List of usage examples for java.io File getPath
public String getPath()
From source file:edu.harvard.hul.ois.drs.pdfaconvert.PdfaConvert.java
public static void main(String[] args) throws IOException { if (logger == null) { System.out.println("About to initialize Log4j"); logger = LogManager.getLogger(); System.out.println("Finished initializing Log4j"); }/* www. j a v a 2s. c o m*/ logger.debug("Entering main()"); // WIP: the following command line code was pulled from FITS Options options = new Options(); Option inputFileOption = new Option(PARAM_I, true, "input file"); options.addOption(inputFileOption); options.addOption(PARAM_V, false, "print version information"); options.addOption(PARAM_H, false, "help information"); options.addOption(PARAM_O, true, "output sub-directory"); CommandLineParser parser = new DefaultParser(); CommandLine cmd = null; try { cmd = parser.parse(options, args, true); } catch (ParseException e) { System.err.println(e.getMessage()); System.exit(1); } // print version info if (cmd.hasOption(PARAM_V)) { if (StringUtils.isEmpty(applicationVersion)) { applicationVersion = "<not set>"; System.exit(1); } System.out.println("Version: " + applicationVersion); System.exit(0); } // print help info if (cmd.hasOption(PARAM_H)) { displayHelp(); System.exit(0); } // input parameter if (cmd.hasOption(PARAM_I)) { String input = cmd.getOptionValue(PARAM_I); boolean hasValue = cmd.hasOption(PARAM_I); logger.debug("Has option {} value: [{}]", PARAM_I, hasValue); String paramVal = cmd.getOptionValue(PARAM_I); logger.debug("value of option: [{}] ****", paramVal); File inputFile = new File(input); if (!inputFile.exists()) { logger.warn("{} does not exist or is not readable.", input); System.exit(1); } String subDir = cmd.getOptionValue(PARAM_O); PdfaConvert convert; if (!StringUtils.isEmpty(subDir)) { convert = new PdfaConvert(subDir); } else { convert = new PdfaConvert(); } if (inputFile.isDirectory()) { if (inputFile.listFiles() == null || inputFile.listFiles().length < 1) { logger.warn("Input directory is empty, nothing to process."); System.exit(1); } else { logger.debug("Have directory: [{}] with file count: {}", inputFile.getAbsolutePath(), inputFile.listFiles().length); DirectoryStream<Path> dirStream = null; dirStream = Files.newDirectoryStream(inputFile.toPath()); for (Path filePath : dirStream) { logger.debug("Have file name: {}", filePath.toString()); // Note: only handling files, not recursively going into sub-directories if (filePath.toFile().isFile()) { // Catch possible exception for each file so can handle other files in directory. try { convert.examine(filePath.toFile()); } catch (Exception e) { logger.error("Problem processing file: {} -- Error message: {}", filePath.getFileName(), e.getMessage()); } } else { logger.warn("Not a file so not processing: {}", filePath.toString()); // could be a directory but not recursing } } dirStream.close(); } } else { logger.debug("About to process file: {}", inputFile.getPath()); try { convert.examine(inputFile); } catch (Exception e) { logger.error("Problem processing file: {} -- Error message: {}", inputFile.getName(), e.getMessage()); logger.debug("Problem processing file: {} -- Error message: {}", inputFile.getName(), e.getMessage(), e); } } } else { System.err.println("Missing required option: " + PARAM_I); displayHelp(); System.exit(-1); } System.exit(0); }
From source file:edu.oregonstate.eecs.mcplan.abstraction.EvaluateSimilarityFunction.java
