List of usage examples for java.io ObjectOutput writeObject
public void writeObject(Object obj) throws IOException;
From source file:com.act.reachables.ActData.java
public void serialize(String toFile) { try {/*from www . j a v a 2 s . co m*/ OutputStream file = new FileOutputStream(toFile); OutputStream buffer = new BufferedOutputStream(file); ObjectOutput output = new ObjectOutputStream(buffer); try { output.writeObject(_instance); } finally { output.close(); } } catch (IOException ex) { throw new RuntimeException("ActData serialize failed: " + ex); } }
From source file:org.jfree.data.xy.junit.VectorSeriesCollectionTest.java
/** * Serialize an instance, restore it, and check for equality. *//*from w w w .j av a 2s. c o m*/ public void testSerialization() { VectorSeries s1 = new VectorSeries("Series"); s1.add(1.0, 1.1, 1.2, 1.3); VectorSeriesCollection c1 = new VectorSeriesCollection(); c1.addSeries(s1); VectorSeriesCollection c2 = null; try { ByteArrayOutputStream buffer = new ByteArrayOutputStream(); ObjectOutput out = new ObjectOutputStream(buffer); out.writeObject(c1); out.close(); ObjectInput in = new ObjectInputStream(new ByteArrayInputStream(buffer.toByteArray())); c2 = (VectorSeriesCollection) in.readObject(); in.close(); } catch (Exception e) { e.printStackTrace(); } assertEquals(c1, c2); }
From source file:org.jfree.chart.demo.ChartPanelSerializationTest.java
/** * A demonstration application showing how to create a simple time series chart. This * example uses monthly data.//from w ww . ja v a2 s . c o m * * @param title the frame title. */ public ChartPanelSerializationTest(final String title) { super(title); final XYDataset dataset = createDataset(); final JFreeChart chart = createChart(dataset); final ChartPanel chartPanel1 = new ChartPanel(chart); chartPanel1.setPreferredSize(new java.awt.Dimension(500, 270)); chartPanel1.setMouseZoomable(true, false); ChartPanel chartPanel2 = null; try { ByteArrayOutputStream buffer = new ByteArrayOutputStream(); ObjectOutput out = new ObjectOutputStream(buffer); out.writeObject(chartPanel1); out.close(); ObjectInput in = new ObjectInputStream(new ByteArrayInputStream(buffer.toByteArray())); chartPanel2 = (ChartPanel) in.readObject(); in.close(); } catch (Exception e) { e.printStackTrace(); } setContentPane(chartPanel2); }
From source file:org.apache.camel.component.bean.BeanInvocation.java
public void writeExternal(ObjectOutput objectOutput) throws IOException { if (methodBean == null) { methodBean = new MethodBean(method); }/* www . j a v a 2s .co m*/ objectOutput.writeObject(methodBean); objectOutput.writeObject(args); }
From source file:org.jfree.data.xy.junit.DefaultOHLCDatasetTest.java
/** * Serialize an instance, restore it, and check for equality. *//*w w w . java2 s .c o m*/ public void testSerialization() { DefaultOHLCDataset d1 = new DefaultOHLCDataset("Series 1", new OHLCDataItem[0]); DefaultOHLCDataset d2 = null; try { ByteArrayOutputStream buffer = new ByteArrayOutputStream(); ObjectOutput out = new ObjectOutputStream(buffer); out.writeObject(d1); out.close(); ObjectInput in = new ObjectInputStream(new ByteArrayInputStream(buffer.toByteArray())); d2 = (DefaultOHLCDataset) in.readObject(); in.close(); } catch (Exception e) { System.out.println(e.toString()); } assertEquals(d1, d2); }
From source file:org.jfree.data.xy.junit.DefaultHighLowDatasetTest.java
/** * Serialize an instance, restore it, and check for equality. *///from w ww .j ava 2s . c o m public void testSerialization() { DefaultHighLowDataset d1 = new DefaultHighLowDataset("Series 1", new Date[] { new Date(123L) }, new double[] { 1.2 }, new double[] { 3.4 }, new double[] { 5.6 }, new double[] { 7.8 }, new double[] { 99.9 }); DefaultHighLowDataset d2 = null; try { ByteArrayOutputStream buffer = new ByteArrayOutputStream(); ObjectOutput out = new ObjectOutputStream(buffer); out.writeObject(d1); out.close(); ObjectInput in = new ObjectInputStream(new ByteArrayInputStream(buffer.toByteArray())); d2 = (DefaultHighLowDataset) in.readObject(); in.close(); } catch (Exception e) { e.printStackTrace(); } assertEquals(d1, d2); }
From source file:org.jaqpot.algorithms.resource.Standarization.java
