Example usage for java.io PrintWriter close

List of usage examples for java.io PrintWriter close

Introduction

In this page you can find the example usage for java.io PrintWriter close.

Prototype

public void close() 

Source Link

Document

Closes the stream and releases any system resources associated with it.

Usage

From source file:client.QueryLastFm.java

License:asdf

public static void main(String[] args) throws Exception {

    // isAlreadyInserted("asdfs","jas,jnjkah");

    // FileWriter fw = new FileWriter(".\\tracks.csv");
    OutputStream track_os = new FileOutputStream(".\\tracks.csv");
    PrintWriter out = new PrintWriter(new OutputStreamWriter(track_os, "UTF-8"));

    OutputStream track_id_os = new FileOutputStream(".\\track_id_sim_track_id.csv");
    PrintWriter track_id_out = new PrintWriter(new OutputStreamWriter(track_id_os, "UTF-8"));

    track_id_out.print("");

    ByteArrayInputStream input;/* www .j  a  v a2s.c om*/
    Document doc = null;
    CloseableHttpClient httpclient = HttpClients.createDefault();

    String trackName = "";
    String artistName = "";
    String sourceMbid = "";
    out.print("ID");// first row first column
    out.print(",");
    out.print("TrackName");// first row second column
    out.print(",");
    out.println("Artist");// first row third column

    track_id_out.print("source");// first row second column
    track_id_out.print(",");
    track_id_out.println("target");// first row third column
    // track_id_out.print(",");
    // track_id_out.println("type");// first row third column

    // out.flush();

    // out.close();

    // fw.close();

    // os.close();

    try {
        URI uri = new URIBuilder().setScheme("http").setHost("ws.audioscrobbler.com").setPath("/2.0/")
                .setParameter("method", "track.getsimilar").setParameter("artist", "cher")
                .setParameter("track", "believe").setParameter("limit", "100")
                .setParameter("api_key", "88858618961414f8bec919bddd057044").build();

        // new URIBuilder().
        HttpGet request = new HttpGet(uri);

        // request.
        // This is useful for last.fm logging and preventing them from blocking this client
        request.setHeader(HttpHeaders.USER_AGENT,
                "nileshmore@gatech.edu - ClassAssignment at GeorgiaTech Non-commercial use");

        HttpGet httpGet = new HttpGet(
                "http://ws.audioscrobbler.com/2.0/?method=track.getsimilar&artist=cher&track=believe&limit=4&api_key=88858618961414f8bec919bddd057044");
        CloseableHttpResponse response = httpclient.execute(request);

        int statusCode = response.getStatusLine().getStatusCode();
        DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
        DocumentBuilder builder = factory.newDocumentBuilder();
        // The underlying HTTP connection is still held by the response object
        // to allow the response content to be streamed directly from the network socket.
        // In order to ensure correct deallocation of system resources
        // the user MUST call CloseableHttpResponse#close() from a finally clause.
        // Please note that if response content is not fully consumed the underlying
        // connection cannot be safely re-used and will be shut down and discarded
        // by the connection manager.
        try {
            if (statusCode == 200) {
                HttpEntity entity1 = response.getEntity();
                BufferedReader br = new BufferedReader(
                        new InputStreamReader((response.getEntity().getContent())));
                Document document = builder.parse((response.getEntity().getContent()));
                Element root = document.getDocumentElement();
                root.normalize();
                // Need to focus and resolve this part
                NodeList nodes;
                nodes = root.getChildNodes();

                nodes = root.getElementsByTagName("track");
                if (nodes.getLength() == 0) {
                    // System.out.println("empty");
                    return;
                }
                Node trackNode;
                for (int k = 0; k < nodes.getLength(); k++) // can access all tracks now
                {
                    trackNode = nodes.item(k);
                    NodeList trackAttributes = trackNode.getChildNodes();

