List of usage examples for java.awt.geom Point2D.Double getY
public abstract double getY();
From source file:at.tuwien.ifs.somtoolbox.apps.viewer.controls.ClusteringControl.java
/** Makes sure all controls are displayed as needed. Currently deals with the {@link #kmeansInitialisationPanel} */ public void updateControlDisplay() { kmeansInitialisationPanel.setVisible(mapPane.getMap().getCurrentClusteringTree() != null && mapPane.getMap().getClusteringTreeBuilder() instanceof KMeansTreeBuilder); ClusteringTree clusteringTree = mapPane.getMap().getCurrentClusteringTree(); if (clusteringTree == null) return;//ww w . j a v a 2 s. co m Tree<ClusterNode, Integer> tree = clusteringTree.getJUNGTree(); TreeLayout<ClusterNode, Integer> layout = new TreeLayout<ClusterNode, Integer>(tree, 30, 100); final double maxMergeCost = clusteringTree.getMaxMergeCost(); final double minMergeCost = clusteringTree.getMinMergeCost(); final VisualizationViewer<ClusterNode, Integer> vv = new VisualizationViewer<ClusterNode, Integer>(layout); // setup edge rendering vv.getRenderContext().setEdgeShapeTransformer(new EdgeShape.Line<ClusterNode, Integer>()); vv.getRenderContext().setEdgeStrokeTransformer(new Transformer<Integer, Stroke>() { @Override public Stroke transform(Integer integer) { return new BasicStroke(1.0f); } }); vv.getRenderContext().setEdgeArrowPredicate( PredicateUtils.<Context<Graph<ClusterNode, Integer>, Integer>>falsePredicate()); vv.getRenderContext().setEdgeDrawPaintTransformer(new Transformer<Integer, Paint>() { @Override public Paint transform(Integer edge) { return Color.BLACK; } }); // setup vertex rendering vv.getRenderContext().setVertexLabelTransformer(new Transformer<ClusterNode, String>() { @Override public String transform(ClusterNode clusterNode) { Point2D.Double centroid = clusterNode.getCentroid(); return String.format("%d @ (%f, %f)", clusterNode.getNodes().length, centroid.getX(), centroid.getY()); } }); vv.getRenderContext().setVertexFillPaintTransformer(new Transformer<ClusterNode, Paint>() { @Override public Paint transform(ClusterNode clusterNode) { Palette palette = mapPane.getState().getSOMViewer().getCurrentlySelectedPalette(); double pos = clusterNode.getMergeCost() - minMergeCost; pos /= maxMergeCost - minMergeCost; pos *= palette.getNumberOfColours() - 1; return palette.getColor((int) pos); } }); vv.getRenderContext().setVertexStrokeTransformer(new Transformer<ClusterNode, Stroke>() { @Override public Stroke transform(ClusterNode clusterNode) { if (vv.getPickedVertexState().isPicked(clusterNode)) return new BasicStroke(3.0f); else return new BasicStroke(1.0f); } }); vv.setVertexToolTipTransformer(new Transformer<ClusterNode, String>() { @Override public String transform(ClusterNode clusterNode) { StringBuilder result = new StringBuilder(); result.append("Level: ").append(clusterNode.getLevel()).append("\r\n"); result.append("Merge-cost: ").append(String.format("%.2f", clusterNode.getMergeCost())) .append("\r\n"); result.append("Centroid: ").append(String.format("%.2f", clusterNode.getCentroid().getX())) .append(", ").append(String.format("%.2f", clusterNode.getCentroid().getY())) .append("\r\n"); result.append("Factor-value: ").append(String.format("%.2f", clusterNode.getFactorValue())) .append("\r\n"); result.append("#Nodes: ").append(clusterNode.getUnitNodes().length).append("\r\n"); result.append("Mean-vector: "); for (double d : clusterNode.getMeanVector()) result.append(String.format("%.2f", d)).append(", "); result.append("\r\n"); result.append("Bounds: (x=").append(String.format("%.2f", clusterNode.getX())).append(", y=") .append(String.format("%.2f", clusterNode.getY())).append(", w=") .append(String.format("%.2f", clusterNode.getWidth())).append(", h=") .append(String.format("%.2f", clusterNode.getHeight())).append(")\r\n"); return result.toString(); } }); GraphZoomScrollPane vv2 = new GraphZoomScrollPane(vv); vv2.setPreferredSize(new Dimension(dendogramPanel.getParent().getWidth(), 200)); vv2.setVisible(true); DefaultModalGraphMouse<ClusterNode, Integer> graphMouse = new DefaultModalGraphMouse<ClusterNode, Integer>(); vv.setGraphMouse(graphMouse); graphMouse.setMode(ModalGraphMouse.Mode.PICKING); vv.addGraphMouseListener(new GraphMouseListener<ClusterNode>() { private ClusterNode previouslySelected; @Override public void graphClicked(ClusterNode clusterNode, MouseEvent me) { if (previouslySelected != null) previouslySelected.setSelected(false); clusterNode.setSelected(true); previouslySelected = clusterNode; numClusters = clusterNode.getLevel(); SortedMap<Integer, ClusterElementsStorage> m = mapPane.getMap().getCurrentClusteringTree() .getAllClusteringElements(); if (m.containsKey(numClusters)) { st = m.get(numClusters).sticky; } else { st = false; } sticky.setSelected(st); redrawClustering(); } @Override public void graphPressed(ClusterNode clusterNode, MouseEvent me) { } @Override public void graphReleased(ClusterNode clusterNode, MouseEvent me) { } }); dendogramPanel.removeAll(); dendogramPanel.add(vv2); getContentPane().validate(); }
From source file:de.biomedical_imaging.traj.math.TrajectorySplineFit.java
