List of usage examples for java.awt.image DataBuffer TYPE_DOUBLE
int TYPE_DOUBLE
To view the source code for java.awt.image DataBuffer TYPE_DOUBLE.
Click Source Link
From source file:nitf.imageio.NITFReader.java
@Override public Raster readRaster(int imageIndex, ImageReadParam param) throws IOException { checkIndex(imageIndex);// w w w. j a va 2s .co m Rectangle sourceRegion = new Rectangle(); Rectangle destRegion = new Rectangle(); computeRegions(param, getWidth(imageIndex), getHeight(imageIndex), null, sourceRegion, destRegion); // Set everything to default values int sourceXSubsampling = param != null ? param.getSourceXSubsampling() : 1; int sourceYSubsampling = param != null ? param.getSourceYSubsampling() : 1; Point destinationOffset = param != null ? param.getDestinationOffset() : new Point(0, 0); ImageSubheader subheader; try { subheader = record.getImages()[imageIndex].getSubheader(); } catch (NITFException e) { throw new IOException(ExceptionUtils.getStackTrace(e)); } String irep = subheader.getImageRepresentation().getStringData().trim(); String pvType = subheader.getPixelValueType().getStringData().trim(); int nbpp = subheader.getNumBitsPerPixel().getIntData(); int bandCount = subheader.getBandCount(); // make the band offsets array, for the output int[] bandOffsets = null; int[] sourceBands = param != null ? param.getSourceBands() : null; if (param != null && param.getDestinationBands() != null) bandOffsets = param.getDestinationBands(); else if (param != null && sourceBands != null) { bandOffsets = new int[sourceBands.length]; for (int i = 0; i < bandOffsets.length; i++) bandOffsets[i] = sourceBands[i]; } else { // Setup band offsets -- TODO should we really read ALL bands by // default? bandOffsets = new int[bandCount]; for (int i = 0; i < bandOffsets.length; i++) bandOffsets[i] = i; } int nBytes = ((nbpp - 1) / 8) + 1; int bufType = -1; // byte if (nBytes == 1) { bufType = DataBuffer.TYPE_BYTE; } // short else if (nBytes == 2) { bufType = DataBuffer.TYPE_USHORT; } // float else if (nBytes == 4 && pvType.equals("R")) { bufType = DataBuffer.TYPE_FLOAT; } // double else if (nBytes == 8 && pvType.equals("R")) { bufType = DataBuffer.TYPE_DOUBLE; } else { throw new NotImplementedException("not yet implemented"); } WritableRaster ras = ImageIOUtils.makeGenericPixelInterleavedWritableRaster(destRegion.width, destRegion.height, bandOffsets.length, bufType); checkReadParamBandSettings(param, bandCount, ras.getSampleModel().getNumBands()); readRaster(imageIndex, sourceRegion, destRegion, sourceXSubsampling, sourceYSubsampling, bandOffsets, nBytes, destinationOffset, ras); return ras; }
From source file:org.apache.xmlgraphics.ps.PSImageUtils.java
/** * Extracts a packed RGB integer array of a RenderedImage. * @param img the image//from w ww .jav a 2 s .com * @param startX the starting X coordinate * @param startY the starting Y coordinate * @param w the width of the cropped image * @param h the height of the cropped image * @param rgbArray the prepared integer array to write to * @param offset offset in the target array * @param scansize width of a row in the target array * @return the populated integer array previously passed in as rgbArray parameter */ public static int[] getRGB(RenderedImage img, int startX, int startY, int w, int h, int[] rgbArray, int offset, int scansize) { Raster raster = img.getData(); int yoff = offset; int off; Object data; int nbands = raster.getNumBands(); int dataType = raster.getDataBuffer().getDataType(); switch (dataType) { case DataBuffer.TYPE_BYTE: data = new byte[nbands]; break; case DataBuffer.TYPE_USHORT: data = new short[nbands]; break; case DataBuffer.TYPE_INT: data = new int[nbands]; break; case DataBuffer.TYPE_FLOAT: data = new float[nbands]; break; case DataBuffer.TYPE_DOUBLE: data = new double[nbands]; break; default: throw new IllegalArgumentException("Unknown data buffer type: " + dataType); } if (rgbArray == null) { rgbArray = new int[offset + h * scansize]; } ColorModel colorModel = img.getColorModel(); for (int y = startY; y < startY + h; y++, yoff += scansize) { off = yoff; for (int x = startX; x < startX + w; x++) { rgbArray[off++] = colorModel.getRGB(raster.getDataElements(x, y, data)); } } return rgbArray; }
From source file:org.esa.nest.gpf.ERSCalibrator.java
private static RenderedImage createRenderedImage(final double[] array, final int width, final int height) { // create rendered image with demension being width by height final SampleModel sampleModel = RasterFactory.createBandedSampleModel(DataBuffer.TYPE_DOUBLE, width, height, 1);/* ww w .j av a 2s .co m*/ final ColorModel colourModel = PlanarImage.createColorModel(sampleModel); final DataBufferDouble dataBuffer = new DataBufferDouble(array, array.length); final WritableRaster raster = RasterFactory.createWritableRaster(sampleModel, dataBuffer, new Point(0, 0)); return new BufferedImage(colourModel, raster, false, new Hashtable()); }
From source file:org.esa.nest.gpf.GCPSelectionOp.java
private static RenderedImage createRenderedImage(final double[] array, final int w, final int h) { // create rendered image with demension being width by height final SampleModel sampleModel = RasterFactory.createBandedSampleModel(DataBuffer.TYPE_DOUBLE, w, h, 1); final ColorModel colourModel = PlanarImage.createColorModel(sampleModel); final DataBufferDouble dataBuffer = new DataBufferDouble(array, array.length); final WritableRaster raster = RasterFactory.createWritableRaster(sampleModel, dataBuffer, new Point(0, 0)); return new BufferedImage(colourModel, raster, false, new Hashtable()); }
From source file:org.esa.nest.gpf.oceantools.WindFieldEstimationOp.java
private static RenderedImage createRenderedImage(double[] array, int width, int height) { // create rendered image with demension being width by height final SampleModel sampleModel = RasterFactory.createBandedSampleModel(DataBuffer.TYPE_DOUBLE, width, height, 1);/*from w w w . j av a 2 s .c om*/ final ColorModel colourModel = PlanarImage.createColorModel(sampleModel); final DataBufferDouble dataBuffer = new DataBufferDouble(array, array.length); final WritableRaster raster = RasterFactory.createWritableRaster(sampleModel, dataBuffer, new Point(0, 0)); return new BufferedImage(colourModel, raster, false, new Hashtable()); }
From source file:org.esa.s1tbx.insar.gpf.coregistration.CrossCorrelationOp.java
private static RenderedImage createRenderedImage(final double[] array, final int w, final int h) { // create rendered image with dimension being width by height final SampleModel sampleModel = RasterFactory.createBandedSampleModel(DataBuffer.TYPE_DOUBLE, w, h, 1); final ColorModel colourModel = PlanarImage.createColorModel(sampleModel); final DataBufferDouble dataBuffer = new DataBufferDouble(array, array.length); final WritableRaster raster = RasterFactory.createWritableRaster(sampleModel, dataBuffer, new Point(0, 0)); return new BufferedImage(colourModel, raster, false, new Hashtable()); }
From source file:org.freecine.filmscan.ScanStrip.java