                    // check if mbid is present in track attributes
                    // System.out.println("Length  " + (trackAttributes.item(5).getNodeName().compareToIgnoreCase("mbid") == 0));

                    if ((trackAttributes.item(5).getNodeName().compareToIgnoreCase("mbid") == 0)) {
                        if (((Element) trackAttributes.item(5)).hasChildNodes())
                            ;// System.out.println("Go aHead");
                        else
                            continue;
                    } else
                        continue;

                    for (int n = 0; n < trackAttributes.getLength(); n++) {
                        Node attribute = trackAttributes.item(n);
                        if ((attribute.getNodeName().compareToIgnoreCase("name")) == 0) {
                            // System.out.println(((Element)attribute).getFirstChild().getNodeValue());
                            trackName = ((Element) attribute).getFirstChild().getNodeValue(); // make string encoding as UTF-8 ************ 

                        }

                        if ((attribute.getNodeName().compareToIgnoreCase("mbid")) == 0) {
                            // System.out.println(n +  "   " +  ((Element)attribute).getFirstChild().getNodeValue());
                            sourceMbid = attribute.getFirstChild().getNodeValue();

                        }

                        if ((attribute.getNodeName().compareToIgnoreCase("artist")) == 0) {
                            NodeList ArtistNodeList = attribute.getChildNodes();
                            for (int j = 0; j < ArtistNodeList.getLength(); j++) {
                                Node Artistnode = ArtistNodeList.item(j);
                                if ((Artistnode.getNodeName().compareToIgnoreCase("name")) == 0) {
                                    // System.out.println(((Element)Artistnode).getFirstChild().getNodeValue());
                                    artistName = ((Element) Artistnode).getFirstChild().getNodeValue();
                                }
                            }
                        }
                    }
                    out.print(sourceMbid);
                    out.print(",");
                    out.print(trackName);
                    out.print(",");
                    out.println(artistName);
                    // out.print(",");
                    findSimilarTracks(track_id_out, sourceMbid, trackName, artistName);

                }
                track_id_out.flush();

                out.flush();
                out.close();
                track_id_out.close();
                track_os.close();

                // fw.close();
                Element trac = (Element) nodes.item(0);
                // trac.normalize();
                nodes = trac.getChildNodes();
                // System.out.println(nodes.getLength());

                for (int i = 0; i < nodes.getLength(); i++) {
                    Node node = nodes.item(i);
                    // System.out.println(node.getNodeName());
                    if ((node.getNodeName().compareToIgnoreCase("name")) == 0) {
                        // System.out.println(((Element)node).getFirstChild().getNodeValue());
                    }

                    if ((node.getNodeName().compareToIgnoreCase("mbid")) == 0) {
                        // System.out.println(((Element)node).getFirstChild().getNodeValue());
                    }

                    if ((node.getNodeName().compareToIgnoreCase("artist")) == 0) {

                        // System.out.println("Well");
                        NodeList ArtistNodeList = node.getChildNodes();
                        for (int j = 0; j < ArtistNodeList.getLength(); j++) {
                            Node Artistnode = ArtistNodeList.item(j);
                            if ((Artistnode.getNodeName().compareToIgnoreCase("name")) == 0) {
                                /* System.out.println(((Element)Artistnode).getFirstChild().getNodeValue());*/
                            }
                            /*System.out.println(Artistnode.getNodeName());*/
                        }
                    }

                }
                /*if(node instanceof Element){
                  //a child element to process
                  Element child = (Element) node;
                  String attribute = child.getAttribute("width");
                }*/

                // System.out.println(root.getAttribute("status"));
                NodeList tracks = root.getElementsByTagName("track");
                Element track = (Element) tracks.item(0);
                // System.out.println(track.getTagName());
                track.getChildNodes();

            } else {
                System.out.println("failed with status" + response.getStatusLine());
            }
            // input = (ByteArrayInputStream)entity1.getContent();
            // do something useful with the response body
            // and ensure it is fully consumed
        } finally {
            response.close();
        }
    }

    finally {
        System.out.println("Exited succesfully.");
        httpclient.close();