/** * @param args/*from w w w.ja va2s . c o m*/ * @throws IOException * @throws FileNotFoundException */ public static void main(final String[] args) throws FileNotFoundException, IOException { final String experiment_file = args[0]; final File root_directory; if (args.length > 1) { root_directory = new File(args[1]); } else { root_directory = new File("."); } final CsvConfigurationParser csv_config = new CsvConfigurationParser(new FileReader(experiment_file)); final String experiment_name = FilenameUtils.getBaseName(experiment_file); final File expr_directory = new File(root_directory, experiment_name); expr_directory.mkdirs(); final Csv.Writer csv = new Csv.Writer( new PrintStream(new FileOutputStream(new File(expr_directory, "results.csv")))); final String[] parameter_headers = new String[] { "kpca.kernel", "kpca.rbf.sigma", "kpca.random_forest.Ntrees", "kpca.random_forest.max_depth", "kpca.Nbases", "multiclass.classifier", "multiclass.random_forest.Ntrees", "multiclass.random_forest.max_depth", "pairwise_classifier.max_branching", "training.label_noise" }; csv.cell("domain").cell("abstraction"); for (final String p : parameter_headers) { csv.cell(p); } csv.cell("Ntrain").cell("Ntest").cell("ami.mean").cell("ami.variance").cell("ami.confidence").newline(); for (int expr = 0; expr < csv_config.size(); ++expr) { try { final KeyValueStore expr_config = csv_config.get(expr); final Configuration config = new Configuration(root_directory.getPath(), expr_directory.getName(), expr_config); System.out.println("[Loading '" + config.training_data_single + "']"); final Instances single = WekaUtil .readLabeledDataset(new File(root_directory, config.training_data_single + ".arff")); final Instances train = new Instances(single, 0); final int[] idx = Fn.range(0, single.size()); int instance_counter = 0; Fn.shuffle(config.rng, idx); final int Ntrain = config.getInt("Ntrain_games"); // TODO: Rename? final double label_noise = config.getDouble("training.label_noise"); final int Nlabels = train.classAttribute().numValues(); assert (Nlabels > 0); for (int i = 0; i < Ntrain; ++i) { final Instance inst = single.get(idx[instance_counter++]); if (label_noise > 0 && config.rng.nextDouble() < label_noise) { int noisy_label = 0; do { noisy_label = config.rng.nextInt(Nlabels); } while (noisy_label == (int) inst.classValue()); System.out.println("Noisy label (" + inst.classValue() + " -> " + noisy_label + ")"); inst.setClassValue(noisy_label); } train.add(inst); inst.setDataset(train); } final Fn.Function2<Boolean, Instance, Instance> plausible_p = createPlausiblePredicate(config); final int Ntest = config.Ntest_games; int Ntest_added = 0; final ArrayList<Instances> tests = new ArrayList<Instances>(); while (instance_counter < single.size() && Ntest_added < Ntest) { final Instance inst = single.get(idx[instance_counter++]); boolean found = false; for (final Instances test : tests) { // Note that 'plausible_p' should be transitive if (plausible_p.apply(inst, test.get(0))) { WekaUtil.addInstance(test, inst); if (test.size() == 30) { Ntest_added += test.size(); } else if (test.size() > 30) { Ntest_added += 1; } found = true; break; } } if (!found) { final Instances test = new Instances(single, 0); WekaUtil.addInstance(test, inst); tests.add(test); } } final Iterator<Instances> test_itr = tests.iterator(); while (test_itr.hasNext()) { if (test_itr.next().size() < 30) { test_itr.remove(); } } System.out.println("=== tests.size() = " + tests.size()); System.out.println("=== Ntest_added = " + Ntest_added); System.out.println("[Training]"); final Evaluator evaluator = createEvaluator(config, train); // final Instances transformed_test = evaluator.prepareInstances( test ); System.out.println("[Evaluating]"); final int Nxval = evaluator.isSensitiveToOrdering() ? 