List of usage examples for java.io ObjectInputStream close
public void close() throws IOException
From source file:cacheservice.CacheServer.java
/** * @param args the command line arguments *//*from w w w . j a v a 2 s .co m*/ public static void main(String[] args) { // COMUNICACIN CON EL CLIENTE ServerSocket serverSocket; Socket socketCliente; DataInputStream in; //Flujo de datos de entrada DataOutputStream out; //Flujo de datos de salida String mensaje; int laTengoenCache = 0; //COMUNICACIN CON EL INDEX ServerSocket serverSocketIndex; Socket socketIndex; DataOutputStream outIndex; ObjectInputStream inIndex; String mensajeIndex; try { serverSocket = new ServerSocket(4444); System.out.print("SERVIDOR CACHE ACTIVO a la espera de peticiones"); //MIENTRAS PERMANEZCA ACTIVO EL SERVIDOR CACHE ESPERAR? POR PETICIONES DE LOS CLIENTES while (true) { socketCliente = serverSocket.accept(); in = new DataInputStream(socketCliente.getInputStream()); //Entrada de los mensajes del cliente mensaje = in.readUTF(); //Leo el mensaje enviado por el cliente System.out.println("\nHe recibido del cliente: " + mensaje); //Muestro el mensaje recibido por el cliente //int particionBuscada = seleccionarParticion(mensaje, tamanoCache, numeroParticiones); //Busco la particin //double tamanoParticion = Math.ceil( (double)tamanoCache / (double)numeroParticiones); //Thread hilo = new Hilo(mensaje,particionBuscada,cache.GetTable(),(int) tamanoParticion); //hilo.start(); //RESPUESTA DEL SERVIDOR CACHE AL CLIENTE out = new DataOutputStream(socketCliente.getOutputStream()); String respuesta = "Respuesta para " + mensaje; if (laTengoenCache == 1) { out.writeUTF(respuesta); System.out.println("\nTengo la respuesta. He respondido al cliente: " + respuesta); } else { out.writeUTF("miss"); out.close(); in.close(); socketCliente.close(); System.out.println("\nNo tengo la respuesta."); //LEER RESPUESTA DEL SERVIDOR INDEX serverSocketIndex = new ServerSocket(6666); socketIndex = serverSocketIndex.accept(); inIndex = new ObjectInputStream(socketIndex.getInputStream()); JSONObject mensajeRecibidoIndex = (JSONObject) inIndex.readObject(); System.out.println("He recibido del SERVIDOR INDEX: " + mensajeRecibidoIndex); //outIndex.close(); inIndex.close(); socketIndex.close(); } } } catch (Exception e) { System.out.print(e.getMessage()); } }
From source file:com.yahoo.labs.yamall.local.Yamall.java
public static void main(String[] args) { String[] remainingArgs = null; String inputFile = null;/* w ww .j av a 2s.c o m*/ String predsFile = null; String saveModelFile = null; String initialModelFile = null; String lossName = null; String parserName = null; String linkName = null; String invertHashName = null; double learningRate = 1; String minPredictionString = null; String maxPredictionString = null; String fmNumberFactorsString = null; int bitsHash; int numberPasses; int holdoutPeriod = 10; boolean testOnly = false; boolean exponentialProgress; double progressInterval; options.addOption("h", "help", false, "displays this help"); options.addOption("t", false, "ignore label information and just test"); options.addOption(Option.builder().hasArg(false).required(false).longOpt("binary") .desc("reports loss as binary classification with -1,1 labels").build()); options.addOption( Option.builder().hasArg(false).required(false).longOpt("solo").desc("uses SOLO optimizer").build()); options.addOption(Option.builder().hasArg(false).required(false).longOpt("pcsolo") .desc("uses Per Coordinate SOLO optimizer").build()); options.addOption(Option.builder().hasArg(false).required(false).longOpt("pistol") .desc("uses PiSTOL optimizer").build()); options.addOption(Option.builder().hasArg(false).required(false).longOpt("kt") .desc("(EXPERIMENTAL) uses KT optimizer").build()); options.addOption(Option.builder().hasArg(false).required(false).longOpt("pckt") .desc("(EXPERIMENTAL) uses Per Coordinate KT optimizer").build()); options.addOption(Option.builder().hasArg(false).required(false).longOpt("pccocob") .desc("(EXPERIMENTAL) uses Per Coordinate