    }
}

From source file:edu.msu.cme.rdp.multicompare.Main.java

public static void main(String[] args) throws Exception {
    PrintStream hier_out = null;// www . j av a2s.c  o m
    PrintWriter assign_out = new PrintWriter(new NullWriter());
    PrintStream bootstrap_out = null;
    File hier_out_filename = null;
    String propFile = null;
    File biomFile = null;
    File metadataFile = null;
    PrintWriter shortseq_out = null;
    List<MCSample> samples = new ArrayList();
    ClassificationResultFormatter.FORMAT format = ClassificationResultFormatter.FORMAT.allRank;
    float conf = CmdOptions.DEFAULT_CONF;
    String gene = null;
    int min_bootstrap_words = Classifier.MIN_BOOTSTRSP_WORDS;

    try {
        CommandLine line = new PosixParser().parse(options, args);

        if (line.hasOption(CmdOptions.OUTFILE_SHORT_OPT)) {
            assign_out = new PrintWriter(line.getOptionValue(CmdOptions.OUTFILE_SHORT_OPT));
        } else {
            throw new IllegalArgumentException("Require the output file for classification assignment");
        }
        if (line.hasOption(CmdOptions.HIER_OUTFILE_SHORT_OPT)) {
            hier_out_filename = new File(line.getOptionValue(CmdOptions.HIER_OUTFILE_SHORT_OPT));
            hier_out = new PrintStream(hier_out_filename);
        }
        if (line.hasOption(CmdOptions.BIOMFILE_SHORT_OPT)) {
            biomFile = new File(line.getOptionValue(CmdOptions.BIOMFILE_SHORT_OPT));
        }
        if (line.hasOption(CmdOptions.METADATA_SHORT_OPT)) {
            metadataFile = new File(line.getOptionValue(CmdOptions.METADATA_SHORT_OPT));
        }

        if (line.hasOption(CmdOptions.TRAINPROPFILE_SHORT_OPT)) {
            if (gene != null) {
                throw new IllegalArgumentException(
                        "Already specified the gene from the default location. Can not specify train_propfile");
            } else {
                propFile = line.getOptionValue(CmdOptions.TRAINPROPFILE_SHORT_OPT);
            }
        }
        if (line.hasOption(CmdOptions.FORMAT_SHORT_OPT)) {
            String f = line.getOptionValue(CmdOptions.FORMAT_SHORT_OPT);
            if (f.equalsIgnoreCase("allrank")) {
                format = ClassificationResultFormatter.FORMAT.allRank;
            } else if (f.equalsIgnoreCase("fixrank")) {
                format = ClassificationResultFormatter.FORMAT.fixRank;
            } else if (f.equalsIgnoreCase("filterbyconf")) {
                format = ClassificationResultFormatter.FORMAT.filterbyconf;
            } else if (f.equalsIgnoreCase("db")) {
                format = ClassificationResultFormatter.FORMAT.dbformat;
            } else if (f.equalsIgnoreCase("biom")) {
                format = ClassificationResultFormatter.FORMAT.biom;
            } else {
                throw new IllegalArgumentException(
                        "Not an valid output format, only allrank, fixrank, biom, filterbyconf and db allowed");
            }
        }
        if (line.hasOption(CmdOptions.GENE_SHORT_OPT)) {
            if (propFile != null) {
                throw new IllegalArgumentException(
                        "Already specified train_propfile. Can not specify gene any more");
            }
            gene = line.getOptionValue(CmdOptions.GENE_SHORT_OPT).toLowerCase();