10 : 1; final MeanVarianceAccumulator ami = new MeanVarianceAccumulator(); final MeanVarianceAccumulator errors = new MeanVarianceAccumulator(); final MeanVarianceAccumulator relative_error = new MeanVarianceAccumulator(); int c = 0; for (int xval = 0; xval < Nxval; ++xval) { for (final Instances test : tests) { // TODO: Debugging WekaUtil.writeDataset(new File(config.root_directory), "test_" + (c++), test); // transformed_test.randomize( new RandomAdaptor( config.rng ) ); // final ClusterContingencyTable ct = evaluator.evaluate( transformed_test ); test.randomize(new RandomAdaptor(config.rng)); final ClusterContingencyTable ct = evaluator.evaluate(test); System.out.println(ct); int Nerrors = 0; final MeanVarianceAccumulator mv = new MeanVarianceAccumulator(); for (int i = 0; i < ct.R; ++i) { final int max = Fn.max(ct.n[i]); Nerrors += (ct.a[i] - max); mv.add(((double) ct.a[i]) / ct.N * Nerrors / ct.a[i]); } errors.add(Nerrors); relative_error.add(mv.mean()); System.out.println("exemplar: " + test.get(0)); System.out.println("Nerrors = " + Nerrors); final PrintStream ct_out = new PrintStream( new FileOutputStream(new File(expr_directory, "ct_" + expr + "_" + xval + ".csv"))); ct.writeCsv(ct_out); ct_out.close(); final double ct_ami = ct.adjustedMutualInformation_max(); if (Double.isNaN(ct_ami)) { System.out.println("! ct_ami = NaN"); } else { ami.add(ct_ami); } System.out.println(); } } System.out.println("errors = " + errors.mean() + " (" + errors.confidence() + ")"); System.out.println( "relative_error = " + relative_error.mean() + " (" + relative_error.confidence() + ")"); System.out.println("AMI_max = " + ami.mean() + " (" + ami.confidence() + ")"); csv.cell(config.domain).cell(config.get("abstraction.discovery")); for (final String p : parameter_headers) { csv.cell(config.get(p)); } csv.cell(Ntrain).cell(Ntest).cell(ami.mean()).cell(ami.variance()).cell(ami.confidence()).newline(); } catch (final Exception ex) { ex.printStackTrace(); } } }
From source file:com.linkedin.mlease.regression.liblinearfunc.LibLinear.java
/** * Command-line tool//from w w w. jav a 2 s . c om * * <pre> * java -cp target/regression-0.1-uber.jar com.linkedin.lab.regression.LibLinear * </pre> * * @param args * @throws Exception */ public static void main(String[] args) throws Exception { String cmd = "Input parameters (separated by space): \n" + " run:<command> (required) train or predict\n" + " ftype:<file_type> (required) libsvm or json\n" + " data:<file_name> (required) Input data file of the specified type\n" + " out:<file_name> (required) Output file\n" + " bias:<bias> (optional) Set to 0 if you do not want to add an\n" + " bias/intercept term\n" + " Set to 1 if you want to add a feature with\n" + " value 1 to every instance\n" + " Default: 0\n" + " param:<file_name> (optional) for run:train, it specifies the prior mean\n" + " (required) for run:predict, it specifies the model\n" + " File format: <featureName>=<value> per line\n" + " priorVar:<var> (required) for run:train, <var> is the a number\n" + " (not used) for run:predict\n" + " init:<file_name> (optional) for run:train, it specifies the initial value\n" + " File format: <featureName>=<value> per line\n" + " posteriorVar:1/0 (optional) Whether to compute posterior variances\n" + " Default: 1\n" + " posteriorCov:1/0 (optional) Whether to compute posterior covariances\n" + " Default: 0\n" + " binaryFeature:1/0 (optional) Whether all of the input features are binary\n" + " useShort:1/0 (optional) Whether to use short to store feature indices\n" + " option:<options> (optional) Comma-separated list of options\n" + " No