkVLong(16384L);
    checkVLong(268435455L);
    checkVLong(268435456L);
    checkVLong(34359738367L);
    checkVLong(34359738368L);
}

From source file:eionet.cr.util.Util.java

/**
 * Algorithm calculates the estimated number of hashes.
 *
 * @param minHash//from w w  w  . j a v a  2s.co m
 * @param maxHash
 * @return
 */
public static int calculateHashesCount(long minHash, long maxHash) {

    BigDecimal minValue = new BigDecimal(Long.MIN_VALUE);
    BigDecimal maxValue = new BigDecimal(Long.MAX_VALUE);
    BigDecimal lowKey = new BigDecimal(minHash);
    BigDecimal highKey = new BigDecimal(maxHash);
    BigDecimal distance = maxValue.subtract(highKey).add(lowKey).subtract(minValue);
    BigDecimal hitCount = new BigDecimal(2).pow(64).divide(distance, 0, BigDecimal.ROUND_HALF_UP);

    return hitCount.intValue();
}

From source file:com.jcwhatever.nucleus.internal.managed.commands.Arguments.java

@Override
public long getLong(String parameterName) throws InvalidArgumentException {
    return getLong(parameterName, Long.MIN_VALUE, Long.MAX_VALUE);
}

From source file:au.edu.anu.portal.portlets.tweetal.servlet.TweetalServlet.java

public void getTweets(HttpServletRequest request, HttpServletResponse response)
        throws ServletException, IOException {
    response.setContentType("application/json");
    PrintWriter out = response.getWriter();

    String userToken = request.getParameter("u");
    String userSecret = request.getParameter("s");

    Twitter twitter = twitterLogic.getTwitterAuthForUser(userToken, userSecret);
    if (twitter == null) {
        // no connection
        response.sendError(HttpServletResponse.SC_SERVICE_UNAVAILABLE);
        return;// ww  w .ja  v a2s .c  o  m
    }

    String cacheKey = userToken;
    Element element = null;

    // force refresh
    boolean force = Boolean.parseBoolean(request.getParameter("force"));
    if (force) {
        log.debug("force refresh for " + userToken);
        // remove tweets cache
        tweetsCache.remove(cacheKey);
    } else {
        element = tweetsCache.get(cacheKey);
    }

    if (element == null) {
        synchronized (tweetsCache) {
            // if it is still null after acquiring lock
            element = tweetsCache.get(cacheKey);

            if (element == null) {
                log.debug("cache miss: getting tweets for " + userToken);
                System.out.println("Last refreshed: " + Calendar.getInstance().getTime());

                try {
                    ResponseList<Status> friendStatus = twitter.getFriendsTimeline();

                    long maxId = Long.MIN_VALUE;

                    JSONObject json = new JSONObject();

                    lastRefreshed = Calendar.getInstance().getTime().toString();

                    if (lastRefreshed == null) {
                        json.element("lastRefreshed", "unable to retrieve last refreshed");
                    } else {
                        json.element("lastRefreshed", lastRefreshed.toString());
                    }

                    User currentUser = twitter.showUser(twitter.getId());
                    Status lastUserStatus = currentUser.getStatus();
                    if (lastUserStatus == null) {
                        json.element("lastStatusUpdate", "unable to retrieve last status");
                    } else {
                        Date lastStatusUpdate = lastUserStatus.getCreatedAt();
                        json.element("lastStatusUpdate", lastStatusUpdate.toString());
                    }

                    for (Status status : friendStatus) {
                        maxId = Math.max(maxId, status.getId());
                        json.accumulate("statusList", getStatusJSON(twitter, status));
                    }

                    if (log.isDebugEnabled()) {
                        log.debug(json.toString(2));
                    }

                    out.print(json.toString());

                    element = new Element(cacheKey,
                            new TweetsCacheElement(System.currentTimeMillis(), maxId, json));

                    tweetsCache.put(element);

                    return;

                } catch (TwitterException e) {
                    log.error("GetTweets: " + e.getStatusCode() + ": " + e.getClass() + e.getMessage());

                    if (e.getStatusCode() == 401) {
                        // invalid credentials
                        response.sendError(HttpServletResponse.SC_UNAUTHORIZED);
                    } else if (e.getStatusCode() == -1) {
                        // no connection
                        response.sendError(HttpServletResponse.SC_SERVICE_UNAVAILABLE);
                    } else {
                        // general error
                        response.sendError(HttpServletResponse.SC_INTERNAL_SERVER_ERROR);
                    }

                    return;
                }
            }
        }
    }

    // tweets available in cache
    log.debug("cache hit: getting tweets for " + userToken);