            if (!gene.equals(ClassifierFactory.RRNA_16S_GENE) && !gene.equals(ClassifierFactory.FUNGALLSU_GENE)
                    && !gene.equals(ClassifierFactory.FUNGALITS_warcup_GENE)
                    && !gene.equals(ClassifierFactory.FUNGALITS_unite_GENE)) {
                throw new IllegalArgumentException(gene + " not found, choose from"
                        + ClassifierFactory.RRNA_16S_GENE + ", " + ClassifierFactory.FUNGALLSU_GENE + ", "
                        + ClassifierFactory.FUNGALITS_warcup_GENE + ", "
                        + ClassifierFactory.FUNGALITS_unite_GENE);
            }
        }
        if (line.hasOption(CmdOptions.MIN_BOOTSTRAP_WORDS_SHORT_OPT)) {
            min_bootstrap_words = Integer
                    .parseInt(line.getOptionValue(CmdOptions.MIN_BOOTSTRAP_WORDS_SHORT_OPT));
            if (min_bootstrap_words < Classifier.MIN_BOOTSTRSP_WORDS) {
                throw new IllegalArgumentException(CmdOptions.MIN_BOOTSTRAP_WORDS_LONG_OPT
                        + " must be at least " + Classifier.MIN_BOOTSTRSP_WORDS);
            }
        }
        if (line.hasOption(CmdOptions.BOOTSTRAP_SHORT_OPT)) {
            String confString = line.getOptionValue(CmdOptions.BOOTSTRAP_SHORT_OPT);
            try {
                conf = Float.valueOf(confString);
            } catch (NumberFormatException e) {
                throw new IllegalArgumentException("Confidence must be a decimal number");
            }

            if (conf < 0 || conf > 1) {
                throw new IllegalArgumentException("Confidence must be in the range [0,1]");
            }
        }
        if (line.hasOption(CmdOptions.SHORTSEQ_OUTFILE_SHORT_OPT)) {
            shortseq_out = new PrintWriter(line.getOptionValue(CmdOptions.SHORTSEQ_OUTFILE_SHORT_OPT));
        }
        if (line.hasOption(CmdOptions.BOOTSTRAP_OUTFILE_SHORT_OPT)) {
            bootstrap_out = new PrintStream(line.getOptionValue(CmdOptions.BOOTSTRAP_OUTFILE_SHORT_OPT));
        }

        if (format.equals(ClassificationResultFormatter.FORMAT.biom) && biomFile == null) {
            throw new IllegalArgumentException("biom format requires an input biom file");
        }
        if (biomFile != null) { // if input biom file provided, use biom format
            format = ClassificationResultFormatter.FORMAT.biom;
        }

        args = line.getArgs();
        for (String arg : args) {
            String[] inFileNames = arg.split(",");
            File inputFile = new File(inFileNames[0]);
            File idmappingFile = null;
            if (!inputFile.exists()) {
                throw new IllegalArgumentException("Failed to find input file \"" + inFileNames[0] + "\"");
            }
            if (inFileNames.length == 2) {
                idmappingFile = new File(inFileNames[1]);
                if (!idmappingFile.exists()) {
                    throw new IllegalArgumentException("Failed to find input file \"" + inFileNames[1] + "\"");
                }
            }

            MCSample nextSample = new MCSample(inputFile, idmappingFile);
            samples.add(nextSample);
        }
        if (propFile == null && gene == null) {
            gene = CmdOptions.DEFAULT_GENE;
        }
        if (samples.size() < 1) {
            throw new IllegalArgumentException("Require at least one sample files");
        }
    } catch (Exception e) {
        System.out.println("Command Error: " + e.getMessage());
        new HelpFormatter().printHelp(80, " [options] <samplefile>[,idmappingfile] ...", "", options, "");
        return;
    }

    MultiClassifier multiClassifier = new MultiClassifier(propFile, gene, biomFile, metadataFile);
    MultiClassifierResult result = multiClassifier.multiCompare(samples, conf, assign_out, format,
            min_bootstrap_words);
    assign_out.close();
    if (hier_out != null) {
        DefaultPrintVisitor printVisitor = new DefaultPrintVisitor(hier_out, samples);
        result.getRoot().topDownVisit(printVisitor);
        hier_out.close();
        if (multiClassifier.hasCopyNumber()) {
            // print copy number corrected counts
            File cn_corrected_s = new File(hier_out_filename.getParentFile(),
                    "cnadjusted_" + hier_out_filename.getName());
            PrintStream cn_corrected_hier_out = new PrintStream(cn_corrected_s);
            printVisitor = new DefaultPrintVisitor(cn_corrected_hier_out, samples, true);
            result.getRoot().topDownVisit(printVisitor);
            cn_corrected_hier_out.close();
        }
    }