COCOB optimizer").build()); options.addOption(Option.builder().hasArg(false).required(false).longOpt("cocob") .desc("(EXPERIMENTAL) uses COCOB optimizer").build()); options.addOption( Option.builder().hasArg(false).required(false).longOpt("fm").desc("Factorization Machine").build()); options.addOption(Option.builder("f").hasArg(true).required(false).desc("final regressor to save") .type(String.class).longOpt("final_regressor").build()); options.addOption(Option.builder("p").hasArg(true).required(false).desc("file to output predictions to") .longOpt("predictions").type(String.class).build()); options.addOption( Option.builder("i").hasArg(true).required(false).desc("initial regressor(s) to load into memory") .longOpt("initial_regressor").type(String.class).build()); options.addOption(Option.builder().hasArg(true).required(false).desc( "specify the loss function to be used. Currently available ones are: absolute, squared (default), hinge, logistic") .longOpt("loss_function").type(String.class).build()); options.addOption(Option.builder().hasArg(true).required(false).desc( "specify the link function used in the output of the predictions. Currently available ones are: identity (default), logistic") .longOpt("link").type(String.class).build()); options.addOption(Option.builder().hasArg(true).required(false) .desc("output human-readable final regressor with feature names").longOpt("invert_hash") .type(String.class).build()); options.addOption( Option.builder("l").hasArg(true).required(false).desc("set (initial) learning Rate, default = 1.0") .longOpt("learning_rate").type(String.class).build()); options.addOption(Option.builder("b").hasArg(true).required(false) .desc("number of bits in the feature table, default = 18").longOpt("bit_precision") .type(String.class).build()); options.addOption(Option.builder("P").hasArg(true).required(false) .desc("progress update frequency, integer: additive; float: multiplicative, default = 2.0") .longOpt("progress").type(String.class).build()); options.addOption(Option.builder().hasArg(true).required(false) .desc("smallest prediction to output, before the link function, default = -50") .longOpt("min_prediction").type(String.class).build()); options.addOption(Option.builder().hasArg(true).required(false) .desc("smallest prediction to output, before the link function, default = 50") .longOpt("max_prediction").type(String.class).build()); options.addOption(Option.builder().hasArg(true).required(false) .desc("ignore namespaces beginning with the characters in <arg>").longOpt("ignore") .type(String.class).build()); options.addOption(Option.builder().hasArg(true).required(false).desc("number of training passes") .longOpt("passes").type(String.class).build()); options.addOption( Option.builder().hasArg(true).required(false).desc("holdout period for test only, default = 10") .longOpt("holdout_period").type(String.class).build()); options.addOption(Option.builder().hasArg(true).required(false) .desc("number of factors for Factorization Machines default = 8").longOpt("fmNumberFactors") .type(String.class).build()); options.addOption(Option.builder().hasArg(true).required(false) .desc("specify the parser to use. Currently available ones are: vw (default), libsvm, tsv") .longOpt("parser").type(String.class).build()); options.addOption(Option.builder().hasArg(true).required(false).desc("schema file for the TSV input") .longOpt("schema").type(String.class).build()); CommandLineParser parser = new DefaultParser(); CommandLine cmd = null; try { cmd = parser.parse(options, args); } catch (ParseException e) { System.out.println("Unrecognized option"); help(); } if (cmd.hasOption("h")) help(); if (cmd.hasOption("t")) testOnly = true; if (cmd.hasOption("binary")) { binary = true; System.out.println("Reporting binary loss"); } initialModelFile = cmd.getOptionValue("i"); predsFile = cmd.getOptionValue("p"); lossName = cmd.getOptionValue("loss_function", "squared"); linkName = cmd.getOptionValue("link", "identity"); saveModelFile = cmd.getOptionValue("f"); learningRate = Double.parseDouble(cmd.getOptionValue("l", "1.0")); bitsHash = Integer.parseInt(cmd.getOptionValue("b", "18")); invertHashName = cmd.getOptionValue("invert_hash"); minPredictionString = cmd.getOptionValue("min_prediction", "-50"); maxPredictionString = cmd.getOptionValue("max_prediction", "50"); fmNumberFactorsString = cmd.getOptionValue("fmNumberFactors", "8"); parserName = cmd.getOptionValue("parser", "vw"); numberPasses = Integer.parseInt(cmd.getOptionValue("passes", "1")); System.out.println("Number of passes = " + numberPasses); if (numberPasses > 1) { holdoutPeriod = Integer.parseInt(cmd.getOptionValue("holdout_period", "10")); System.out.println("Holdout period = " + holdoutPeriod); } remainingArgs = cmd.getArgs(); if (remainingArgs.length == 1) inputFile = remainingArgs[0]; InstanceParser instanceParser = null; if (parserName.equals("vw")) instanceParser = new VWParser(bitsHash, cmd.getOptionValue("ignore"), (invertHashName != null)); else if (parserName.equals("libsvm")) instanceParser = new LIBSVMParser(bitsHash, (invertHashName != null)); else if (parserName.equals("tsv")) { String schema = cmd.getOptionValue("schema"); if (schema == null) { System.out.println("TSV parser requires a schema file."); System.exit(0); } else { String spec = null; try { spec = new String(Files.readAllBytes(Paths.get(schema))); } catch (IOException e) { System.out.println("Error reading the TSV schema file."); e.printStackTrace(); System.exit(0); } instanceParser = new TSVParser(bitsHash, cmd.getOptionValue("ignore"), (invertHashName != null), spec); } } else { System.out.println("Unknown parser."); System.exit(0); } System.out.println("Num weight bits = " + bitsHash); // setup progress String progress = cmd.getOptionValue("P", "2.0"); if (progress.indexOf('.') >= 0) { exponentialProgress = true; progressInterval = (double) Double.parseDouble(progress); } else { exponentialProgress = false; progressInterval = (double) Integer.parseInt(progress); } // min and max predictions minPrediction = (double) Double.parseDouble(minPredictionString); maxPrediction = (double) Double.parseDouble(maxPredictionString); // number of factors for Factorization Machines fmNumberFactors = (int) Integer.parseInt(fmNumberFactorsString); // configure the learner Loss lossFnc = null; LinkFunction link = null; if (initialModelFile == null) { if (cmd.hasOption("kt")) { learner = new KT(bitsHash); } else if (cmd.hasOption("pckt")) { learner = new PerCoordinateKT(bitsHash); } else if (cmd.hasOption("pcsolo")) { learner = new PerCoordinateSOLO(bitsHash); } else if (cmd.hasOption("solo")) { learner = new SOLO(bitsHash); } else if (cmd.hasOption("pccocob")) { learner = new PerCoordinateCOCOB(bitsHash); } else if (cmd.hasOption("cocob")) { learner = new COCOB(bitsHash); } else if (cmd.hasOption("pistol")) { learner = new PerCoordinatePiSTOL(bitsHash); } else if (cmd.hasOption("fm")) { learner = new SGD_FM(bitsHash, fmNumberFactors); } else learner = new SGD_VW(bitsHash); } else { learner = IOLearner.loadLearner(initialModelFile); } // setup link function if (linkName.equals("identity")) { link = new IdentityLinkFunction(); } else if (linkName.equals("logistic")) { link = new LogisticLinkFunction(); } else { System.out.println("Unknown link function."); System.exit(0); } // setup loss function if (lossName.equals("squared")) { lossFnc = new SquareLoss(); } else if (lossName.equals("hinge")) { lossFnc = new HingeLoss(); } else if (lossName.equals("logistic")) { lossFnc = new LogisticLoss(); } else if (lossName.equals("absolute")) { lossFnc = new AbsLoss(); } else { System.out.println("Unknown loss function."); System.exit(0); } learner.setLoss(lossFnc); learner.setLearningRate(learningRate); // maximum range predictions System.out.println("Max prediction = " + maxPrediction + ", Min Prediction = " + minPrediction); // print information about the learner System.out.println(learner.toString()); // print information about the link function System.out.println(link.toString()); // print information about the parser