    TweetsCacheElement tweets = (TweetsCacheElement) element.getObjectValue();

    // if just refreshed too quickly, don't request update, just use
    // whatever in cache
    long period = System.currentTimeMillis() - tweets.getLastRefresh();
    System.out.println("Already refreshed: " + (period / 1000) + " second(s) ago");

    if (period < 2 * 60 * 1000) {
        log.debug("refreshed too quickly: " + (period / 1000) + " seconds");
        JSONObject json = tweets.getResult();
        lastRefreshed = Calendar.getInstance().getTime().toString();
        json.element("lastRefreshed", lastRefreshed.toString());
        out.print(json.toString());
        return;
    }

    // get new updates since the last id
    long maxId = tweets.lastId;
    try {
        JSONObject json = tweets.getResult();

        ResponseList<Status> friendStatus = twitter.getFriendsTimeline(new Paging(maxId));

        tweets.setLastRefresh(System.currentTimeMillis());

        log.debug(String.format("Got %d new tweets", friendStatus.size()));

        if (friendStatus.size() > 0) {
            JSONArray newTweets = new JSONArray();

            lastRefreshed = Calendar.getInstance().getTime().toString();
            json.element("lastRefreshed", lastRefreshed.toString());

            for (Status status : friendStatus) {
                maxId = Math.max(maxId, status.getId());
                newTweets.add(getStatusJSON(twitter, status));
            }

            if (log.isDebugEnabled()) {
                log.debug("new tweets:\n" + newTweets.toString(2));
            }

            json.getJSONArray("statusList").addAll(0, newTweets);

            tweets.setLastId(maxId);

            User currentUser = twitter.showUser(twitter.getId());
            Status lastUserStatus = currentUser.getStatus();
            if (lastUserStatus == null) {
                json.element("lastStatusUpdate", "unable to retrieve last status");
            } else {
                Date lastStatusUpdate = lastUserStatus.getCreatedAt();
                json.element("lastStatusUpdate", lastStatusUpdate.toString());
            }
        }

        out.print(json.toString());

    } catch (TwitterException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    } catch (JSONException e) {
        log.error(e);
    }
}

From source file:cn.edu.bjtu.cit.recommender.Recommender.java

@SuppressWarnings("unchecked")
public int run(String[] args) throws Exception {
    if (args.length < 2) {
        System.err.println();/*from   w w w  .j  a  va 2  s .  c  o m*/
        System.err.println("Usage: " + this.getClass().getName()
                + " [generic options] input output [profiling] [estimation] [clustersize]");
        System.err.println();
        printUsage();
        GenericOptionsParser.printGenericCommandUsage(System.err);

        return 1;
    }
    OptionParser parser = new OptionParser(args);

    Pipeline pipeline = new MRPipeline(Recommender.class, getConf());

    if (parser.hasOption(CLUSTER_SIZE)) {
        pipeline.getConfiguration().setInt(ClusterOracle.CLUSTER_SIZE,
                Integer.parseInt(parser.getOption(CLUSTER_SIZE).getValue()));
    }

    if (parser.hasOption(PROFILING)) {
        pipeline.getConfiguration().setBoolean(Profiler.IS_PROFILE, true);
        this.profileFilePath = parser.getOption(PROFILING).getValue();

    }

    if (parser.hasOption(ESTIMATION)) {
        estFile = parser.getOption(ESTIMATION).getValue();
        est = new Estimator(estFile, clusterSize);
    }

    if (parser.hasOption(OPT_REDUCE)) {
        pipeline.getConfiguration().setBoolean(OPT_REDUCE, true);
    }

    if (parser.hasOption(OPT_MSCR)) {
        pipeline.getConfiguration().setBoolean(OPT_MSCR, true);
    }

    if (parser.hasOption(ACTIVE_THRESHOLD)) {
        threshold = Integer.parseInt(parser.getOption("at").getValue());
    }

    if (parser.hasOption(TOP)) {
        top = Integer.parseInt(parser.getOption("top").getValue());
    }

    profiler = new Profiler(pipeline);
    /*
     * input node
     */
    PCollection<String> lines = pipeline.readTextFile(args[0]);

    if (profiler.isProfiling() && lines.getSize() > 10 * 1024 * 1024) {
        lines = lines.sample(0.1);
    }