/** * Calculates a spline to a trajectory. Attention: The spline is fitted through a rotated version of the trajectory. * To fit the spline the trajectory is rotated into its main direction. You can access this rotated trajectory by * {@link #getRotatedTrajectory() getRotatedTrajectory}. * @return The fitted spline/*from w ww. ja va 2 s .c o m*/ */ public PolynomialSplineFunction calculateSpline() { successfull = false; /* * 1.Calculate the minimum bounding rectangle */ ArrayList<Point2D.Double> points = new ArrayList<Point2D.Double>(); for (int i = 0; i < t.size(); i++) { Point2D.Double p = new Point2D.Double(); p.setLocation(t.get(i).x, t.get(i).y); points.add(p); } /* * 1.1 Rotate that the major axis is parallel with the xaxis */ Array2DRowRealMatrix gyr = RadiusGyrationTensor2D.getRadiusOfGyrationTensor(t); EigenDecomposition eigdec = new EigenDecomposition(gyr); double inRad = -1 * Math.atan2(eigdec.getEigenvector(0).getEntry(1), eigdec.getEigenvector(0).getEntry(0)); boolean doTransform = (Math.abs(Math.abs(inRad) - Math.PI) > 0.001); if (doTransform) { angleRotated = inRad; for (int i = 0; i < t.size(); i++) { double x = t.get(i).x; double y = t.get(i).y; double newX = x * Math.cos(inRad) - y * Math.sin(inRad); double newY = x * Math.sin(inRad) + y * Math.cos(inRad); rotatedTrajectory.add(newX, newY, 0); points.get(i).setLocation(newX, newY); } //for(int i = 0; i < rect.length; i++){ // rect[i].setLocation(rect[i].x*Math.cos(inRad)-rect[i].y*Math.sin(inRad), rect[i].x*Math.sin(inRad)+rect[i].y*Math.cos(inRad)); //} } else { angleRotated = 0; rotatedTrajectory = t; } /* * 2. Divide the rectangle in n equal segments * 2.1 Calculate line in main direction * 2.2 Project the points in onto this line * 2.3 Calculate the distance between the start of the line and the projected point * 2.4 Assign point to segment according to distance of (2.3) */ List<List<Point2D.Double>> pointsInSegments = null; boolean allSegmentsContainingAtLeastTwoPoints = true; int indexSmallestX = 0; double segmentWidth = 0; do { double smallestX = Double.MAX_VALUE; double largestX = Double.MIN_VALUE; for (int i = 0; i < points.size(); i++) { if (points.get(i).x < smallestX) { smallestX = points.get(i).x; indexSmallestX = i; } if (points.get(i).x > largestX) { largestX = points.get(i).x; } } allSegmentsContainingAtLeastTwoPoints = true; segmentWidth = (largestX - smallestX) / nSegments; pointsInSegments = new ArrayList<List<Point2D.Double>>(nSegments); for (int i = 0; i < nSegments; i++) { pointsInSegments.add(new ArrayList<Point2D.Double>()); } for (int i = 0; i < points.size(); i++) { int index = (int) Math.abs((points.get(i).x / segmentWidth)); if (index > (nSegments - 1)) { index = (nSegments - 1); } pointsInSegments.get(index).add(points.get(i)); } for (int i = 0; i < pointsInSegments.size(); i++) { if (pointsInSegments.get(i).size() < 2) { if (nSegments > 2) { nSegments--; i = pointsInSegments.size(); allSegmentsContainingAtLeastTwoPoints = false; } } } } while (allSegmentsContainingAtLeastTwoPoints == false); /* * 3. Calculate the mean standard deviation over each segment: <s> */ //Point2D.Double eMajorP1 = new Point2D.Double(p1.x - (p3.x-p1.x)/2.0,p1.y - (p3.y-p1.y)/2.0); // Point2D.Double eMajorP2 = new Point2D.Double(p2.x - (p3.x-p1.x)/2.0,p2.y - (p3.y-p1.y)/2.0); double sumSDOrthogonal = 0; int Nsum = 0; CenterOfGravityFeature cogf = new CenterOfGravityFeature(rotatedTrajectory); Point2D.Double cog = new Point2D.Double(cogf.evaluate()[0], cogf.evaluate()[1]); Point2D.Double eMajorP1 = cog; Point2D.Double eMajorP2 = new Point2D.Double(cog.getX() + 1, cog.getY()); for (int i = 0; i < nSegments; i++) { StandardDeviation sd = new StandardDeviation(); double[] distances = new double[pointsInSegments.get(i).size()]; for (int j = 0; j < pointsInSegments.get(i).size(); j++) { int factor = 1; if (isLeft(eMajorP1, eMajorP2, pointsInSegments.get(i).get(j))) { factor = -1; } distances[j] = factor * distancePointLine(eMajorP1, eMajorP2, pointsInSegments.get(i).get(j)); } if (distances.length > 0) { sd.setData(distances); sumSDOrthogonal += sd.evaluate(); Nsum++; } } double s = sumSDOrthogonal / Nsum; if (segmentWidth < Math.pow(10, -15)) { return null; } if (s < Math.pow(10, -15)) { //If standard deviation is zero, replace it with the half of the segment width s = segmentWidth / 2; } //rotatedTrajectory.showTrajectory("rot"); /* * 4. Build a kd-tree */ KDTree<Point2D.Double> kdtree = new KDTree<Point2D.Double>(2); for (int i = 0; i < points.size(); i++) { try { //To ensure that all points have a different key, add small random number kdtree.insert(new double[] { points.get(i).x, points.get(i).y }, points.get(i)); } catch (KeySizeException e) { e.printStackTrace(); } catch (KeyDuplicateException e) { //Do nothing! It is not important } } /* * 5. Using the first point f in trajectory and calculate the center of mass * of all points around f (radius: 3*<s>)) */ List<Point2D.Double> near = null; Point2D.Double first = points.get(indexSmallestX);//minDistancePointToLine(p1, p3, points); double r1 = 3 * s; try { near = kdtree.nearestEuclidean(new double[] { first.x, first.y }, r1); } catch (KeySizeException e) { e.printStackTrace(); } double cx = 0; double cy = 0; for (int i = 0; i < near.size(); i++) { cx += near.get(i).x; cy += near.get(i).y; } cx /= near.size(); cy /= near.size(); splineSupportPoints = new ArrayList<Point2D.Double>(); splineSupportPoints.add(new