    if (bootstrap_out != null) {
        for (MCSample sample : samples) {
            MCSamplePrintUtil.printBootstrapCountTable(bootstrap_out, sample);
        }
        bootstrap_out.close();
    }

    if (shortseq_out != null) {
        for (String id : result.getBadSequences()) {
            shortseq_out.write(id + "\n");
        }
        shortseq_out.close();
    }

}

From source file:ch.epfl.lsir.xin.test.SVDPPTest.java

/**
 * @param args//from  w  w w.  j  a  v  a2  s .c o  m
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//SVDPP");

    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File("conf//SVDPlusPlus.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    logger.flush();
    DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt");
    loader.readSimple();
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    double totalPrecision = 0;
    double totalRecall = 0;
    double totalMAP = 0;
    double totalNDCG = 0;
    double totalMRR = 0;
    double totalAUC = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    logger.flush();
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }

    for (int folder = 1; folder <= F; folder++) {
        System.out.println("Folder: " + folder);
        logger.println("Folder: " + folder);
        logger.flush();
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>();
        HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>();
        for (int i = 0; i < dataset.getUserIDs().size(); i++) {
            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        }
        for (int i = 0; i < dataset.getItemIDs().size(); i++) {
            itemIDIndexMapping.put(dataset.getItemIDs().get(i), i);
        }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            if (testRatings.get(i).getValue() < 5)
                continue;
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());

        logger.println("Initialize a SVD++ recommendation model.");
        logger.flush();
        SVDPlusPlus algo = new SVDPlusPlus(trainRatingMatrix, false,
                ".//localModels//" + config.getString("NAME"));
        algo.setLogger(logger);
        algo.build();
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();

        //rating prediction accuracy
        double RMSE = 0;
        double MAE = 0;
        double precision = 0;
        double recall = 0;
        double map = 0;
        double ndcg = 0;
        double mrr = 0;
        double auc = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()), false);
            if (prediction > algo.getMaxRating())
                prediction = algo.getMaxRating();
            if (prediction < algo.getMinRating())
                prediction = algo.getMinRating();
            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
        System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: "
                + MAE + " RMSE: " + RMSE);
        //ranking accuracy
        if (algo.getTopN() > 0) {
            HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>();
            for (int i = 0; i < trainRatingMatrix.getRow(); i++) {
                ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
                if (rec == null)
                    continue;
                int total = testRatingMatrix.getUserRatingNumber(i);
                if (total == 0)//this user is ignored
                    continue;
                results.put(i, rec);
            }
            RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix);
            precision = generator.getPrecisionN();
            totalPrecision = totalPrecision + precision;
            recall = generator.getRecallN();
            totalRecall = totalRecall + recall;
            map = generator.getMAPN();
            totalMAP = totalMAP + map;
            ndcg = generator.getNDCGN();
            totalNDCG = totalNDCG + ndcg;
            mrr = generator.getMRRN();
            totalMRR = totalMRR + mrr;
            auc = generator.getAUC();
            totalAUC = totalAUC + auc;
            System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
            logger.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
        }

        logger.flush();
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    System.out.println("Precision@N: " + totalPrecision / F);
    System.out.println("Recall@N: " + totalRecall / F);
    System.out.println("MAP@N: " + totalMAP / F);
    System.out.println("MRR@N: " + totalMRR / F);
    System.out.println("NDCG@N: " + totalNDCG / F);
    System.out.println("AUC@N: " + totalAUC / F);

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n"
            + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F
            + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F);
    logger.flush();
    logger.close();
}

From source file:ch.epfl.lsir.xin.test.BiasedMFTest.java

/**
 * @param args//from w w w . jav  a  2s  .  c  om
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//BiasedMF");