    /*
     * S0 + GBK
     */
    PGroupedTable<Long, Long> userWithPrefs = lines.parallelDo(new MapFn<String, Pair<Long, Long>>() {

        @Override
        public Pair<Long, Long> map(String input) {
            String[] split = input.split(Estimator.DELM);
            long userID = Long.parseLong(split[0]);
            long itemID = Long.parseLong(split[1]);
            return Pair.of(userID, itemID);
        }

        @Override
        public float scaleFactor() {
            return est.getScaleFactor("S0").sizeFactor;
        }

        @Override
        public float scaleFactorByRecord() {
            return est.getScaleFactor("S0").recsFactor;
        }
    }, Writables.tableOf(Writables.longs(), Writables.longs())).groupByKey(est.getClusterSize());

    /*
     * S1
     */
    PTable<Long, Vector> userVector = userWithPrefs
            .parallelDo(new MapFn<Pair<Long, Iterable<Long>>, Pair<Long, Vector>>() {
                @Override
                public Pair<Long, Vector> map(Pair<Long, Iterable<Long>> input) {
                    Vector userVector = new RandomAccessSparseVector(Integer.MAX_VALUE, 100);
                    for (long itemPref : input.second()) {
                        userVector.set((int) itemPref, 1.0f);
                    }
                    return Pair.of(input.first(), userVector);
                }

                @Override
                public float scaleFactor() {
                    return est.getScaleFactor("S1").sizeFactor;
                }

                @Override
                public float scaleFactorByRecord() {
                    return est.getScaleFactor("S1").recsFactor;
                }
            }, Writables.tableOf(Writables.longs(), Writables.vectors()));

    userVector = profiler.profile("S0-S1", pipeline, userVector, ProfileConverter.long_vector(),
            Writables.tableOf(Writables.longs(), Writables.vectors()));

    /*
     * S2
     */
    PTable<Long, Vector> filteredUserVector = userVector
            .parallelDo(new DoFn<Pair<Long, Vector>, Pair<Long, Vector>>() {

                @Override
                public void process(Pair<Long, Vector> input, Emitter<Pair<Long, Vector>> emitter) {
                    if (input.second().getNumNondefaultElements() > threshold) {
                        emitter.emit(input);
                    }
                }

                @Override
                public float scaleFactor() {
                    return est.getScaleFactor("S2").sizeFactor;
                }

                @Override
                public float scaleFactorByRecord() {
                    return est.getScaleFactor("S2").recsFactor;
                }

            }, Writables.tableOf(Writables.longs(), Writables.vectors()));

    filteredUserVector = profiler.profile("S2", pipeline, filteredUserVector, ProfileConverter.long_vector(),
            Writables.tableOf(Writables.longs(), Writables.vectors()));

    /*
     * S3 + GBK
     */
    PGroupedTable<Integer, Integer> coOccurencePairs = filteredUserVector
            .parallelDo(new DoFn<Pair<Long, Vector>, Pair<Integer, Integer>>() {
                @Override
                public void process(Pair<Long, Vector> input, Emitter<Pair<Integer, Integer>> emitter) {
                    Iterator<Vector.Element> it = input.second().iterateNonZero();
                    while (it.hasNext()) {
                        int index1 = it.next().index();
                        Iterator<Vector.Element> it2 = input.second().iterateNonZero();
                        while (it2.hasNext()) {
                            int index2 = it2.next().index();
                            emitter.emit(Pair.of(index1, index2));
                        }
                    }
                }

                @Override
                public float scaleFactor() {
                    float size = est.getScaleFactor("S3").sizeFactor;
                    return size;
                }

                @Override
                public float scaleFactorByRecord() {
                    float recs = est.getScaleFactor("S3").recsFactor;
                    return recs;
                }
            }, Writables.tableOf(Writables.ints(), Writables.ints())).groupByKey(est.getClusterSize());