/** Try to find perforation corners using (modified) Hough transform. After the hough transform, matching pairs of top and bottom corners are found and clustered into pointClusterws list./*w w w. ja v a2s . c om*/ */ void houghTransform() { // Siebel transform of stripImage KernelJAI sxKernel = new KernelJAI(3, 3, new float[] { -1.0f, 0.0f, 1.0f, -2.0f, 0.0f, 2.0f, -1.0f, 0.0f, 1.0f }); KernelJAI syKernel = new KernelJAI(3, 3, new float[] { -1.0f, -2.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 2.0f, 1.0f }); RenderedImage dblImg = FormatDescriptor.create(stripImage, DataBuffer.TYPE_DOUBLE, null); RenderedImage sxImg = ConvolveDescriptor.create(dblImg, sxKernel, null); RenderedImage syImg = ConvolveDescriptor.create(dblImg, syKernel, null); SampleModel sm = sxImg.getSampleModel(); int nbands = sm.getNumBands(); double[] sxPixel = new double[nbands]; double[] syPixel = new double[nbands]; /* We are interested only in the left side of the strip as the perforations are there */ Rectangle perfArea = new Rectangle(0, 0, stripImage.getWidth() / 4, stripImage.getHeight()); RectIter sxIter = RectIterFactory.create(sxImg, perfArea); RectIter syIter = RectIterFactory.create(syImg, perfArea); int width = (int) perfArea.getWidth(); int height = (int) perfArea.getHeight(); /* We use 2 accumulators - one for detecting the upper right corner, one for lower right corner. As the original is huge and the detaile we are looking for are tiny, we use a sliding window that stores only the relevant part of accumulator. */ int accumHeight = (int) maxCornerRadius + 2; int[][] startAccum = new int[(int) (maxCornerRadius - minCornerRadius)][width * accumHeight]; int[][] endAccum = new int[(int) (maxCornerRadius - minCornerRadius)][width * accumHeight]; List<Point> startCorners = new ArrayList<Point>(); List<Point> endCorners = new ArrayList<Point>(); int y = 0; int maxVal = 0; if (analysisListener != null) { analysisListener.scanAnalysisProgress(0, height); } while (!sxIter.nextLineDone() && !syIter.nextLineDone()) { if (y % 1000 == 0 && y > 0) { System.out.println("" + y + " lines analyzed"); } sxIter.startPixels(); syIter.startPixels(); int x = 0; while (!sxIter.nextPixelDone() && !syIter.nextPixelDone()) { sxIter.getPixel(sxPixel); syIter.getPixel(syPixel); double isq = sxPixel[0] * sxPixel[0] + syPixel[0] * syPixel[0]; if (isq > EDGE_MIN_GRADIENT * EDGE_MIN_GRADIENT) { // This seems like a border if (syPixel[0] <= 0 && sxPixel[0] >= 0) { // Upper right corner candidate double intensity = Math.sqrt(isq); for (double r = minCornerRadius; r < maxCornerRadius; r += 1.0) { double cx = (double) x - r * sxPixel[0] / intensity; double cy = (double) y - r * syPixel[0] / intensity; if (cx > 0.0) { int accumLine = (int) cy % accumHeight; startAccum[(int) (r - minCornerRadius)][(int) cx + width * accumLine]++; if (startAccum[(int) (r - minCornerRadius)][(int) cx + width * accumLine] > maxVal) { maxVal = startAccum[(int) (r - minCornerRadius)][(int) cx + width * accumLine]; } } } } if (syPixel[0] >= 0 && sxPixel[0] >= 0) { // Lower right corner candidate double intensity = Math.sqrt(isq); for (double r = minCornerRadius; r < maxCornerRadius; r += 1.0) { double cx = (double) x - r * sxPixel[0] / intensity; double cy = (double) y - r * syPixel[0] / intensity; if (cx > 0.0 && cy > 0.0) { int accumLine = (int) cy % accumHeight; endAccum[(int) (r - minCornerRadius)][(int) cx + width * accumLine]++; if (endAccum[(int) (r - minCornerRadius)][(int) cx + width * accumLine] > maxVal) { maxVal = endAccum[(int) (r - minCornerRadius)][(int) cx + width * accumLine]; } } } } } x++; } y++; /* 1 line processed - check if there are corner candidates in the accumulator line we are going to overwrite */ int y2 = y - accumHeight; int l = y % accumHeight; if (y2 > 0) { for (int n = 0; n < perfArea.getWidth(); n++) { for (int r = 0; r < (int) (maxCornerRadius - minCornerRadius); r++) { if (startAccum[r][n + width * l] >= CORNER_MIN_HOUGH) { // Is this a local maxima? int val = startAccum[r][n + width * l]; if (val == getLocalMaxima(startAccum, r, n, y, width)) { startCorners.add(new Point(n, y)); System.out.println(String.format("Found corner, quality = %d, r = %d, (%d, %d)", val, r, n, y)); // imageDataSingleArray[n+width*y] = (byte) 0xff; } } if (endAccum[r][n + width * l] > CORNER_MIN_HOUGH) { // Is this a local maxima? int val = endAccum[r][n + width * l]; if (val == getLocalMaxima(endAccum, r, n, y2, width)) { endCorners.add(new Point(n, y2)); System.out.println(String.format("Found end corner, quality = %d, r = %d, (%d, %d)", val, r, n, y2)); // imageDataSingleArray[n+width*y2] = (byte) 0x80; } } } } } // Zero the line just analyzed - it will be reused for the next line for (int n = 0; n < perfArea.getWidth(); n++) { for (int r = 0; r < (int) (maxCornerRadius - minCornerRadius); r++) { startAccum[r][n + width * (y % accumHeight)] = 0; endAccum[r][n + width * (y % accumHeight)] = 0; } } if ((y % 100 == 1) && analysisListener != null) { analysisListener.scanAnalysisProgress(y - 1, height); } } if (analysisListener != null) { analysisListener.scanAnalysisProgress(height, height); } /* Find perforations, i.e. pairs of start and end corners that are within the specified range from each other */ for (Point sp : startCorners) { for (Point ep : endCorners) { if (ep.y - sp.y > CC_MAX_DIST) { break; } if (Math.abs(ep.x - sp.x) < 10 && ep.y - sp.y > CC_MIN_DIST) { Perforation p = new Perforation(); p.x = (ep.x + sp.x) >> 1; p.y = (ep.y + sp.y) >> 1; // imageDataSingleArray[p.x+width*p.y] = (byte) 0x40; addPointToCluster(p.x, p.y); } } } System.out.println(String.format("%d clusters:", pointClusters.size())); for (PointCluster c : pointClusters) { System.out.println( String.format(" (%d, %d) %d points", c.getCentroidX(), c.getCentroidY(), c.getPointCount())); // imageDataSingleArray[c.getCentroidX()+width*c.getCentroidY()] = (byte) 0xff; } }
From source file:org.geoserver.jai.ConcurrentTileFactory.java
/** * Builds a new tile, eventually recycling the data array backing it *///from ww w.j av a2 s .c o m public WritableRaster createTile(SampleModel sampleModel, Point location) { // sanity checks if (sampleModel == null) { throw new NullPointerException("sampleModel cannot be null"); } if (location == null) { location = new Point(0, 0); } DataBuffer db = null; // get the three elements making the key into the recycled array map int type = sampleModel.getTransferType(); long numBanks = 0; long size = 0; if (sampleModel instanceof ComponentSampleModel) { ComponentSampleModel csm = (ComponentSampleModel) sampleModel; numBanks = getNumBanksCSM(csm); size = getBufferSizeCSM(csm); } else if (sampleModel instanceof MultiPixelPackedSampleModel) { MultiPixelPackedSampleModel mppsm = (MultiPixelPackedSampleModel) sampleModel; numBanks = 1; int dataTypeSize = DataBuffer.getDataTypeSize(type); size = mppsm.getScanlineStride() * mppsm.getHeight() + (mppsm.getDataBitOffset() + dataTypeSize - 1) / dataTypeSize; } else if (sampleModel instanceof SinglePixelPackedSampleModel) { SinglePixelPackedSampleModel sppsm = (SinglePixelPackedSampleModel) sampleModel; numBanks = 1; size = sppsm.getScanlineStride() * (sppsm.getHeight() - 1) + sppsm.getWidth(); } if (size > 0) { // try to build a new data buffer starting from Object array = recycledArrays.getRecycledArray(type, numBanks, size); if (array != null) { switch (type) { case DataBuffer.TYPE_BYTE: { byte[][] bankData = (byte[][]) array; for (int i = 0; i < numBanks; i++) { Arrays.fill(bankData[i], (byte) 0); } db = new DataBufferByte(bankData, (int) size); } break; case DataBuffer.TYPE_USHORT: { short[][] bankData = (short[][]) array; for (int i = 0; i < numBanks; i++) { Arrays.fill(bankData[i], (short) 0); } db = new DataBufferUShort(bankData, (int) size); } break; case DataBuffer.TYPE_SHORT: { short[][] bankData = (short[][]) array; for (int i = 0; i < numBanks; i++) { Arrays.fill(bankData[i], (short) 0); } db = new DataBufferShort(bankData, (int) size); } break; case DataBuffer.TYPE_INT: { int[][] bankData = (int[][]) array; for (int i = 0; i < numBanks; i++) { Arrays.fill(bankData[i], 0); } db = new DataBufferInt(bankData, (int) size); } break; case DataBuffer.TYPE_FLOAT: { float[][] bankData = (float[][]) array; for (int i = 0; i < numBanks; i++) { Arrays.fill(bankData[i], 0.0F); } db = DataBufferUtils.createDataBufferFloat(bankData, (int) size); } break; case DataBuffer.TYPE_DOUBLE: { double[][] bankData = (double[][]) array; for (int i = 0; i < numBanks; i++) { Arrays.fill(bankData[i], 0.0); } db = DataBufferUtils.createDataBufferDouble(bankData, (int) size); } break; default: throw new IllegalArgumentException("Unknown array type"); } } } if (db == null) { db = sampleModel.createDataBuffer(); } return Raster.createWritableRaster(sampleModel, db, location); }
From source file:org.geotools.imageio.netcdf.NetCDFImageReader.java
/** * @see javax.imageio.ImageReader#read(int, javax.imageio.ImageReadParam) */// ww w .j a va2s . c o m @Override public BufferedImage read(int imageIndex, ImageReadParam param) throws IOException { clearAbortRequest(); final Slice2DIndex slice2DIndex = getSlice2DIndex(imageIndex); final String variableName = slice2DIndex.getVariableName(); final VariableAdapter wrapper = getCoverageDescriptor(new NameImpl(variableName)); /* * Fetches the parameters that are not already processed by utility * methods like 'getDestination' or 'computeRegions' (invoked below). */ final int strideX, strideY; // final int[] srcBands; final int[] dstBands; if (param != null) { strideX = param.getSourceXSubsampling(); strideY = param.getSourceYSubsampling(); // srcBands = param.getSourceBands(); dstBands = param.getDestinationBands(); } else { strideX = 1; strideY = 1; // srcBands = null; dstBands = null; } /* * Gets the destination image of appropriate size. We create it now * since it is a convenient way to get the number of destination bands. */ final int width = wrapper.getWidth(); final int height = wrapper.getHeight(); /* * Computes the source region (in the NetCDF file) and the destination * region (in the buffered image). Copies those informations into UCAR * Range structure. */ final Rectangle srcRegion = new Rectangle(); final Rectangle destRegion = new Rectangle(); computeRegions(param, width, height, null, srcRegion, destRegion); // Flipping is needed only when the input latitude coordinate is ordered // from min to max if (needsFlipping) { flipVertically(param, height, srcRegion); } int destWidth = destRegion.x + destRegion.width; int destHeight = destRegion.y + destRegion.height; /* * build the ranges that need to be read from each * dimension based on the source region */ final List<Range> ranges = new LinkedList<Range>(); try { // add the ranges the COARDS way: T, Z, Y, X // T int first = slice2DIndex.getTIndex(); int length = 1; int stride = 1; if (first != -1) { ranges.add(new Range(first, first + length - 1, stride)); } // Z first = slice2DIndex.getZIndex(); if (first != -1) { ranges.add(new Range(first, first + length - 1, stride)); } // Y first = srcRegion.y; length = srcRegion.height; stride = strideY; ranges.add(new Range(first, first + length - 1, stride)); // X first = srcRegion.x; length = srcRegion.width; stride = strideX; ranges.add(new Range(first, first + length - 1, stride)); } catch (InvalidRangeException e) { throw