    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File("conf//biasedMF.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    logger.flush();
    DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt");
    loader.readSimple();
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    double totalPrecision = 0;
    double totalRecall = 0;
    double totalMAP = 0;
    double totalNDCG = 0;
    double totalMRR = 0;
    double totalAUC = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    logger.flush();
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }

    for (int folder = 1; folder <= F; folder++) {
        System.out.println("Folder: " + folder);
        logger.println("Folder: " + folder);
        logger.flush();
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>();
        HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>();
        for (int i = 0; i < dataset.getUserIDs().size(); i++) {
            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        }
        for (int i = 0; i < dataset.getItemIDs().size(); i++) {
            itemIDIndexMapping.put(dataset.getItemIDs().get(i), i);
        }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            //            if( testRatings.get(i).getValue() < 5 )
            //               continue;
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());

        logger.println("Initialize a biased matrix factorization recommendation model.");
        logger.flush();
        BiasedMF algo = new BiasedMF(trainRatingMatrix, false, ".//localModels//" + config.getString("NAME"));
        algo.setLogger(logger);
        algo.build();
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();

        //rating prediction accuracy
        double RMSE = 0;
        double MAE = 0;
        double precision = 0;
        double recall = 0;
        double map = 0;
        double ndcg = 0;
        double mrr = 0;
        double auc = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()), false);
            if (prediction > algo.getMaxRating())
                prediction = algo.getMaxRating();
            if (prediction < algo.getMinRating())
                prediction = algo.getMinRating();
            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
        System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: "
                + MAE + " RMSE: " + RMSE);
        //ranking accuracy
        if (algo.getTopN() > 0) {
            HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>();
            for (int i = 0; i < trainRatingMatrix.getRow(); i++) {
                ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
                if (rec == null)
                    continue;
                int total = testRatingMatrix.getUserRatingNumber(i);
                if (total == 0)//this user is ignored
                    continue;
                results.put(i, rec);
            }
            RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix,
                    trainRatingMatrix);
            precision = generator.getPrecisionN();
            totalPrecision = totalPrecision + precision;
            recall = generator.getRecallN();
            totalRecall = totalRecall + recall;
            map = generator.getMAPN();
            totalMAP = totalMAP + map;
            ndcg = generator.getNDCGN();
            totalNDCG = totalNDCG + ndcg;
            mrr = generator.getMRRN();
            totalMRR = totalMRR + mrr;
            auc = generator.getAUC();
            totalAUC = totalAUC + auc;
            System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
            logger.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
        }

        logger.flush();
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    System.out.println("Precision@N: " + totalPrecision / F);
    System.out.println("Recall@N: " + totalRecall / F);
    System.out.println("MAP@N: " + totalMAP / F);
    System.out.println("MRR@N: " + totalMRR / F);
    System.out.println("NDCG@N: " + totalNDCG / F);
    System.out.println("AUC@N: " + totalAUC / F);

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n"
            + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F
            + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F);
    logger.flush();
    logger.close();
}

From source file:ch.epfl.lsir.xin.test.SocialRegTest.java

/**
 * @param args/*from ww w . ja  va2 s.c  om*/
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//SocialReg");
    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File("conf//SocialReg.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    logger.flush();
    DataLoaderFile loader = new DataLoaderFile(".//data//Epinions-ratings.txt");
    loader.readSimple();
    //read social information
    loader.readRelation(".//data//Epinions-trust.txt");
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    double totalPrecision = 0;
    double totalRecall = 0;
    double totalMAP = 0;
    double totalNDCG = 0;
    double totalMRR = 0;
    double totalAUC = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    logger.flush();
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }

    for (int folder = 1; folder <= F; folder++) {
        System.out.println("Folder: " + folder);
        logger.println("Folder: " + folder);
        logger.flush();
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = dataset.getUserIDMapping();
        HashMap<String, Integer> itemIDIndexMapping = dataset.getItemIDMapping();
        //         for( int i = 0 ; i < dataset.getUserIDs().size() ; i++ )
        //         {
        //            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        //         }
        //         for( int i = 0 ; i < dataset.getItemIDs().size() ; i++ )
        //         {
        //            itemIDIndexMapping.put(dataset.getItemIDs().get(i) , i);
        //         }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());

        logger.println("Initialize a social regularization recommendation model.");
        logger.flush();
        SocialReg algo = new SocialReg(trainRatingMatrix, dataset.getRelationships(), false,
                ".//localModels//" + config.getString("NAME"));
        algo.setLogger(logger);
        algo.build();
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();