space is allowed in <options>\n" + " Eg: max_iter=5,epsilon=0.01,positive_weight=2\n" + " (not used) for run:predict\n"; if (args.length < 3) { System.out.println("\n" + cmd); System.exit(0); } // Read the input parameters String run = null; String ftype = null; File dataFile = null; File outFile = null; double bias = 0; File paramFile = null; File initFile = null; double priorVar = Double.NaN; String option = null; boolean binaryFeature = false; boolean useShort = false; boolean computePostVar = true; boolean computePostCov = false; for (int i = 0; i < args.length; i++) { if (args[i] == null) continue; String[] token = args[i].split(":"); if (token.length < 2) cmd_line_error("'" + args[i] + "' is not a valid input parameter string!", cmd); for (int k = 2; k < token.length; k++) token[1] += ":" + token[k]; if (token[0].equals("run")) { run = token[1]; } else if (token[0].equals("ftype")) { ftype = token[1]; } else if (token[0].equals("data")) { dataFile = new File(token[1]); } else if (token[0].equals("out")) { outFile = new File(token[1]); } else if (token[0].equals("bias")) { bias = Double.parseDouble(token[1]); } else if (token[0].equals("param")) { paramFile = new File(token[1]); } else if (token[0].equals("init")) { initFile = new File(token[1]); } else if (token[0].equals("priorVar")) { priorVar = Double.parseDouble(token[1]); } else if (token[0].equals("option")) { option = token[1]; } else if (token[0].equals("binaryFeature")) { binaryFeature = Util.atob(token[1]); } else if (token[0].equals("useShort")) { useShort = Util.atob(token[1]); } else if (token[0].equals("posteriorVar")) { computePostVar = Util.atob(token[1]); } else if (token[0].equals("posteriorCov")) { computePostCov = Util.atob(token[1]); } else cmd_line_error("'" + args[i] + "' is not a valid input parameter string!", cmd); } if (run == null) cmd_line_error("Please specify run:<command>", cmd); if (ftype == null) cmd_line_error("Please specify ftype:<file_type>", cmd); if (dataFile == null) cmd_line_error("Please specify data:<file_name>", cmd); if (outFile == null) cmd_line_error("Please specify out:<file_name>", cmd); if (run.equals(RUN_TRAIN)) { Map<String, Double> priorMean = null; Map<String, Double> initParam = null; if (paramFile != null) { if (!paramFile.exists()) cmd_line_error("Param File '" + paramFile.getPath() + "' does not exist", cmd); priorMean = Util.readStringDoubleMap(paramFile, "="); } if (initFile != null) { if (!initFile.exists()) cmd_line_error("Init File '" + initFile.getPath() + "' does not exist", cmd); initParam = Util.readStringDoubleMap(initFile, "="); } if (priorVar == Double.NaN) cmd_line_error("Please specify priorVar:<var>", cmd); if (!dataFile.exists()) cmd_line_error("Data File '" + dataFile.getPath() + "' does not exist", cmd); LibLinearDataset dataset; if (binaryFeature) { dataset = new LibLinearBinaryDataset(bias, useShort); } else { dataset = new LibLinearDataset(bias); } if ("libsvm".equals(ftype)) { dataset.readFromLibSVM(dataFile); } //else if ("json".equals(ftype)) //{ // dataset.readFromJSON(dataFile); //} else cmd_line_error("Unknown file type 'ftype:" + ftype + "'", cmd); if (computePostCov == true && computePostVar == false) cmd_line_error("Cannot compute posterior covariances with posteriorVar:0", cmd); LibLinear liblinear = new LibLinear(); liblinear.setComputeFullPostVar(computePostCov); liblinear.train(dataset, initParam, priorMean, null, 0.0, priorVar, option, computePostVar); PrintStream out = new PrintStream(outFile); Util.printStringDoubleMap(out, liblinear.getParamMap(), "=", true); out.close(); if (computePostVar) { out = new PrintStream(outFile + ".var"); Util.printStringDoubleMap(out, liblinear.getPostVarMap(), "=", true); out.close(); if (computePostCov) { out = new PrintStream(outFile + ".cov"); Util.printStringListDoubleMap(out, liblinear.getPostVarMatrixMap(), "="); out.close(); } } } else if (run.equals(RUN_PREDICT)) { throw new Exception("run:predict is not supported yet :("); } else cmd_line_error("Unknown run:" + run, cmd); }