    /*
     * S4
     */
    PTable<Integer, Vector> coOccurenceVector = coOccurencePairs
            .parallelDo(new MapFn<Pair<Integer, Iterable<Integer>>, Pair<Integer, Vector>>() {
                @Override
                public Pair<Integer, Vector> map(Pair<Integer, Iterable<Integer>> input) {
                    Vector cooccurrenceRow = new RandomAccessSparseVector(Integer.MAX_VALUE, 100);
                    for (int itemIndex2 : input.second()) {
                        cooccurrenceRow.set(itemIndex2, cooccurrenceRow.get(itemIndex2) + 1.0);
                    }
                    return Pair.of(input.first(), cooccurrenceRow);
                }

                @Override
                public float scaleFactor() {
                    return est.getScaleFactor("S4").sizeFactor;
                }

                @Override
                public float scaleFactorByRecord() {
                    return est.getScaleFactor("S4").recsFactor;
                }
            }, Writables.tableOf(Writables.ints(), Writables.vectors()));

    coOccurenceVector = profiler.profile("S3-S4", pipeline, coOccurenceVector, ProfileConverter.int_vector(),
            Writables.tableOf(Writables.ints(), Writables.vectors()));

    /*
     * S5 Wrapping co-occurrence columns
     */
    PTable<Integer, VectorOrPref> wrappedCooccurrence = coOccurenceVector
            .parallelDo(new MapFn<Pair<Integer, Vector>, Pair<Integer, VectorOrPref>>() {

                @Override
                public Pair<Integer, VectorOrPref> map(Pair<Integer, Vector> input) {
                    return Pair.of(input.first(), new VectorOrPref(input.second()));
                }

                @Override
                public float scaleFactor() {
                    return est.getScaleFactor("S5").sizeFactor;
                }

                @Override
                public float scaleFactorByRecord() {
                    return est.getScaleFactor("S5").recsFactor;
                }

            }, Writables.tableOf(Writables.ints(), VectorOrPref.vectorOrPrefs()));

    wrappedCooccurrence = profiler.profile("S5", pipeline, wrappedCooccurrence, ProfileConverter.int_vopv(),
            Writables.tableOf(Writables.ints(), VectorOrPref.vectorOrPrefs()));

    /*
     * S6 Splitting user vectors
     */
    PTable<Integer, VectorOrPref> userVectorSplit = filteredUserVector
            .parallelDo(new DoFn<Pair<Long, Vector>, Pair<Integer, VectorOrPref>>() {

                @Override
                public void process(Pair<Long, Vector> input, Emitter<Pair<Integer, VectorOrPref>> emitter) {
                    long userID = input.first();
                    Vector userVector = input.second();
                    Iterator<Vector.Element> it = userVector.iterateNonZero();
                    while (it.hasNext()) {
                        Vector.Element e = it.next();
                        int itemIndex = e.index();
                        float preferenceValue = (float) e.get();
                        emitter.emit(Pair.of(itemIndex, new VectorOrPref(userID, preferenceValue)));
                    }
                }

                @Override
                public float scaleFactor() {
                    return est.getScaleFactor("S6").sizeFactor;
                }

                @Override
                public float scaleFactorByRecord() {
                    return est.getScaleFactor("S6").recsFactor;
                }
            }, Writables.tableOf(Writables.ints(), VectorOrPref.vectorOrPrefs()));

    userVectorSplit = profiler.profile("S6", pipeline, userVectorSplit, ProfileConverter.int_vopp(),
            Writables.tableOf(Writables.ints(), VectorOrPref.vectorOrPrefs()));

    /*
     * S7 Combine VectorOrPrefs
     */
    PTable<Integer, VectorAndPrefs> combinedVectorOrPref = wrappedCooccurrence.union(userVectorSplit)
            .groupByKey(est.getClusterSize())
            .parallelDo(new DoFn<Pair<Integer, Iterable<VectorOrPref>>, Pair<Integer, VectorAndPrefs>>() {