netcdfFailure(e); } /* * create the section of multidimensional array indices * that defines the exact data that need to be read * for this image index and parameters */ final Section section = new Section(ranges); /* * Setting SampleModel and ColorModel. */ final SampleModel sampleModel = wrapper.getSampleModel().createCompatibleSampleModel(destWidth, destHeight); final ColorModel colorModel = ImageIOUtilities.createColorModel(sampleModel); final WritableRaster raster = Raster.createWritableRaster(sampleModel, new Point(0, 0)); final BufferedImage image = new BufferedImage(colorModel, raster, colorModel.isAlphaPremultiplied(), null); CoordinateAxis axis = wrapper.variableDS.getCoordinateSystems().get(0).getLatAxis(); boolean flipYAxis = false; try { Array yAxisStart = axis.read(new Section().appendRange(2)); float y1 = yAxisStart.getFloat(0); float y2 = yAxisStart.getFloat(1); if (y2 > y1) { flipYAxis = true; } } catch (InvalidRangeException e) { throw new RuntimeException(e); } /* * Reads the requested sub-region only. */ processImageStarted(imageIndex); final int numDstBands = 1; final float toPercent = 100f / numDstBands; final int type = raster.getSampleModel().getDataType(); final int xmin = destRegion.x; final int ymin = destRegion.y; final int xmax = destRegion.width + xmin; final int ymax = destRegion.height + ymin; for (int zi = 0; zi < numDstBands; zi++) { // final int srcBand = (srcBands == null) ? zi : srcBands[zi]; final int dstBand = (dstBands == null) ? zi : dstBands[zi]; final Array array; try { // TODO leak through array = wrapper.variableDS.read(section); } catch (InvalidRangeException e) { throw netcdfFailure(e); } if (flipYAxis) { final IndexIterator it = array.getIndexIterator(); for (int y = ymax; --y >= ymin;) { for (int x = xmin; x < xmax; x++) { switch (type) { case DataBuffer.TYPE_DOUBLE: { raster.setSample(x, y, dstBand, it.getDoubleNext()); break; } case DataBuffer.TYPE_FLOAT: { raster.setSample(x, y, dstBand, it.getFloatNext()); break; } case DataBuffer.TYPE_BYTE: { byte b = it.getByteNext(); // int myByte = (0x000000FF & ((int) b)); // short anUnsignedByte = (short) myByte; // raster.setSample(x, y, dstBand, anUnsignedByte); raster.setSample(x, y, dstBand, b); break; } default: { raster.setSample(x, y, dstBand, it.getIntNext()); break; } } } } } else { switch (type) { case DataBuffer.TYPE_DOUBLE: { DoubleBuffer doubleBuffer = array.getDataAsByteBuffer().asDoubleBuffer(); double[] samples = new double[destRegion.width * destRegion.height]; doubleBuffer.get(samples); raster.setSamples(xmin, ymin, destRegion.width, destRegion.height, dstBand, samples); break; } case DataBuffer.TYPE_FLOAT: float[] samples = new float[destRegion.width * destRegion.height]; FloatBuffer floatBuffer = array.getDataAsByteBuffer().asFloatBuffer(); floatBuffer.get(samples); raster.setSamples(xmin, ymin, destRegion.width, destRegion.height, dstBand, samples); break; case DataBuffer.TYPE_BYTE: //THIS ONLY WORKS FOR ONE BAND!! raster.setDataElements(xmin, ymin, destRegion.width, destRegion.height, array.getDataAsByteBuffer().array()); break; case DataBuffer.TYPE_INT: IntBuffer intBuffer = array.getDataAsByteBuffer().asIntBuffer(); int[] intSamples = new int[destRegion.width * destRegion.height]; intBuffer.get(intSamples); raster.setSamples(xmin, ymin, destRegion.width, destRegion.height, dstBand, intSamples); break; default: { final IndexIterator it = array.getIndexIterator(); for (int y = ymin; y < ymax; y++) { for (int x = xmin; x < xmax; x++) { raster.setSample(x, y, dstBand, it.getIntNext()); } } break; } } } /* * Checks for abort requests after reading. It would be a waste of a * potentially good image (maybe the