Point2D.Double(cx, cy)); /* * 6. The second point is determined by finding the center-of-mass of particles in the p/2 radian * section of an annulus, r1 < r < 2r1, that is directed toward the angle with the highest number * of particles within p/2 radians. * 7. This second point is then used as the center of the annulus for choosing the third point, and the process is repeated (6. & 7.). */ /* * 6.1 Find all points in the annolous */ /* * 6.2 Write each point in a coordinate system centered at the center of the sphere, calculate direction and * check if it in the allowed bounds */ int nCircleSegments = 100; double deltaRad = 2 * Math.PI / nCircleSegments; boolean stop = false; int minN = 7; double tempr1 = r1; double allowedDeltaDirection = 0.5 * Math.PI; while (stop == false) { List<Point2D.Double> nearestr1 = null; List<Point2D.Double> nearest2xr1 = null; try { nearestr1 = kdtree .nearestEuclidean(new double[] { splineSupportPoints.get(splineSupportPoints.size() - 1).x, splineSupportPoints.get(splineSupportPoints.size() - 1).y }, tempr1); nearest2xr1 = kdtree .nearestEuclidean(new double[] { splineSupportPoints.get(splineSupportPoints.size() - 1).x, splineSupportPoints.get(splineSupportPoints.size() - 1).y }, 2 * tempr1); } catch (KeySizeException e) { // TODO Auto-generated catch block e.printStackTrace(); } nearest2xr1.removeAll(nearestr1); double lThreshRad = 0; double hThreshRad = Math.PI / 2; double stopThresh = 2 * Math.PI; if (splineSupportPoints.size() > 1) { double directionInRad = Math.atan2( splineSupportPoints.get(splineSupportPoints.size() - 1).y - splineSupportPoints.get(splineSupportPoints.size() - 2).y, splineSupportPoints.get(splineSupportPoints.size() - 1).x - splineSupportPoints.get(splineSupportPoints.size() - 2).x) + Math.PI; lThreshRad = directionInRad - allowedDeltaDirection / 2 - Math.PI / 4; if (lThreshRad < 0) { lThreshRad = 2 * Math.PI + lThreshRad; } if (lThreshRad > 2 * Math.PI) { lThreshRad = lThreshRad - 2 * Math.PI; } hThreshRad = directionInRad + allowedDeltaDirection / 2 + Math.PI / 4; if (hThreshRad < 0) { hThreshRad = 2 * Math.PI + hThreshRad; } if (hThreshRad > 2 * Math.PI) { hThreshRad = hThreshRad - 2 * Math.PI; } stopThresh = directionInRad + allowedDeltaDirection / 2 - Math.PI / 4; if (stopThresh > 2 * Math.PI) { stopThresh = stopThresh - 2 * Math.PI; } } double newCx = 0; double newCy = 0; int newCN = 0; int candN = 0; //Find center with highest density of points double lastDist = 0; double newDist = 0; do { lastDist = Math.min(Math.abs(lThreshRad - stopThresh), 2 * Math.PI - Math.abs(lThreshRad - stopThresh)); candN = 0; double candCx = 0; double candCy = 0; for (int i = 0; i < nearest2xr1.size(); i++) { Point2D.Double centerOfCircle = splineSupportPoints.get(splineSupportPoints.size() - 1); Vector2d relativeToCircle = new Vector2d(nearest2xr1.get(i).x - centerOfCircle.x, nearest2xr1.get(i).y - centerOfCircle.y); relativeToCircle.normalize(); double angleInRadians = Math.atan2(relativeToCircle.y, relativeToCircle.x) + Math.PI; if (lThreshRad < hThreshRad) { if (angleInRadians > lThreshRad && angleInRadians < hThreshRad) { candCx += nearest2xr1.get(i).x; candCy += nearest2xr1.get(i).y; candN++; } } else { if (angleInRadians > lThreshRad || angleInRadians < hThreshRad) { candCx += nearest2xr1.get(i).x; candCy += nearest2xr1.get(i).y; candN++; } } } if (candN > 0 && candN > newCN) { candCx /= candN; candCy /= candN; newCx = candCx; newCy = candCy; newCN = candN; } lThreshRad += deltaRad; hThreshRad += deltaRad; if (lThreshRad > 2 * Math.PI) { lThreshRad = lThreshRad - 2 * Math.PI; } if (hThreshRad > 2 * Math.PI) { hThreshRad = hThreshRad - 2 * Math.PI; } newDist = Math.min(Math.abs(lThreshRad - stopThresh), 2 * Math.PI - Math.abs(lThreshRad - stopThresh)); } while ((newDist - lastDist) > 0); //Check if the new center is valid if (splineSupportPoints.size() > 1) { double currentDirectionInRad = Math.atan2( splineSupportPoints.get(splineSupportPoints.size() - 1).y - splineSupportPoints.get(splineSupportPoints.size() - 2).y, splineSupportPoints.get(splineSupportPoints.size() - 1).x - splineSupportPoints.get(splineSupportPoints.size() - 2).x) + Math.PI; double candDirectionInRad = Math.atan2( newCy - splineSupportPoints.get(splineSupportPoints.size() - 1).y, newCx - splineSupportPoints.get(splineSupportPoints.size() - 1).x) + Math.PI; double dDir = Math.max(currentDirectionInRad, candDirectionInRad) - Math.min(currentDirectionInRad, candDirectionInRad); if (dDir > 2 * Math.PI) { dDir = 2 * Math.PI - dDir; } if (dDir > allowedDeltaDirection) { stop = true; } } boolean enoughPoints = (newCN < minN); boolean isNormalRadius = Math.abs(tempr1 - r1) < Math.pow(10, -18); boolean isExtendedRadius = Math.abs(tempr1 - 3 * r1) < Math.pow(10, -18); if (enoughPoints && isNormalRadius) { //Not enough points, extend search radius tempr1 = 3 * r1; } else if (enoughPoints && isExtendedRadius) { //Despite radius extension: Not enough points! stop = true; } else if (stop == false) { splineSupportPoints.add(new Point2D.Double(newCx, newCy)); tempr1 = r1; } } //Sort Collections.sort(splineSupportPoints, new Comparator<Point2D.Double>() { public int compare(Point2D.Double o1, Point2D.Double o2) { if (o1.x < o2.x) { return -1; } if (o1.x > o2.x) { return 1; } return 0; } }); //Add endpoints if (splineSupportPoints.size() > 1) { Vector2d start = new Vector2d(splineSupportPoints.get(0).x - splineSupportPoints.get(1).x, splineSupportPoints.get(0).y - splineSupportPoints.get(1).y); start.normalize(); start.scale(r1 * 8); splineSupportPoints.add(0, new Point2D.Double(splineSupportPoints.get(0).x + start.x, splineSupportPoints.get(0).y + start.y)); Vector2d end = new Vector2d( splineSupportPoints.get(splineSupportPoints.size() - 1).x - splineSupportPoints.get(splineSupportPoints.size() - 2).x, splineSupportPoints.get(splineSupportPoints.size() - 1).y - splineSupportPoints.get(splineSupportPoints.size() - 2).y); end.normalize(); end.scale(r1 * 6); splineSupportPoints .add(new Point2D.Double(splineSupportPoints.get(splineSupportPoints.size() - 1).x + end.x, splineSupportPoints.get(splineSupportPoints.size() - 1).y + end.y)); } else { Vector2d majordir = new Vector2d(-1, 0); majordir.normalize(); majordir.scale(r1 * 8); splineSupportPoints.add(0, new Point2D.Double(splineSupportPoints.get(0).x + majordir.x, splineSupportPoints.get(0).y + majordir.y)); majordir.scale(-1); splineSupportPoints .add(new Point2D.Double(splineSupportPoints.get(splineSupportPoints.size() - 1).x + majordir.x, splineSupportPoints.get(splineSupportPoints.size() - 1).y + majordir.y)); } //Interpolate spline double[] supX = new double[splineSupportPoints.size()]; double[] supY = new double[splineSupportPoints.size()]; for (int i = 0; i < splineSupportPoints.size(); i++) { supX[i] = splineSupportPoints.get(i).x; supY[i] = splineSupportPoints.get(i).y; } SplineInterpolator sIinter = new SplineInterpolator(); spline = sIinter.interpolate(supX, supY); successfull = true; return spline; }
From source file:com.joliciel.jochre.graphics.SegmenterImpl.java
/** * Detects paragraph splits and assign rows to correct paragraphs. * @param sourceImage/* w w w . j a va 2 s. co m*/ */ void groupRowsIntoParagraphs(SourceImage sourceImage) { LOG.debug("########## groupRowsIntoParagraphs #########"); // We'll use various possible indicators, including // indented start, indented end, and spacing between rows. // On pages with a single big paragraph makes it hypersensitive to differences in row-start/row-end // This means we cannot use deviation. Instead, we use the average shape width on the page. // We also adjust maxLeft & minRight to match the vertical line slope // This is now complicated by the possibility of multiple columns // Need to take into account a big horizontal space - Pietrushka page 14 // Find horizontal spaces that go all the way across and are wider than a certain threshold // simply do a boolean column and black out everything in a row, than see if there are any remaining spaces above a certain threshold // Columns are thus arranged into "areas", separated by white-space. boolean[] fullRows = new boolean[sourceImage.getHeight()]; for (RowOfShapes row : sourceImage.getRows()) { for (int y = row.getTop(); y <= row.getBottom(); y++) { fullRows[y] = true; } } DescriptiveStatistics rowHeightStats = new DescriptiveStatistics(); for (RowOfShapes row : sourceImage.getRows()) { int height = row.getXHeight(); rowHeightStats.addValue(height); } double avgRowHeight = rowHeightStats.getPercentile(50); LOG.debug("meanRowHeight: " + avgRowHeight); double minHeightForWhiteSpace = avgRowHeight * 1.3; LOG.debug("minHeightForWhiteSpace: " + minHeightForWhiteSpace); // find the "white rows" - any horizontal white space // in the page which is sufficiently high List<int[]> whiteRows = new ArrayList<int[]>(); boolean inWhite = false; int startWhite = 0; for (int y = 0; y < sourceImage.getHeight(); y++) { if (!inWhite && !fullRows[y]) { inWhite = true; startWhite = y; } else if (inWhite && fullRows[y]) { int length = y - startWhite; if (length > minHeightForWhiteSpace) { LOG.debug("Adding whiteRow " + startWhite + "," + (y - 1)); whiteRows.add(new int[] { startWhite, y - 1 }); } inWhite = false; } } if (inWhite) whiteRows.add(new int[] { startWhite, sourceImage.getHeight() - 1 }); whiteRows.add(new int[] { sourceImage.getHeight(), sourceImage.getHeight() }); // place rows in "areas" defined by the "white rows" found above List<List<RowOfShapes>> areas = new ArrayList<List<RowOfShapes>>(); int startY = -1; for (int[] whiteRow : whiteRows) { List<RowOfShapes> area = new ArrayList<RowOfShapes>(); for (RowOfShapes row : sourceImage.getRows()) { if (row.getTop() >= startY && row.getBottom() <= whiteRow[0]) { area.add(row); } } if (area.size() > 0) { areas.add(area); } startY = whiteRow[1]; } // break up each area into vertical columns LOG.debug("break up each area into vertical columns"); List<Column> columns = new ArrayList<Column>(); List<List<Column>> columnsPerAreaList = new ArrayList<List<Column>>(); for (List<RowOfShapes> area : areas) { LOG.debug("Next area"); List<Column> columnsPerArea = new ArrayList<SegmenterImpl.Column>(); columnsPerAreaList.add(columnsPerArea); TreeSet<RowOfShapes> rows = new TreeSet<RowOfShapes>(new RowOfShapesVerticalLocationComparator()); rows.addAll(area); for (RowOfShapes row : rows) { // try to place this row in one of the columns directly above it. // this means that a row which overlaps more than one column has to "close" this column, so