                @Override
                public void process(Pair<Integer, Iterable<VectorOrPref>> input,
                        Emitter<Pair<Integer, VectorAndPrefs>> emitter) {
                    Vector vector = null;
                    List<Long> userIDs = Lists.newArrayList();
                    List<Float> values = Lists.newArrayList();
                    for (VectorOrPref vop : input.second()) {
                        if (vector == null) {
                            vector = vop.getVector();
                        }
                        long userID = vop.getUserID();
                        if (userID != Long.MIN_VALUE) {
                            userIDs.add(vop.getUserID());
                        }
                        float value = vop.getValue();
                        if (!Float.isNaN(value)) {
                            values.add(vop.getValue());
                        }
                    }
                    emitter.emit(Pair.of(input.first(), new VectorAndPrefs(vector, userIDs, values)));
                }

                @Override
                public float scaleFactor() {
                    return est.getScaleFactor("S7").sizeFactor;
                }

                @Override
                public float scaleFactorByRecord() {
                    return est.getScaleFactor("S7").recsFactor;
                }
            }, Writables.tableOf(Writables.ints(), VectorAndPrefs.vectorAndPrefs()));

    combinedVectorOrPref = profiler.profile("S5+S6-S7", pipeline, combinedVectorOrPref,
            ProfileConverter.int_vap(), Writables.tableOf(Writables.ints(), VectorAndPrefs.vectorAndPrefs()));
    /*
     * S8 Computing partial recommendation vectors
     */
    PTable<Long, Vector> partialMultiply = combinedVectorOrPref
            .parallelDo(new DoFn<Pair<Integer, VectorAndPrefs>, Pair<Long, Vector>>() {
                @Override
                public void process(Pair<Integer, VectorAndPrefs> input, Emitter<Pair<Long, Vector>> emitter) {
                    Vector cooccurrenceColumn = input.second().getVector();
                    List<Long> userIDs = input.second().getUserIDs();
                    List<Float> prefValues = input.second().getValues();
                    for (int i = 0; i < userIDs.size(); i++) {
                        long userID = userIDs.get(i);
                        if (userID != Long.MIN_VALUE) {
                            float prefValue = prefValues.get(i);
                            Vector partialProduct = cooccurrenceColumn.times(prefValue);
                            emitter.emit(Pair.of(userID, partialProduct));
                        }
                    }
                }

                @Override
                public float scaleFactor() {
                    return est.getScaleFactor("S8").sizeFactor;
                }

                @Override
                public float scaleFactorByRecord() {
                    return est.getScaleFactor("S8").recsFactor;
                }

            }, Writables.tableOf(Writables.longs(), Writables.vectors())).groupByKey(est.getClusterSize())
            .combineValues(new CombineFn<Long, Vector>() {

                @Override
                public void process(Pair<Long, Iterable<Vector>> input, Emitter<Pair<Long, Vector>> emitter) {
                    Vector partial = null;
                    for (Vector vector : input.second()) {
                        partial = partial == null ? vector : partial.plus(vector);
                    }
                    emitter.emit(Pair.of(input.first(), partial));
                }

                @Override
                public float scaleFactor() {
                    return est.getScaleFactor("combine").sizeFactor;
                }

                @Override
                public float scaleFactorByRecord() {
                    return est.getScaleFactor("combine").recsFactor;
                }
            });

    partialMultiply = profiler.profile("S8-combine", pipeline, partialMultiply, ProfileConverter.long_vector(),
            Writables.tableOf(Writables.longs(), Writables.vectors()));

    /*
     * S9 Producing recommendations from vectors
     */
    PTable<Long, RecommendedItems> recommendedItems = partialMultiply
            .parallelDo(new DoFn<Pair<Long, Vector>, Pair<Long, RecommendedItems>>() {

                @Override
                public void process(Pair<Long, Vector> input, Emitter<Pair<Long, RecommendedItems>> emitter) {
                    Queue<RecommendedItem> topItems = new PriorityQueue<RecommendedItem>(11,
                            Collections.reverseOrder(BY_PREFERENCE_VALUE));
                    Iterator<Vector.Element> recommendationVectorIterator = input.second().iterateNonZero();
                    while (recommendationVectorIterator.hasNext()) {
                        Vector.Element element = recommendationVectorIterator.next();
                        int index = element.index();
                        float value = (float) element.get();
                        if (topItems.size() < top) {
                            topItems.add(new GenericRecommendedItem(index, value));
                        } else if (value > topItems.peek().getValue()) {
                            topItems.add(new GenericRecommendedItem(index, value));
                            topItems.poll();
                        }
                    }
                    List<RecommendedItem> recommendations = new ArrayList<RecommendedItem>(topItems.size());
                    recommendations.addAll(topItems);
                    Collections.sort(recommendations, BY_PREFERENCE_VALUE);
                    emitter.emit(Pair.of(input.first(), new RecommendedItems(recommendations)));
                }