        System.out.println(trainRatings.size() + " vs. " + testRatings.size());

        //rating prediction accuracy
        double RMSE = 0;
        double MAE = 0;
        double precision = 0;
        double recall = 0;
        double map = 0;
        double ndcg = 0;
        double mrr = 0;
        double auc = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()));
            if (prediction > algo.getMaxRating())
                prediction = algo.getMaxRating();
            if (prediction < algo.getMinRating())
                prediction = algo.getMinRating();
            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
        System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: "
                + MAE + " RMSE: " + RMSE);
        //ranking accuracy
        //         if( algo.getTopN() > 0 )
        //         {
        //            HashMap<Integer , ArrayList<ResultUnit>> results = new HashMap<Integer , ArrayList<ResultUnit>>();
        //            for( int i = 0 ; i < trainRatingMatrix.getRow() ; i++ )
        //            {
        //               ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
        //               results.put(i, rec);
        //            }
        //            RankResultGenerator generator = new RankResultGenerator(results , algo.getTopN() , testRatingMatrix);
        //            precision = generator.getPrecisionN();
        //            totalPrecision = totalPrecision + precision;
        //            recall = generator.getRecallN();
        //            totalRecall = totalRecall + recall;
        //            map = generator.getMAPN();
        //            totalMAP = totalMAP + map;
        //            ndcg = generator.getNDCGN();
        //            totalNDCG = totalNDCG + ndcg;
        //            mrr = generator.getMRRN();
        //            totalMRR = totalMRR + mrr;
        //            auc = generator.getAUC();
        //            totalAUC = totalAUC + auc;
        //            System.out.println("Folder --- precision: " + precision + " recall: " + 
        //            recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
        //            logger.println("Folder --- precision: " + precision + " recall: " + 
        //                  recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + 
        //                  mrr + " auc: " + auc);
        //         }

        logger.flush();
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    System.out.println("Precision@N: " + totalPrecision / F);
    System.out.println("Recall@N: " + totalRecall / F);
    System.out.println("MAP@N: " + totalMAP / F);
    System.out.println("MRR@N: " + totalMRR / F);
    System.out.println("NDCG@N: " + totalNDCG / F);
    System.out.println("AUC@N: " + totalAUC / F);

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n"
            + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F
            + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F);
    logger.flush();
    logger.close();
}

From source file:ch.epfl.lsir.xin.test.ItemBasedCFTest.java

/**
 * @param args//from w w  w.ja va2s . co m
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//ItemBasedCF");
    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File(".//conf//ItemBasedCF.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt");
    loader.readSimple();
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    double totalPrecision = 0;
    double totalRecall = 0;
    double totalMAP = 0;
    double totalNDCG = 0;
    double totalMRR = 0;
    double totalAUC = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }

    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }

    for (int folder = 1; folder <= F; folder++) {
        logger.println("Folder: " + folder);
        System.out.println("Folder: " + folder);
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>();
        HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>();
        for (int i = 0; i < dataset.getUserIDs().size(); i++) {
            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        }
        for (int i = 0; i < dataset.getItemIDs().size(); i++) {
            itemIDIndexMapping.put(dataset.getItemIDs().get(i), i);
        }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        trainRatingMatrix.calculateGlobalAverage();
        trainRatingMatrix.calculateItemsMean();
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());
        logger.println("Initialize a item based collaborative filtering recommendation model.");
        ItemBasedCF algo = new ItemBasedCF(trainRatingMatrix);
        algo.setLogger(logger);
        algo.build();//if read local model, no need to build the model
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();