From source file:edu.cuhk.hccl.cmd.AppSearchEngine.java
public static void main(String[] args) throws IOException { // Get parameters CommandLineParser parser = new BasicParser(); Options options = createOptions();// w w w . j a v a 2s . c om File dataFolder = null; String queryStr = null; int topK = 0; File resultFile = null; String queryType = null; File similarityFile = null; try { CommandLine line = parser.parse(options, args); dataFolder = new File(line.getOptionValue('d')); queryStr = line.getOptionValue('q'); queryType = line.getOptionValue('t'); topK = Integer.parseInt(line.getOptionValue('k')); resultFile = new File(line.getOptionValue('f')); similarityFile = new File(line.getOptionValue('s')); if (line.hasOption('m')) { String modelPath = line.getOptionValue('m'); if (queryType.equalsIgnoreCase("WordVector")) { expander = new WordVectorExpander(modelPath); } else if (queryType.equalsIgnoreCase("WordNet")) { expander = new WordNetExpander(modelPath); } else { System.out.println("Please choose a correct expander: WordNet or WordVector!"); System.exit(-1); } } } catch (ParseException exp) { System.out.println("Error in parameters: \n" + exp.getMessage()); System.exit(-1); } // Create Index StandardAnalyzer analyzer = new StandardAnalyzer(); Directory index = createIndex(dataFolder, analyzer); // Build query Query query = buildQuery(analyzer, queryStr, queryType); // Search index for topK hits IndexReader reader = DirectoryReader.open(index); IndexSearcher searcher = new IndexSearcher(reader); TopScoreDocCollector collector = TopScoreDocCollector.create(topK, true); searcher.search(query, collector); ScoreDoc[] hits = collector.topDocs().scoreDocs; // Show search results System.out.println("\n[INFO] " + hits.length + " hits were returned:"); List<String> hitLines = new ArrayList<String>(); for (int i = 0; i < hits.length; i++) { int docId = hits[i].doc; Document d = searcher.doc(docId); String line = (i + 1) + "\t" + d.get(PATH_FIELD) + "\t" + hits[i].score; System.out.println(line); hitLines.add(line); } // Compute cosine similarity between documents List<String> simLines = new ArrayList<String>(); for (int m = 0; m < hits.length; m++) { int doc1 = hits[m].doc; Terms terms1 = reader.getTermVector(doc1, CONTENT_FIELD); for (int n = m + 1; n < hits.length; n++) { int doc2 = hits[n].doc; Terms terms2 = reader.getTermVector(doc2, CONTENT_FIELD); CosineDocumentSimilarity cosine = new CosineDocumentSimilarity(terms1, terms2); double similarity = cosine.getCosineSimilarity(); String line = searcher.doc(doc1).get(PATH_FIELD) + "\t" + searcher.doc(doc2).get(PATH_FIELD) + "\t" + similarity; simLines.add(line); } } // Release resources reader.close(); if (expander != null) { expander.close(); } // Save search results System.out.println("\n[INFO] Search results are saved in file: " + resultFile.getPath()); FileUtils.writeLines(resultFile, hitLines, false); System.out.println("\n[INFO] Cosine similarities are saved in file: " + similarityFile.getPath()); FileUtils.writeLines(similarityFile, simLines, false); }
From source file:edu.oregonstate.eecs.mcplan.abstraction.Experiments.java