it is no longer considered List<Column> overlappingColumns = new ArrayList<Column>(); for (Column column : columnsPerArea) { if (!column.closed) { RowOfShapes lastRowInColumn = column.get(column.size() - 1); if (row.getRight() - row.getXAdjustment() >= lastRowInColumn.getLeft() - lastRowInColumn.getXAdjustment() && row.getLeft() - row.getXAdjustment() <= lastRowInColumn.getRight() - lastRowInColumn.getXAdjustment()) { overlappingColumns.add(column); } } } if (overlappingColumns.size() == 1) { Column myColumn = overlappingColumns.get(0); RowOfShapes lastRowInMyColumn = myColumn.get(0); // close any columns that are now at a distance of more than one row for (Column column : columnsPerArea) { if (!column.closed && !column.equals(myColumn)) { RowOfShapes lastRowInColumn = column.get(column.size() - 1); if (lastRowInMyColumn.getTop() > lastRowInColumn.getBottom()) { column.closed = true; LOG.debug("Closing distant column " + lastRowInColumn); } } } myColumn.add(row); LOG.debug(row.toString()); LOG.debug(" added to column " + lastRowInMyColumn); } else { for (Column overlappingColumn : overlappingColumns) { overlappingColumn.closed = true; RowOfShapes lastRowInColumn = overlappingColumn.get(overlappingColumn.size() - 1); LOG.debug("Closing overlapping column " + lastRowInColumn); } Column myColumn = new Column(sourceImage); myColumn.add(row); LOG.debug("Found new column"); LOG.debug(row.toString()); columns.add(myColumn); columnsPerArea.add(myColumn); } } } // next area for (Column column : columns) column.recalculate(); // Intermediate step to reform the vertical columns, if they exist // basically the idea is that if the columns are aligned vertically, then the thresholds for paragraph indents // should be shared, to increase the statistical sample size and reduce anomalies. // We'll assume that two columns from two consecutive areas are in the same vertical group if they overlap with each other horizontally // and don't overlap with any other column in the other column's area. List<List<Column>> columnGroups = new ArrayList<List<Column>>(); List<Column> columnsInPrevArea = null; for (List<Column> columnsPerArea : columnsPerAreaList) { if (columnsInPrevArea != null) { for (Column prevColumn : columnsInPrevArea) { LOG.debug("Checking " + prevColumn); // find the column group containing the previous column List<Column> myColumnGroup = null; for (List<Column> columnGroup : columnGroups) { if (columnGroup.contains(prevColumn)) { myColumnGroup = columnGroup; break; } } if (myColumnGroup == null) { myColumnGroup = new ArrayList<SegmenterImpl.Column>(); LOG.debug("Creating column group for column " + prevColumn.toString()); columnGroups.add(myColumnGroup); myColumnGroup.add(prevColumn); } // does only one column overlap with this one? Column overlappingColumn = null; for (Column column : columnsPerArea) { if (column.adjustedRight >= prevColumn.adjustedLeft && column.adjustedLeft <= prevColumn.adjustedRight) { if (overlappingColumn == null) { LOG.debug("I overlap with " + column); overlappingColumn = column; } else { LOG.debug("But I overlap also with " + column); overlappingColumn = null; break; } } } if (overlappingColumn != null) { // does it overlap with only me? for (Column otherPrevColumn : columnsInPrevArea) { if (otherPrevColumn.equals(prevColumn)) continue; if (overlappingColumn.adjustedRight >= otherPrevColumn.adjustedLeft && overlappingColumn.adjustedLeft <= otherPrevColumn.adjustedRight) { LOG.debug("But it overlaps also with " + otherPrevColumn); overlappingColumn = null; break; } } } if (overlappingColumn != null) { myColumnGroup.add(overlappingColumn); LOG.debug("Adding " + overlappingColumn); LOG.debug(" to group with " + prevColumn); } } // next previous column } // have previous columns columnsInPrevArea = columnsPerArea; } // next area if (columnsInPrevArea != null) { for (Column prevColumn : columnsInPrevArea) { // find the column group containing the previous column List<Column> myColumnGroup = null; for (List<Column> columnGroup : columnGroups) { if (columnGroup.contains(prevColumn)) { myColumnGroup = columnGroup; break; } } if (myColumnGroup == null) { myColumnGroup = new ArrayList<SegmenterImpl.Column>(); LOG.debug("Creating column group for column " + prevColumn.toString()); columnGroups.add(myColumnGroup); myColumnGroup.add(prevColumn); } } } // What we really want here is, for each column (in the case of right-to-left), // two clusters on the right // and one relatively big cluster on the left. // anything outside of the cluster on the left is an EOP. boolean hasTab = false; for (List<Column> columnGroup : columnGroups) { LOG.debug("Next column group"); double averageShapeWidth = sourceImage.getAverageShapeWidth(); LOG.debug("averageShapeWidth: " + averageShapeWidth); double epsilon = averageShapeWidth / 2.0; LOG.debug("epsilon: " + epsilon); int columnGroupTop = sourceImage.getHeight(); int columnGroupBottom = 0; int columnGroupLeft = sourceImage.getWidth(); int columnGroupRight = 0; for (Column column : columnGroup) { if (column.top < columnGroupTop) columnGroupTop = (int) Math.round(column.top); if (column.bottom > columnGroupBottom) columnGroupBottom = (int) Math.round(column.bottom); if (column.adjustedLeft < columnGroupLeft) columnGroupLeft = (int) Math.round(column.adjustedLeft); if (column.adjustedRight > columnGroupRight) columnGroupRight = (int) Math.round(column.adjustedRight); } // right thresholds LOG.debug("Calculating right thresholds"); // first, create a DBScan cluster of all rows by their adjusted right coordinate List<RowOfShapes> rightHandRows = new ArrayList<RowOfShapes>(); List<double[]> rightCoordinates = new ArrayList<double[]>(); for (Column column : columnGroup) { for (RowOfShapes row : column) { double right = row.getRight() - row.getXAdjustment(); // double rightOverlap = this.findLargeShapeOverlapOnRight(row, column, sourceImage); // if (rightOverlap==0) { // // leave out any right-overlapping rows here // // since we need accurate statistics for margin detection // // This is questionable - especially since a long vertical bar (see Petriushka) // // tends to give all rows a left overlap. Also, because the overlap is calculated based // // on the mean right & mean left, not based on any sort of margin clusters. // rightHandRows.add(row); // rightCoordinates.add(new double[] {right}); // } rightHandRows.add(row); rightCoordinates.add(new double[] { right }); } } int minCardinalityForRightMargin = 5; DBSCANClusterer<RowOfShapes> rightMarginClusterer = new DBSCANClusterer<RowOfShapes>(rightHandRows, rightCoordinates); Set<Set<RowOfShapes>> rowClusters = rightMarginClusterer.cluster(epsilon, minCardinalityForRightMargin, true); TreeSet<Set<RowOfShapes>> orderedRowClusters = new TreeSet<Set<RowOfShapes>>( new CardinalityComparator<RowOfShapes>()); orderedRowClusters.addAll(rowClusters); int i = 0; // find the two right-most clusters, and assume they are the margin & the tab DescriptiveStatistics rightMarginStats = null; DescriptiveStatistics rightTabStats = null; for (Set<RowOfShapes> cluster : orderedRowClusters) { DescriptiveStatistics rightStats = new DescriptiveStatistics(); MeanAbsoluteDeviation rightDev = new MeanAbsoluteDeviation(); for (RowOfShapes row : cluster) { int rowIndex = rightHandRows.indexOf(row); double right = rightCoordinates.get(rowIndex)[0]; rightStats.addValue(right); rightDev.increment(right); } LOG.debug("Cluster " + i + ". Cardinality=" + cluster.size()); LOG.debug("Right mean : " + rightStats.getMean()); LOG.debug("Right dev: " + rightDev.getResult()); if (cluster.size() >= minCardinalityForRightMargin) { if (rightMarginStats == null || rightMarginStats.getMean() < rightStats.getMean()) { if (rightMarginStats != null) rightTabStats = rightMarginStats; rightMarginStats = rightStats; } else if (rightTabStats == null || rightTabStats.getMean() < rightStats.getMean()) { rightTabStats = rightStats; } } else { break; } i++; } // next right-coordinate cluster double rightMargin = sourceImage.getWidth(); double rightTab = sourceImage.getWidth(); if (rightMarginStats != null) { rightMargin = rightMarginStats.getMean(); } else { List<Rectangle> columnSeparators = sourceImage.findColumnSeparators(); for (Rectangle columnSeparator : columnSeparators) { if (columnSeparator.getTop() <= columnGroupTop && columnSeparator.getBottom() >= columnGroupBottom && columnSeparator.getLeft() >= columnGroupRight) { if (columnSeparator.getLeft() < rightMargin) rightMargin = columnSeparator.getLeft(); } } } if (rightTabStats != null) { rightTab = rightTabStats.getMean(); } LOG.debug("rightMargin: " + rightMargin); LOG.debug("rightTab: " + rightTab); // left thresholds LOG.debug("Calculating left thresholds"); // first, create a DBScan cluster of all rows by their adjusted left coordinate List<RowOfShapes> leftHandRows = new ArrayList<RowOfShapes>(); List<double[]> leftCoordinates = new ArrayList<double[]>(); for (Column column : columnGroup) { for (RowOfShapes row : column) { double left = row.getLeft() - row.getXAdjustment(); // double leftOverlap = this.findLargeShapeOverlapOnLeft(row, column, sourceImage); // if (leftOverlap == 0) { // // leave out any overlapping rows from margin calcs, // // since we need accurate statistics here // leftHandRows.add(row); // leftCoordinates.add(new double[] {left}); // } leftHandRows.add(row); leftCoordinates.add(new double[] { left }); } } int minCardinalityForLeftMargin = 5; DBSCANClusterer<RowOfShapes> leftMarginClusterer = new DBSCANClusterer<RowOfShapes>(leftHandRows, leftCoordinates); Set<Set<RowOfShapes>> leftRowClusters = leftMarginClusterer.cluster(epsilon, minCardinalityForLeftMargin, true); TreeSet<Set<RowOfShapes>> orderedLeftRowClusters = new TreeSet<Set<RowOfShapes>>( new CardinalityComparator<RowOfShapes>()); orderedLeftRowClusters.addAll(leftRowClusters); i = 0; // find the two left-most clusters, and assume they are the margin & the tab DescriptiveStatistics leftMarginStats = null; DescriptiveStatistics leftTabStats = null; for (Set<RowOfShapes> cluster : orderedLeftRowClusters) { DescriptiveStatistics leftStats = new DescriptiveStatistics(); MeanAbsoluteDeviation leftDev = new MeanAbsoluteDeviation(); for (RowOfShapes row : cluster) { int rowIndex = leftHandRows.indexOf(row); double left = leftCoordinates.get(rowIndex)[0]; leftStats.addValue(left); leftDev.increment(left); } LOG.debug("Cluster " + i + ". Cardinality=" + cluster.size()); LOG.debug("Left mean : " + leftStats.getMean()); LOG.debug("Left dev: " + leftDev.getResult()); if (cluster.size() >= minCardinalityForLeftMargin) { if (leftMarginStats == null || leftMarginStats.getMean() > leftStats.getMean()) { if (leftMarginStats != null) leftTabStats = leftMarginStats; leftMarginStats = leftStats; } else if (leftTabStats == null || leftTabStats.getMean() > leftStats.getMean()) { leftTabStats = leftStats; } } else { break; } i++; } // next left-coordinate cluster double leftMargin = 0; double leftTab = 0; if (leftMarginStats != null) { leftMargin = leftMarginStats.getMean(); } else { List<Rectangle> columnSeparators = sourceImage.findColumnSeparators(); for (Rectangle columnSeparator : columnSeparators) { if (columnSeparator.getTop() <= columnGroupTop && columnSeparator.getBottom() >= columnGroupBottom && columnSeparator.getRight() <= columnGroupLeft) { if (columnSeparator.getRight() > leftMargin) leftMargin = columnSeparator.getRight(); } } } if (leftTabStats != null) { leftTab = leftTabStats.getMean(); } LOG.debug("leftMargin: " + leftMargin); LOG.debug("leftTab: " + leftTab); for (Column column : columnGroup) { if (sourceImage.isLeftToRight()) { column.startMargin = leftMargin; if (leftTabStats != null) { column.startTab = leftTab; column.hasTab = true; } else { LOG.debug("No left tab - setting based on left margin"); column.startTab = leftMargin + (5.0 * sourceImage.getAverageShapeWidth()); column.hasTab = false; } column.endMargin = rightMargin; } else { column.startMargin = rightMargin; if (rightTabStats != null) { column.startTab = rightTab; column.hasTab = true; } else { LOG.debug("No right tab - setting based on right margin"); column.startTab = rightMargin - (5.0 * sourceImage.getAverageShapeWidth()); column.hasTab = false; } column.endMargin = leftMargin; } LOG.debug("Margins for " + column); LOG.debug("startMargin: " + column.startMargin); LOG.debug("startTab: " + column.startTab); LOG.debug("endMargin: " + column.endMargin); } // next column } // next column group LOG.debug("hasTab: " + hasTab); double safetyMargin = 1.5 * sourceImage.getAverageShapeWidth(); // Now, paragraphs are either "indented", "outdented" or not "dented" at all (no tabs). // This applies to the entire page. // To recognise indenting vs. outdenting, we have to see if the row preceding each // indent/outdent is full or partial. In the case of indentation, partial rows will // typically be followed by an indent. In the case of outdentation, partial rows will // typically be followed by an outdent. boolean isIndented = true; int indentCount = 0; int outdentCount = 0; for (List<Column> columnGroup : columnGroups) { LOG.debug("Next column group"); boolean prevRowPartial = false; for (Column column : columnGroup) { if (column.hasTab) { for (RowOfShapes row : column) { if (sourceImage.isLeftToRight()) { if (prevRowPartial) { if (row.getLeft() - row.getXAdjustment() > column.startTab - safetyMargin) { indentCount++; } else if (row.getLeft() - row.getXAdjustment() < column.startMargin + safetyMargin) { outdentCount++; } } if (row.getRight() - row.getXAdjustment() < column.endMargin - safetyMargin) { prevRowPartial = true; } else { prevRowPartial = false; } } else { if (prevRowPartial) { if (row.getRight() - row.getXAdjustment() < column.startTab + safetyMargin) { indentCount++; } else if (row.getRight() - row.getXAdjustment() > column.startMargin - safetyMargin) { outdentCount++; } } if (row.getLeft() - row.getXAdjustment() > column.endMargin + safetyMargin) { prevRowPartial = true; } else { prevRowPartial = false; } } // left-to-right? } // next row } // column has tab } // next column } // next column group isIndented = (indentCount + 2 >= outdentCount); LOG.debug("indentCount: " + indentCount); LOG.debug("outdentCount: " + outdentCount); LOG.debug("isIndented: " + isIndented); // order the columns TreeSet<Column> orderedColumns = new TreeSet<SegmenterImpl.Column>(columns); columns.clear(); columns.addAll(orderedColumns); // find the paragraphs found in each column for (Column column : columns) { LOG.debug("--- Next column ---"); // break up the column into paragraphs Paragraph paragraph = null; RowOfShapes previousRow = null; int maxShapesForStandaloneParagraph = 2; List<RowOfShapes> rowsForStandaloneParagraphs = new ArrayList<RowOfShapes>(); Point2D previousPointStartMargin = null; Point2D previousPointStartTab = null; Point2D previousPointEndMargin = null; for (RowOfShapes row : column) { boolean rowForStandaloneParagraph = false; boolean newParagraph = false; if (row.getShapes().size() <= maxShapesForStandaloneParagraph) { rowsForStandaloneParagraphs.add(row); rowForStandaloneParagraph = true; } else { double rightOverlap = this.findLargeShapeOverlapOnRight(row, column, sourceImage); double leftOverlap = this.findLargeShapeOverlapOnLeft(row, column, sourceImage); if (drawSegmentation) { double rowVerticalMidPoint = row.getBaseLineMiddlePoint(); double startMarginX = column.startMargin + row.getXAdjustment(); double startTabX = column.startTab + row.getXAdjustment(); double endMarginX = column.endMargin + row.getXAdjustment(); if (sourceImage.isLeftToRight()) { startMarginX += safetyMargin; startTabX -= safetyMargin; endMarginX -= safetyMargin; startMarginX += leftOverlap; startTabX += leftOverlap; endMarginX -= rightOverlap; } else { startMarginX -= safetyMargin; startTabX += safetyMargin; endMarginX += safetyMargin; startMarginX -= rightOverlap; startTabX -= rightOverlap; endMarginX += leftOverlap; } Point2D.Double currentPointStartMargin = new Point2D.Double(startMarginX, rowVerticalMidPoint); Point2D.Double currentPointStartTab = new Point2D.Double(startTabX, rowVerticalMidPoint); Point2D.Double currentPointEndMargin = new Point2D.Double(endMarginX, rowVerticalMidPoint); if (previousPointStartMargin != null) { graphics2D.setStroke(new BasicStroke(1)); graphics2D.setPaint(Color.BLUE); graphics2D.drawLine((int) Math.round(previousPointStartMargin.getX()), (int) Math.round(previousPointStartMargin.getY()), (int) Math.round(currentPointStartMargin.getX()), (int) Math.round(currentPointStartMargin.getY())); graphics2D.drawLine((int) Math.round(previousPointEndMargin.getX()), (int) Math.round(previousPointEndMargin.getY()), (int) Math.round(currentPointEndMargin.getX()), (int) Math.round(currentPointEndMargin.getY())); graphics2D.setPaint(Color.RED); graphics2D.drawLine((int) Math.round(previousPointStartTab.getX()), (int) Math.round(previousPointStartTab.getY()), (int) Math.round(currentPointStartTab.getX()), (int) Math.round(currentPointStartTab.getY())); graphics2D.setPaint(Color.RED); graphics2D.drawLine((int) Math.round(previousPointEndMargin.getX()), (int) Math.round(previousPointEndMargin.getY()), (int) Math.round(currentPointEndMargin.getX()), (int) Math.round(currentPointEndMargin.getY())); } previousPointStartMargin = currentPointStartMargin; previousPointStartTab = currentPointStartTab; previousPointEndMargin = currentPointEndMargin; } if (previousRow == null) { LOG.debug("New paragraph (first)"); newParagraph = true; } else { if (sourceImage.isLeftToRight()) { if (previousRow.getRight() - previousRow.getXAdjustment() - rightOverlap < column.endMargin - safetyMargin) { LOG.debug("New paragraph (previous EOP)"); newParagraph = true; } else if (column.hasTab && isIndented && row.getLeft() - row.getXAdjustment() + leftOverlap > column.startTab - safetyMargin) { LOG.debug("New paragraph (indent)"); newParagraph = true; } else if (column.hasTab && !isIndented && row.getLeft() - row.getXAdjustment() + leftOverlap < column.startMargin + safetyMargin) { LOG.debug("New paragraph (outdent)"); newParagraph = true; } } else { if (previousRow.getLeft() - previousRow.getXAdjustment() + leftOverlap > column.endMargin + safetyMargin) { LOG.debug("New paragraph (previous EOP)"); newParagraph = true; } else if (column.hasTab && isIndented && row.getRight() - row.getXAdjustment() - rightOverlap < column.startTab + safetyMargin) { LOG.debug("New paragraph (indent)"); newParagraph = true; } else if (column.hasTab && !isIndented && row.getRight() - row.getXAdjustment() - rightOverlap > column.startMargin - safetyMargin) { LOG.debug("New paragraph (outdent)"); newParagraph = true; } } // left-to-right? } // have previous row } // standalone paragraph? if (!rowForStandaloneParagraph) LOG.debug(row.toString()); if (newParagraph) { if (rowsForStandaloneParagraphs.size() > 0) { for (RowOfShapes oneRow : rowsForStandaloneParagraphs) { LOG.debug("Standalone paragraph"); LOG.debug("Standalone row: left(" + oneRow.getLeft() + "), top(" + oneRow.getTop() + "), right(" + oneRow.getRight() + "), bottom(" + oneRow.getBottom() + ")"); Paragraph standaloneParagraph = sourceImage.newParagraph(); standaloneParagraph.getRows().add(oneRow); } rowsForStandaloneParagraphs.clear(); } paragraph = sourceImage.newParagraph(); } //LOG.debug("Row: left(" + row.getLeft() + "), right(" + row.getRight() + "), width(" + (row.getRight() - row.getLeft() + 1) + ")"); if (!rowForStandaloneParagraph) { paragraph.getRows().add(row); previousRow = row; } } // next row in column if (rowsForStandaloneParagraphs.size() > 0) { for (RowOfShapes oneRow : rowsForStandaloneParagraphs) { LOG.debug("Standalone paragraph"); LOG.debug("Standalone row: left(" + oneRow.getLeft() + "), top(" + oneRow.getTop() + "), right(" + oneRow.getRight() + "), bottom(" + oneRow.getBottom() + ")"); Paragraph standaloneParagraph = sourceImage.newParagraph(); standaloneParagraph.getRows().add(oneRow); } rowsForStandaloneParagraphs.clear(); } } // next column }
From source file:org.calrissian.accumulorecipes.geospatialstore.impl.AccumuloGeoSpatialStore.java
protected String buildKeyValue(String id, Attribute attribute, Point2D.Double location) { return id + NULL_BYTE + location.getX() + NULL_BYTE + location.getY() + NULL_BYTE + attribute.getKey() + NULL_BYTE + registry.getAlias(attribute.getValue()) + NULL_BYTE + registry.encode(attribute.getValue()); }
From source file:org.kuali.student.repository.viewer.GitGraphTransformer.java
private Point2D place(RevCommit commit, RevCommit parentCommit) { Point2D parentPlacement = findPlacement(parentCommit); if (parentPlacement == null) { parentPlacement = place(parentCommit); }/* w ww. j av a 2 s .c o m*/ Point2D.Double placement = new Point2D.Double(parentPlacement.getX(), parentPlacement.getY() + 10); while (this.pointToCommitsMap.containsKey(placement)) { // prevent placements on the same point placement = new Point2D.Double(placement.getX() + 10, placement.getY() + 10); } this.placedCommitsMap.put(commit, placement); this.pointToCommitsMap.put(placement, commit); return placement; }