System.out.println(instanceParser.toString()); // print information about ignored namespaces System.out.println("Ignored namespaces = " + cmd.getOptionValue("ignore", "")); long start = System.nanoTime(); FileInputStream fstream; try { BufferedReader br = null; if (inputFile != null) { fstream = new FileInputStream(inputFile); System.out.println("Reading datafile = " + inputFile); br = new BufferedReader(new InputStreamReader(fstream)); } else { System.out.println("Reading from console"); br = new BufferedReader(new InputStreamReader(System.in)); } File fout = null; FileOutputStream fos = null; BufferedWriter bw = null; if (predsFile != null) { fout = new File(predsFile); fos = new FileOutputStream(fout); bw = new BufferedWriter(new OutputStreamWriter(fos)); } try { System.out.println("average example current current current"); System.out.println("loss counter label predict features"); int iter = 0; double cumLoss = 0; double weightedSampleSum = 0; double sPlus = 0; double sMinus = 0; Instance sample = null; boolean justPrinted = false; int pass = 0; ObjectOutputStream ooutTr = null; ObjectOutputStream ooutHO = null; ObjectInputStream oinTr = null; double pred = 0; int limit = 1; double hError = Double.MAX_VALUE; double lastHError = Double.MAX_VALUE; int numTestSample = 0; int numTrainingSample = 0; int idx = 0; if (numberPasses > 1) { ooutTr = new ObjectOutputStream(new FileOutputStream("cache_training.bin")); ooutHO = new ObjectOutputStream(new FileOutputStream("cache_holdout.bin")); oinTr = new ObjectInputStream(new FileInputStream("cache_training.bin")); } do { while (true) { double score; if (pass > 0 && numberPasses > 1) { Instance tmp = (Instance) oinTr.readObject(); if (tmp != null) sample = tmp; else break; } else { String strLine = br.readLine(); if (strLine != null) sample = instanceParser.parse(strLine); else break; } justPrinted = false; idx++; if (numberPasses > 1 && pass == 0 && idx % holdoutPeriod == 0) { // store the current sample for the holdout set ooutHO.writeObject(sample); ooutHO.reset(); numTestSample++; } else { if (numberPasses > 1 && pass == 0) { ooutTr.writeObject(sample); ooutTr.reset(); numTrainingSample++; } iter++; if (testOnly) { // predict the sample score = learner.predict(sample); } else { // predict the sample and update the classifier using the sample score = learner.update(sample); } score = Math.min(Math.max(score, minPrediction), maxPrediction); pred = link.apply(score); if (!binary) cumLoss += learner.getLoss().lossValue(score, sample.getLabel()) * sample.getWeight(); else if (Math.signum(score) != sample.getLabel()) cumLoss += sample.getWeight(); weightedSampleSum += sample.getWeight(); if (sample.getLabel() > 0) sPlus = sPlus + sample.getWeight(); else sMinus = sMinus + sample.getWeight(); // output predictions to file if (predsFile != null) { bw.write(String.format("%.6f %s", pred, sample.getTag())); bw.newLine(); } // print statistics to screen if (iter == limit) { justPrinted = true; System.out.printf("%.6f %12d % .4f % .4f %d\n", cumLoss / weightedSampleSum, iter, sample.getLabel(), pred, sample.getVector().size()); if (exponentialProgress) limit *= progressInterval; else limit += progressInterval; } } } if (numberPasses > 1) { if (pass == 0) { // finished first pass of many // write a null at the end of the files ooutTr.writeObject(null); ooutHO.writeObject(null); ooutTr.flush(); ooutHO.flush(); ooutTr.close(); ooutHO.close(); System.out.println("finished first epoch"); System.out.println(numTrainingSample + " training samples"); System.out.println(numTestSample + " holdout samples saved"); } lastHError = hError; hError = evalHoldoutError(); } if (numberPasses > 1) { System.out.printf("Weighted loss on holdout on epoch %d = %.6f\n", pass + 1, hError); oinTr.close(); oinTr = new ObjectInputStream(new FileInputStream("cache_training.bin")); if (hError > lastHError) { System.out.println("Early stopping"); break; } } pass++; } while (pass < numberPasses); if (justPrinted == false) { System.out.printf("%.6f %12d % .4f % .4f %d\n", cumLoss / weightedSampleSum, iter, sample.getLabel(), pred, sample.getVector().size()); } System.out.println("finished run"); System.out.println(String.format("average loss best constant predictor: %.6f", lossFnc.lossConstantBinaryLabels(sPlus, sMinus))); if (saveModelFile != null) IOLearner.saveLearner(learner, saveModelFile); if (invertHashName != null) IOLearner.saveInvertHash(learner.getWeights(), instanceParser.getInvertHashMap(), invertHashName); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (ClassNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } // close the input stream try { br.close(); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } // close the output stream if (predsFile != null) { try { bw.close(); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } long millis = System.nanoTime() - start; System.out.printf("Elapsed time: %d min, %d sec\n", TimeUnit.NANOSECONDS.toMinutes(millis), TimeUnit.NANOSECONDS.toSeconds(millis) - 60 * TimeUnit.NANOSECONDS.toMinutes(millis)); } catch ( FileNotFoundException e) { System.out.println("Error opening the input file"); e.printStackTrace(); } }
From source file:Main.java
static public Object setObjectBytes(byte[] b) throws IOException, ClassNotFoundException { ByteArrayInputStream baos = new ByteArrayInputStream(b); ObjectInputStream oos = new ObjectInputStream(baos); oos.close(); return oos.readObject(); }
From source file:Main.java
public static Object deserializar(String path) throws Exception { FileInputStream inFile = new FileInputStream(path); ObjectInputStream d = new ObjectInputStream(inFile); Object o = d.readObject();/*from w w w. j a v a 2s . co m*/ d.close(); return o; }
From source file:Main.java
private static Object readFromFile(String filename) throws Exception { ObjectInputStream ois = new ObjectInputStream(new FileInputStream(new File(filename))); Object object = ois.readObject(); ois.close(); return object; }
From source file:Main.java
public static Object restore(String fileName) throws IOException, ClassNotFoundException { FileInputStream fis = new FileInputStream(fileName); ObjectInputStream in = new ObjectInputStream(fis); Object obj = in.readObject(); in.close(); return obj;// w w w .j a va 2 s. c o m }
From source file:Main.java
@SuppressWarnings("unchecked") public static <T> T readSerializedObject(Context context, String fileName) throws FileNotFoundException, IOException, ClassNotFoundException { FileInputStream fis = context.openFileInput(fileName); ObjectInputStream in = new ObjectInputStream(fis); T out = (T) in.readObject();/*from w w w. j a v a2 s . co m*/ in.close(); fis.close(); return out; }
From source file:Main.java
public static Object readFileByObject(String fileName) { try {//ww w . j a v a2 s. com FileInputStream fis = new FileInputStream(fileName); ObjectInputStream ois = new ObjectInputStream(fis); Object o = ois.readObject(); ois.close(); fis.close(); return o; } catch (Exception e) { return null; } }
From source file:Main.java
public static Object getSerializable(byte[] bytes) { Object obj = null;//ww w. ja v a 2 s .c o m try { ByteArrayInputStream bis = new ByteArrayInputStream(bytes); ObjectInputStream ois = new ObjectInputStream(bis); obj = ois.readObject(); ois.close(); bis.close(); } catch (IOException ex) { ex.printStackTrace(); } catch (ClassNotFoundException ex) { ex.printStackTrace(); } return obj; }
From source file:MainClass.java
public static void desEncrypt(String f1, String f2) throws Exception { SecretKey key = null;/*w w w. j ava 2 s .c o m*/ ObjectInputStream keyFile = new ObjectInputStream(new FileInputStream("DESKey.ser")); key = (SecretKey) keyFile.readObject(); keyFile.close(); Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding"); cipher.init(Cipher.DECRYPT_MODE, key); CipherInputStream in = new CipherInputStream(new BufferedInputStream(new FileInputStream(f1)), cipher); BufferedOutputStream out = new BufferedOutputStream(new FileOutputStream(f2)); int i; do { i = in.read(); if (i != -1) out.write(i); } while (i > 0); in.close(); out.close(); }