/** * @param args//from w w w . ja v a 2s . co m * @throws FileNotFoundException */ public static void main(final String[] args) throws Exception { final String experiment_file = args[0]; final File root_directory; if (args.length > 1) { root_directory = new File(args[1]); } else { root_directory = new File("."); } final CsvConfigurationParser csv_config = new CsvConfigurationParser(new FileReader(experiment_file)); final String experiment_name = FilenameUtils.getBaseName(experiment_file); final File expr_directory = new File(root_directory, experiment_name); expr_directory.mkdirs(); for (int expr = 0; expr < csv_config.size(); ++expr) { final KeyValueStore expr_config = csv_config.get(expr); final Configuration config = new Configuration(root_directory.getPath(), experiment_name, expr_config); if ("irrelevance".equals(config.domain)) { final IrrelevanceDomain domain = new IrrelevanceDomain(config, 10); runExperiment(config, domain); } else if ("chain_walk".equals(config.domain)) { final ChainWalkDomain domain = new ChainWalkDomain(config); runExperiment(config, domain); } else if ("blackjack".equals(config.domain)) { final BlackjackDomain domain = new BlackjackDomain(config); runExperiment(config, domain); } else if ("taxi".equals(config.domain)) { final TaxiDomain domain = new TaxiDomain(config); runExperiment(config, domain); } else if ("yahtzee".equals(config.domain)) { final YahtzeeDomain domain = new YahtzeeDomain(config); runExperiment(config, domain); } else if ("frogger".equals(config.domain)) { final FroggerDomain domain = new FroggerDomain(config); runExperiment(config, domain); } else if ("racegrid".equals(config.domain)) { final RacegridDomain domain = new RacegridDomain(config); runExperiment(config, domain); } else if ("race_car".equals(config.domain)) { final RaceCarDomain domain = new RaceCarDomain(config); runExperiment(config, domain); } else if ("tamarisk".equals(config.domain)) { final TamariskDomain domain = new TamariskDomain(config); runExperiment(config, domain); } else if ("fuelworld".equals(config.domain)) { final FuelWorldDomain domain = new FuelWorldDomain(config); runExperiment(config, domain); } else if ("cliffworld".equals(config.domain)) { final CliffWorldDomain domain = new CliffWorldDomain(config); runExperiment(config, domain); } else if ("rddl".equals(config.domain)) { final RddlDomain domain = new RddlDomain(config); runExperiment(config, domain); } else { throw new IllegalArgumentException("domain = " + config.domain); } } }
From source file:de.uni_koblenz.jgralab.utilities.rsa2tg.Rsa2Tg.java
/** * Processes an XMI-file to a TG-file as schema or a schema in a grUML * graph. For all command line options see * {@link Rsa2Tg#processCommandLineOptions(String[])}. * /* ww w. j a v a2 s . c o m*/ * @param args * {@link String} array of command line options. * @throws IOException */ public static void main(String[] args) throws IOException { System.out.println("RSA to TG"); System.out.println("========="); JGraLab.setLogLevel(Level.OFF); // Retrieving all command line options CommandLine cli = processCommandLineOptions(args); assert cli != null : "No CommandLine object has been generated!"; // All XMI input files File input = new File(cli.getOptionValue('i')); Rsa2Tg r = new Rsa2Tg(); r.setUseFromRole(cli.hasOption(OPTION_USE_ROLE_NAME)); r.setRemoveUnusedDomains(cli.hasOption(OPTION_REMOVE_UNUSED_DOMAINS)); r.setKeepEmptyPackages(cli.hasOption(OPTION_KEEP_EMPTY_PACKAGES)); r.setUseNavigability(cli.hasOption(OPTION_USE_NAVIGABILITY)); r.setRemoveComments(cli.hasOption(OPTION_REMOVE_COMMENTS)); r.setIgnoreUnknownStereotypes(cli.hasOption(OPTION_IGNORE_UNKNOWN_STEREOTYPES)); // apply options