abort request occurred after we * just finished the reading) if we didn't implemented the * 'isCancel()' method. But because of the later, which is checked * by the NetCDF library, we can't assume that the image is * complete. */ if (abortRequested()) { processReadAborted(); return image; } /* * Reports progress here, not in the deeper loop, because the costly * part is the call to 'variable.read(...)' which can't report * progress. The loop that copy pixel values is fast, so reporting * progress there would be pointless. */ processImageProgress(zi * toPercent); } processImageComplete(); return image; }
From source file:org.geotools.imageio.unidata.UnidataImageReader.java
/** * @see javax.imageio.ImageReader#read(int, javax.imageio.ImageReadParam) *//*from w w w .j a va 2 s . c o m*/ @Override public BufferedImage read(int imageIndex, ImageReadParam param) throws IOException { clearAbortRequest(); final UnidataSlice2DIndex slice2DIndex = getSlice2DIndex(imageIndex); final String variableName = slice2DIndex.getVariableName(); final UnidataVariableAdapter wrapper = getCoverageDescriptor(new NameImpl(variableName)); /* * Fetches the parameters that are not already processed by utility * methods like 'getDestination' or 'computeRegions' (invoked below). */ final int strideX, strideY; // final int[] srcBands; final int[] dstBands; if (param != null) { strideX = param.getSourceXSubsampling(); strideY = param.getSourceYSubsampling(); // srcBands = param.getSourceBands(); dstBands = param.getDestinationBands(); } else { strideX = 1; strideY = 1; // srcBands = null; dstBands = null; } /* * Gets the destination image of appropriate size. We create it now * since it is a convenient way to get the number of destination bands. */ final int width = wrapper.getWidth(); final int height = wrapper.getHeight(); /* * Computes the source region (in the NetCDF file) and the destination * region (in the buffered image). Copies those informations into UCAR * Range structure. */ final Rectangle srcRegion = new Rectangle(); final Rectangle destRegion = new Rectangle(); computeRegions(param, width, height, null, srcRegion, destRegion); flipVertically(param, height, srcRegion); int destWidth = destRegion.x + destRegion.width; int destHeight = destRegion.y + destRegion.height; /* * build the ranges that need to be read from each * dimension based on the source region */ final List<Range> ranges = new LinkedList<Range>(); try { // add the ranges the COARDS way: T, Z, Y, X // T int first = slice2DIndex.getTIndex(); int length = 1; int stride = 1; if (first != -1) { ranges.add(new Range(first, first + length - 1, stride)); } // Z first = slice2DIndex.getZIndex(); if (first != -1) { ranges.add(new Range(first, first + length - 1, stride)); } // Y first = srcRegion.y; length = srcRegion.height; stride = strideY; ranges.add(new Range(first, first + length - 1, stride)); // X first = srcRegion.x; length = srcRegion.width; stride = strideX; ranges.add(new Range(first, first + length - 1, stride)); } catch (InvalidRangeException e) { throw netcdfFailure(e); } /* * create the section of multidimensional array indices * that defines the exact data that need to be read * for this image index and parameters */ final Section section = new Section(ranges); /* * Setting SampleModel and ColorModel. */ final SampleModel sampleModel = wrapper.getSampleModel().createCompatibleSampleModel(destWidth, destHeight); final ColorModel colorModel = ImageIOUtilities.createColorModel(sampleModel); final WritableRaster raster = Raster.createWritableRaster(sampleModel, new Point(0, 0)); final BufferedImage image = new BufferedImage(colorModel, raster, colorModel.isAlphaPremultiplied(), null); CoordinateAxis