@POST @Path("training") public Response training(TrainingRequest request) { try {/* www .j a va 2 s. c o m*/ if (request.getDataset().getDataEntry().isEmpty() || request.getDataset().getDataEntry().get(0).getValues().isEmpty()) { return Response.status(Response.Status.BAD_REQUEST) .entity("Dataset is empty. Cannot train model on empty dataset.").build(); } List<String> features = request.getDataset().getDataEntry().stream().findFirst().get().getValues() .keySet().stream().filter(feature -> !feature.equals(request.getPredictionFeature())) .collect(Collectors.toList()); LinkedHashMap<String, Double> maxValues = new LinkedHashMap<>(); LinkedHashMap<String, Double> minValues = new LinkedHashMap<>(); features.stream().forEach(feature -> { List<Double> values = request.getDataset().getDataEntry().stream().map(dataEntry -> { return Double.parseDouble(dataEntry.getValues().get(feature).toString()); }).collect(Collectors.toList()); double[] doubleValues = values.stream().mapToDouble(Double::doubleValue).toArray(); Double mean = StatUtils.mean(doubleValues); Double stddev = Math.sqrt(StatUtils.variance(doubleValues)); maxValues.put(feature, stddev); minValues.put(feature, mean); }); ScalingModel model = new ScalingModel(); model.setMaxValues(maxValues); model.setMinValues(minValues); TrainingResponse response = new TrainingResponse(); ByteArrayOutputStream baos = new ByteArrayOutputStream(); ObjectOutput out = new ObjectOutputStream(baos); out.writeObject(model); String base64Model = Base64.getEncoder().encodeToString(baos.toByteArray()); response.setRawModel(base64Model); response.setIndependentFeatures(features); response.setPredictedFeatures(features.stream().map(feature -> { return "Standarized " + feature; }).collect(Collectors.toList())); return Response.ok(response).build(); } catch (Exception ex) { LOG.log(Level.SEVERE, null, ex); return Response.status(Response.Status.INTERNAL_SERVER_ERROR).entity(ex.getMessage()).build(); } }
From source file:com.splicemachine.derby.stream.function.TableScanQualifierFunction.java
@Override public void writeExternal(ObjectOutput out) throws IOException { super.writeExternal(out); out.writeBoolean(optionalProbeValue != null); if (optionalProbeValue != null) out.writeObject(optionalProbeValue); }
From source file:com.conwet.silbops.model.SubscriptionTest.java
@Test public void shouldExternalize() throws Exception { ByteArrayOutputStream baos = new ByteArrayOutputStream(); ObjectOutput output = new ObjectOutputStream(baos); output.writeObject(subscription); output.close();/*from w w w.j a v a 2 s . co m*/ ObjectInput input = new ObjectInputStream(new ByteArrayInputStream(baos.toByteArray())); assertThat((Subscription) input.readObject()).isEqualTo(subscription); }
From source file:org.jaqpot.algorithm.resource.Standarization.java
@POST @Path("training") public Response training(TrainingRequest request) { try {/*from w ww.j a va2s . co m*/ if (request.getDataset().getDataEntry().isEmpty() || request.getDataset().getDataEntry().get(0).getValues().isEmpty()) { return Response.status(Response.Status.BAD_REQUEST).entity( ErrorReportFactory.badRequest("Dataset is empty", "Cannot train model on empty dataset")) .build(); } List<String> features = request.getDataset().getDataEntry().stream().findFirst().get().getValues() .keySet().stream().filter(feature -> !feature.equals(request.getPredictionFeature())) .collect(Collectors.toList()); LinkedHashMap<String, Double> maxValues = new LinkedHashMap<>(); LinkedHashMap<String, Double> minValues = new LinkedHashMap<>(); features.stream().forEach(feature -> { List<Double> values = request.getDataset().getDataEntry().stream().map(dataEntry -> { return Double.parseDouble(dataEntry.getValues().get(feature).toString()); }).collect(Collectors.toList()); double[] doubleValues = values.stream().mapToDouble(Double::doubleValue).toArray(); Double mean = StatUtils.mean(doubleValues); Double stddev = Math.sqrt(StatUtils.variance(doubleValues)); maxValues.put(feature, stddev); minValues.put(feature, mean); }); ScalingModel model = new ScalingModel(); model.setMaxValues(maxValues); model.setMinValues(minValues); TrainingResponse response = new TrainingResponse(); ByteArrayOutputStream baos = new ByteArrayOutputStream(); ObjectOutput out = new ObjectOutputStream(baos); out.writeObject(model); String base64Model = Base64.getEncoder().encodeToString(baos.toByteArray()); response.setRawModel(base64Model); response.setIndependentFeatures(features); response.setPredictedFeatures(features.stream().map(feature -> { return "Standarized " + feature; }).collect(Collectors.toList())); return Response.ok(response).build(); } catch (Exception ex) { LOG.log(Level.SEVERE, null, ex); return Response.status(Response.Status.INTERNAL_SERVER_ERROR).entity(ex.getMessage()).build(); } }