                @Override
                public float scaleFactor() {
                    return est.getScaleFactor("S9").sizeFactor;
                }

                @Override
                public float scaleFactorByRecord() {
                    return est.getScaleFactor("S9").recsFactor;
                }

            }, Writables.tableOf(Writables.longs(), RecommendedItems.recommendedItems()));

    recommendedItems = profiler.profile("S9", pipeline, recommendedItems, ProfileConverter.long_ri(),
            Writables.tableOf(Writables.longs(), RecommendedItems.recommendedItems()));

    /*
     * Profiling
     */
    if (profiler.isProfiling()) {
        profiler.writeResultToFile(profileFilePath);
        profiler.cleanup(pipeline.getConfiguration());
        return 0;
    }
    /*
     * asText
     */
    pipeline.writeTextFile(recommendedItems, args[1]);
    PipelineResult result = pipeline.done();
    return result.succeeded() ? 0 : 1;
}

From source file:com.marianhello.cordova.bgloc.LocationUpdateService.java

/**
     * Returns the most accurate and timely previously detected location.
     * Where the last result is beyond the specified maximum distance or
     * latency a one-off location update is returned via the {@link LocationListener}
     * specified in {@link setChangedLocationListener}.
     * @param minDistance Minimum distance before we require a location update.
     * @param minTime Minimum time required between location updates.
     * @return The most accurate and / or timely previously detected location.
     *//* w  w  w. j  a v  a  2  s.  co  m*/
    public Location getLastBestLocation() {
        int minDistance = (int) stationaryRadius;
        long minTime = System.currentTimeMillis() - (locationTimeout * 1000);

        Log.i(TAG, "- fetching last best location " + minDistance + "," + minTime);
        Location bestResult = null;
        float bestAccuracy = Float.MAX_VALUE;
        long bestTime = Long.MIN_VALUE;

        // Iterate through all the providers on the system, keeping
        // note of the most accurate result within the acceptable time limit.
        // If no result is found within maxTime, return the newest Location.
        List<String> matchingProviders = locationManager.getAllProviders();
        for (String provider : matchingProviders) {
            Log.d(TAG, "- provider: " + provider);
            Location location = locationManager.getLastKnownLocation(provider);
            if (location != null) {
                Log.d(TAG, " location: " + location.getLatitude() + "," + location.getLongitude() + ","
                        + location.getAccuracy() + "," + location.getSpeed() + "m/s");
                float accuracy = location.getAccuracy();
                long time = location.getTime();
                Log.d(TAG, "time>minTime: " + (time > minTime) + ", accuracy<bestAccuracy: "
                        + (accuracy < bestAccuracy));
                if ((time > minTime && accuracy < bestAccuracy)) {
                    bestResult = location;
                    bestAccuracy = accuracy;
                    bestTime = time;
                }
            }
        }
        return bestResult;
    }

From source file:gobblin.compaction.mapreduce.MRCompactorJobRunner.java

/**
 * For regular compactions, compaction timestamp is the time the compaction job starts.
 *
 * If this is a recompaction from output paths, the compaction timestamp will remain the same as previously
 * persisted compaction time. This is because such a recompaction doesn't consume input data, so next time,
 * whether a file in the input folder is considered late file should still be based on the previous compaction
 * timestamp./* w  ww  .ja  v  a  2  s. c o  m*/
 */
private DateTime getCompactionTimestamp() throws IOException {
    DateTimeZone timeZone = DateTimeZone.forID(this.dataset.jobProps().getProp(MRCompactor.COMPACTION_TIMEZONE,
            MRCompactor.DEFAULT_COMPACTION_TIMEZONE));

    if (!this.recompactFromDestPaths) {
        return new DateTime(timeZone);
    }

    Set<Path> inputPaths = getInputPaths();
    long maxTimestamp = Long.MIN_VALUE;
    for (FileStatus status : FileListUtils.listFilesRecursively(this.fs, inputPaths)) {
        maxTimestamp = Math.max(maxTimestamp, status.getModificationTime());
    }
    return maxTimestamp == Long.MIN_VALUE ? new DateTime(timeZone) : new DateTime(maxTimestamp, timeZone);
}