axis = wrapper.variableDS.getCoordinateSystems().get(0).getLatAxis(); boolean flipYAxis = false; try { Array yAxisStart = axis.read(new Section().appendRange(2)); float y1 = yAxisStart.getFloat(0); float y2 = yAxisStart.getFloat(1); if (y2 > y1) { flipYAxis = true; } } catch (InvalidRangeException e) { throw new RuntimeException(e); } /* * Reads the requested sub-region only. */ processImageStarted(imageIndex); final int numDstBands = 1; final float toPercent = 100f / numDstBands; final int type = raster.getSampleModel().getDataType(); final int xmin = destRegion.x; final int ymin = destRegion.y; final int xmax = destRegion.width + xmin; final int ymax = destRegion.height + ymin; for (int zi = 0; zi < numDstBands; zi++) { // final int srcBand = (srcBands == null) ? zi : srcBands[zi]; final int dstBand = (dstBands == null) ? zi : dstBands[zi]; final Array array; try { // TODO leak through array = wrapper.variableDS.read(section); } catch (InvalidRangeException e) { throw netcdfFailure(e); } if (flipYAxis) { final IndexIterator it = array.getIndexIterator(); for (int y = ymax; --y >= ymin;) { for (int x = xmin; x < xmax; x++) { switch (type) { case DataBuffer.TYPE_DOUBLE: { raster.setSample(x, y, dstBand, it.getDoubleNext()); break; } case DataBuffer.TYPE_FLOAT: { raster.setSample(x, y, dstBand, it.getFloatNext()); break; } case DataBuffer.TYPE_BYTE: { byte b = it.getByteNext(); // int myByte = (0x000000FF & ((int) b)); // short anUnsignedByte = (short) myByte; // raster.setSample(x, y, dstBand, anUnsignedByte); raster.setSample(x, y, dstBand, b); break; } default: { raster.setSample(x, y, dstBand, it.getIntNext()); break; } } } } } else { switch (type) { case DataBuffer.TYPE_DOUBLE: { DoubleBuffer doubleBuffer = array.getDataAsByteBuffer().asDoubleBuffer(); double[] samples = new double[destRegion.width * destRegion.height]; doubleBuffer.get(samples); raster.setSamples(xmin, ymin, destRegion.width, destRegion.height, dstBand, samples); break; } case DataBuffer.TYPE_FLOAT: float[] samples = new float[destRegion.width * destRegion.height]; FloatBuffer floatBuffer = array.getDataAsByteBuffer().asFloatBuffer(); floatBuffer.get(samples); raster.setSamples(xmin, ymin, destRegion.width, destRegion.height, dstBand, samples); break; case DataBuffer.TYPE_BYTE: //THIS ONLY WORKS FOR ONE BAND!! raster.setDataElements(xmin, ymin, destRegion.width, destRegion.height, array.getDataAsByteBuffer().array()); break; case DataBuffer.TYPE_INT: IntBuffer intBuffer = array.getDataAsByteBuffer().asIntBuffer(); int[] intSamples = new int[destRegion.width * destRegion.height]; intBuffer.get(intSamples); raster.setSamples(xmin, ymin, destRegion.width, destRegion.height, dstBand, intSamples); break; default: { final IndexIterator it = array.getIndexIterator(); for (int y = ymin; y < ymax; y++) { for (int x = xmin; x < xmax; x++) { raster.setSample(x, y, dstBand, it.getIntNext()); } } break; } } } /* * Checks for abort requests after reading. It would be a waste of a * potentially good image (maybe the abort request occurred after we * just finished the reading) if we didn't implemented the * 'isCancel()' method. But because of the later, which is checked * by the NetCDF library, we can't assume that the image is * complete. */ if (abortRequested()) { processReadAborted(); return image; } /* * Reports progress here, not in the deeper loop, because the costly * part is the call to 'variable.read(...)' which can't report * progress. The loop that copy pixel values is fast, so reporting * progress there would be pointless. */ processImageProgress(zi * toPercent); } processImageComplete(); return image; }