        //rating prediction accuracy
        double RMSE = 0;
        double MAE = 0;
        double precision = 0;
        double recall = 0;
        double map = 0;
        double ndcg = 0;
        double mrr = 0;
        double auc = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()), false);
            if (prediction > algo.getMaxRating())
                prediction = algo.getMaxRating();
            if (prediction < algo.getMinRating())
                prediction = algo.getMinRating();

            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
        System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: "
                + MAE + " RMSE: " + RMSE);

        //ranking accuracy
        if (algo.getTopN() > 0) {
            HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>();
            for (int i = 0; i < trainRatingMatrix.getRow(); i++) {
                //               ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
                //               results.put(i, rec);
                ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
                if (rec == null)
                    continue;
                int total = testRatingMatrix.getUserRatingNumber(i);
                if (total == 0)//this user is ignored
                    continue;
                results.put(i, rec);
            }
            RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix,
                    trainRatingMatrix);
            precision = generator.getPrecisionN();
            totalPrecision = totalPrecision + precision;
            recall = generator.getRecallN();
            totalRecall = totalRecall + recall;
            map = generator.getMAPN();
            totalMAP = totalMAP + map;
            ndcg = generator.getNDCGN();
            totalNDCG = totalNDCG + ndcg;
            mrr = generator.getMRRN();
            totalMRR = totalMRR + mrr;
            auc = generator.getAUC();
            totalAUC = totalAUC + auc;
            System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
            logger.append("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc + "\n");
        }
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    System.out.println("Precision@N: " + totalPrecision / F);
    System.out.println("Recall@N: " + totalRecall / F);
    System.out.println("MAP@N: " + totalMAP / F);
    System.out.println("MRR@N: " + totalMRR / F);
    System.out.println("NDCG@N: " + totalNDCG / F);
    System.out.println("AUC@N: " + totalAUC / F);
    System.out.println("similarity: " + config.getString("SIMILARITY"));
    //MAE: 0.7227232762922241 RMSE: 0.9225576790122603 (MovieLens 100K, shrinkage 2500, neighbor size 40, PCC)
    //MAE: 0.7250636319353241 RMSE: 0.9242305485411567 (MovieLens 100K, shrinkage 25, neighbor size 40, PCC)
    //MAE: 0.7477213243604459 RMSE: 0.9512195004171138 (MovieLens 100K, shrinkage 2500, neighbor size 40, COSINE)

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n"
            + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F
            + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F);
    logger.flush();
    logger.close();
}

From source file:Main.java

public static void writeToFile(File file, String content) {
    try {//from www  .j av  a  2  s.co  m
        PrintWriter out = new PrintWriter(file);
        out.println(content);
        out.close();
    } catch (FileNotFoundException e) {
        e.printStackTrace();
    }
}

From source file:Main.java

/**
 * Writes a DOM node (and all its ancestors) to the given output stream
 * //from   ww  w  .j  ava  2 s  . co  m
 * @param n
 *            the node to write
 * @param o
 *            the output stream to write the node to
 */
public static void writeNode(Node n, FileOutputStream o) {
    PrintWriter w = new PrintWriter(o);
    w.print(n.toString());
    w.close();
}

From source file:Main.java

public static void clearLog() {
    File logFile = new File(Environment.getExternalStorageDirectory() + "/clr_log.file");
    PrintWriter writer;
    try {//w  w w. j a v  a  2  s  .  c o m
        writer = new PrintWriter(logFile);
        writer.close();
    } catch (Exception e) {
        e.printStackTrace();
    }
}

From source file:Main.java

public static String getErrorInfo(Throwable arg1) {
    Writer writer = new StringWriter();
    PrintWriter pw = new PrintWriter(writer);
    arg1.printStackTrace(pw);/*from  www  .j av  a 2  s  .  co m*/
    pw.close();
    String error = writer.toString();
    return error;
}