From source file:com.clustercontrol.maintenance.dialog.HinemosPropertyDialog.java

/**
 * ?????//from w ww  . j  av a 2  s. co  m
 *
 * @return true?false
 *
 * @see com.clustercontrol.dialog.CommonDialog#action()
 */
@Override
protected boolean action() {
    boolean result = false;

    if (HinemosPropertyInfo == null) {
        this.HinemosPropertyInfo = new HinemosPropertyInfo();
    }
    HinemosPropertyInfo.setKey(m_key.getText());
    HinemosPropertyInfo.setValueType(valueType);

    if (valueType == HinemosPropertyTypeConstant.TYPE_STRING) {
        HinemosPropertyInfo.setValueString(m_value.getText());
    } else if (valueType == HinemosPropertyTypeConstant.TYPE_NUMERIC) {
        if (m_value.getText() == null || m_value.getText().trim().length() == 0) {
            HinemosPropertyInfo.setValueNumeric(null);
        } else {
            try {
                HinemosPropertyInfo.setValueNumeric(Long.parseLong(m_value.getText().trim()));
            } catch (NumberFormatException e) {
                m_log.info("action() setValueNumeric, " + e.getMessage());
                Object[] args = { Messages.getString("hinemos.property.value"), Long.MIN_VALUE,
                        Long.MAX_VALUE };
                MessageDialog.openError(null, Messages.getString("failed"),
                        Messages.getString("message.common.4", args));

                return false;
            }
        }
    } else {
        HinemosPropertyInfo.setValueBoolean(Boolean.parseBoolean(m_blCombo.getText()));
    }

    HinemosPropertyInfo.setDescription(m_textDescription.getText());
    HinemosPropertyInfo.setOwnerRoleId(RoleIdConstant.ADMINISTRATORS);

    if (this.mode == PropertyDefineConstant.MODE_ADD) {
        // ???
        String managerName = this.m_managerComposite.getText();
        String[] args = { HinemosPropertyInfo.getKey(), managerName };
        try {
            HinemosPropertyEndpointWrapper wrapper = HinemosPropertyEndpointWrapper.getWrapper(managerName);
            wrapper.addHinemosProperty(HinemosPropertyInfo);
            MessageDialog.openInformation(null, Messages.getString("successful"),
                    Messages.getString("message.hinemos.property.2", args));

            result = true;
        } catch (HinemosPropertyDuplicate_Exception e) {
            // ????????
            MessageDialog.openInformation(null, Messages.getString("message"),
                    Messages.getString("message.hinemos.property.10", args));
        } catch (Exception e) {
            String errMessage = "";
            if (e instanceof InvalidRole_Exception) {
                MessageDialog.openInformation(null, Messages.getString("message"),
                        Messages.getString("message.accesscontrol.16"));
            } else {
                errMessage = ", " + HinemosMessage.replace(e.getMessage());
            }
            MessageDialog.openError(null, Messages.getString("failed"),
                    Messages.getString("message.hinemos.property.3", args) + errMessage);
        }

    } else if (this.mode == PropertyDefineConstant.MODE_MODIFY) {
        // ??
        result = new ModifyHinemosProperty().modify(m_managerComposite.getText(), HinemosPropertyInfo);
    }