r.setFilenameSchema(cli.getOptionValue(OPTION_FILENAME_SCHEMA)); r.setFilenameSchemaGraph(cli.getOptionValue(OPTION_FILENAME_SCHEMA_GRAPH)); r.setFilenameDot(cli.getOptionValue(OPTION_FILENAME_DOT)); r.setFilenameValidation(cli.getOptionValue(OPTION_FILENAME_VALIDATION)); // If no output option is selected, Rsa2Tg will write at least the // schema file. boolean noOutputOptionSelected = !cli.hasOption(OPTION_FILENAME_SCHEMA) && !cli.hasOption(OPTION_FILENAME_SCHEMA_GRAPH) && !cli.hasOption(OPTION_FILENAME_DOT) && !cli.hasOption(OPTION_FILENAME_VALIDATION); if (noOutputOptionSelected) { System.out .println("No output option has been selected. " + "A TG-file for the Schema will be written."); // filename have to be set r.setFilenameSchema(createFilename(input)); } try { System.out.println("processing: " + input.getPath() + "\n"); r.process(input.getPath()); } catch (Exception e) { System.err.println("An Exception occured while processing " + input + "."); System.err.println(e.getMessage()); e.printStackTrace(); } System.out.println("Fini."); }
From source file:de.uni_koblenz.jgralab.utilities.rsa.Rsa2Tg.java
/** * Processes an XMI-file to a TG-file as schema or a schema in a grUML * graph. For all command line options see * {@link Rsa2Tg#processCommandLineOptions(String[])}. * /*from www . j av a 2 s . c o m*/ * @param args * {@link String} array of command line options. * @throws IOException */ public static void main(String[] args) throws IOException { System.out.println("RSA to DHHTG"); System.out.println("========="); JGraLab.setLogLevel(Level.OFF); // Retrieving all command line options CommandLine cli = processCommandLineOptions(args); assert cli != null : "No CommandLine object has been generated!"; // All XMI input files File input = new File(cli.getOptionValue('i')); Rsa2Tg r = new Rsa2Tg(); r.setUseFromRole(cli.hasOption(OPTION_USE_ROLE_NAME)); r.setRemoveUnusedDomains(cli.hasOption(OPTION_REMOVE_UNUSED_DOMAINS)); r.setKeepEmptyPackages(cli.hasOption(OPTION_KEEP_EMPTY_PACKAGES)); r.setUseNavigability(cli.hasOption(OPTION_USE_NAVIGABILITY)); // apply options r.setFilenameSchema(cli.getOptionValue(OPTION_FILENAME_SCHEMA)); r.setFilenameSchemaGraph(cli.getOptionValue(OPTION_FILENAME_SCHEMA_GRAPH)); r.setFilenameDot(cli.getOptionValue(OPTION_FILENAME_DOT)); r.setFilenameValidation(cli.getOptionValue(OPTION_FILENAME_VALIDATION)); // If no output option is selected, Rsa2Tg will write at least the // schema file. boolean noOutputOptionSelected = !cli.hasOption(OPTION_FILENAME_SCHEMA) && !cli.hasOption(OPTION_FILENAME_SCHEMA_GRAPH) && !cli.hasOption(OPTION_FILENAME_DOT) && !cli.hasOption(OPTION_FILENAME_VALIDATION); if (noOutputOptionSelected) { System.out.println( "No output option has been selected. " + "A DHHTG-file for the Schema will be written."); // filename have to be set r.setFilenameSchema(createFilename(input)); } try { System.out.println("processing: " + input.getPath() + "\n"); r.process(input.getPath()); } catch (Exception e) { System.err.println("An Exception occured while processing " + input + "."); System.err.println(e.getMessage()); e.printStackTrace(); } System.out.println("Fini."); }
From source file:Main.java
private static String getPath(File mediaStorageDir) { return mediaStorageDir.getPath() + File.separator; }
From source file:Main.java
public static String getFrescoLocalFile(File file) { return "file://" + file.getPath(); }
From source file:Main.java
public static boolean isAvailableExternalMemory(File paramFile) { StatFs localStatFs = new StatFs(paramFile.getPath()); return (int) (localStatFs.getBlockSize() * localStatFs.getAvailableBlocks() / 1048576L) > 15; }