    return result;
}

From source file:com.korrelate.pig.hbase.HBaseStorage.java

/**
 * Constructor. Construct a HBase Table LoadFunc and StoreFunc to load or store. 
 * @param columnList//from ww w  .j  a  v a  2s .  c  o  m
 * @param optString Loader options. Known options:<ul>
 * <li>-loadKey=(true|false)  Load the row key as the first column
 * <li>-gt=minKeyVal
 * <li>-lt=maxKeyVal 
 * <li>-gte=minKeyVal
 * <li>-lte=maxKeyVal
 * <li>-limit=numRowsPerRegion max number of rows to retrieve per region
 * <li>-delim=char delimiter to use when parsing column names (default is space or comma)
 * <li>-ignoreWhitespace=(true|false) ignore spaces when parsing column names (default true)
 * <li>-caching=numRows  number of rows to cache (faster scans, more memory).
 * <li>-noWAL=(true|false) Sets the write ahead to false for faster loading.
 * <li>-minTimestamp= Scan's timestamp for min timeRange
 * <li>-maxTimestamp= Scan's timestamp for max timeRange
 * <li>-timestamp= Scan's specified timestamp
 * <li>-caster=(HBaseBinaryConverter|Utf8StorageConverter) Utf8StorageConverter is the default
 * <li>-timestampVersionFieldIndex=fieldIndex the index of the input field to use as the HBase row version (default -1 which means the current timestamp is used)
 * To be used with extreme caution, since this could result in data loss
 * (see http://hbase.apache.org/book.html#perf.hbase.client.putwal).
 * </ul>
 * @throws ParseException 
 * @throws IOException 
 */
public HBaseStorage(String columnList, String optString) throws ParseException, IOException {
    populateValidOptions();
    String[] optsArr = optString.split(" ");
    try {
        configuredOptions_ = parser_.parse(validOptions_, optsArr);
    } catch (ParseException e) {
        HelpFormatter formatter = new HelpFormatter();
        formatter.printHelp(
                "[-loadKey] [-gt] [-gte] [-lt] [-lte] [-columnPrefix] [-caching] [-caster] [-noWAL] [-limit] [-delim] [-ignoreWhitespace] [-minTimestamp] [-maxTimestamp] [-timestamp]",
                validOptions_);
        throw e;
    }

    loadRowKey_ = configuredOptions_.hasOption("loadKey");

    delimiter_ = ",";
    if (configuredOptions_.getOptionValue("delim") != null) {
        delimiter_ = configuredOptions_.getOptionValue("delim");
    }

    ignoreWhitespace_ = true;
    if (configuredOptions_.hasOption("ignoreWhitespace")) {
        String value = configuredOptions_.getOptionValue("ignoreWhitespace");
        if (!"true".equalsIgnoreCase(value)) {
            ignoreWhitespace_ = false;
        }
    }

    columnInfo_ = parseColumnList(columnList, delimiter_, ignoreWhitespace_);

    String defaultCaster = UDFContext.getUDFContext().getClientSystemProps().getProperty(CASTER_PROPERTY,
            STRING_CASTER);
    String casterOption = configuredOptions_.getOptionValue("caster", defaultCaster);
    if (STRING_CASTER.equalsIgnoreCase(casterOption)) {
        caster_ = new Utf8StorageConverter();
    } else if (BYTE_CASTER.equalsIgnoreCase(casterOption)) {
        caster_ = new HBaseBinaryConverter();
    } else {
        try {
            caster_ = (LoadCaster) PigContext.instantiateFuncFromSpec(casterOption);
        } catch (ClassCastException e) {
            LOG.error("Configured caster does not implement LoadCaster interface.");
            throw new IOException(e);
        } catch (RuntimeException e) {
            LOG.error("Configured caster class not found.", e);
            throw new IOException(e);
        }
    }
    LOG.debug("Using caster " + caster_.getClass());

    caching_ = Integer.valueOf(configuredOptions_.getOptionValue("caching", "100"));
    limit_ = Long.valueOf(configuredOptions_.getOptionValue("limit", "-1"));
    noWAL_ = configuredOptions_.hasOption("noWAL");

    if (configuredOptions_.hasOption("minTimestamp")) {
        minTimestamp_ = Long.parseLong(configuredOptions_.getOptionValue("minTimestamp"));
    } else {
        minTimestamp_ = Long.MIN_VALUE;
    }

    if (configuredOptions_.hasOption("maxTimestamp")) {
        maxTimestamp_ = Long.parseLong(configuredOptions_.getOptionValue("maxTimestamp"));
    } else {
        maxTimestamp_ = Long.MAX_VALUE;
    }

    if (configuredOptions_.hasOption("timestamp")) {
        timestamp_ = Long.parseLong(configuredOptions_.getOptionValue("timestamp"));
    } else {
        timestamp_ = 0;
    }

    if (configuredOptions_.hasOption("timestampVersionFieldIndex")) {
        timestampVersionFieldIndex_ = Integer
                .parseInt(configuredOptions_.getOptionValue("timestampVersionFieldIndex"));
    } else {
        timestampVersionFieldIndex_ = -1;
    }

    initScan();
}