Example usage for java.awt.geom Point2D.Double getX

List of usage examples for java.awt.geom Point2D.Double getX

Introduction

In this page you can find the example usage for java.awt.geom Point2D.Double getX.

Prototype

public abstract double getX();

Source Link

Document

Returns the X coordinate of this Point2D in double precision.

Usage

From source file:at.tuwien.ifs.somtoolbox.apps.viewer.controls.ClusteringControl.java

/** Makes sure all controls are displayed as needed. Currently deals with the {@link #kmeansInitialisationPanel} */
public void updateControlDisplay() {
    kmeansInitialisationPanel.setVisible(mapPane.getMap().getCurrentClusteringTree() != null
            && mapPane.getMap().getClusteringTreeBuilder() instanceof KMeansTreeBuilder);

    ClusteringTree clusteringTree = mapPane.getMap().getCurrentClusteringTree();

    if (clusteringTree == null)
        return;//  ww w  . j av  a 2  s  . c  o m

    Tree<ClusterNode, Integer> tree = clusteringTree.getJUNGTree();

    TreeLayout<ClusterNode, Integer> layout = new TreeLayout<ClusterNode, Integer>(tree, 30, 100);

    final double maxMergeCost = clusteringTree.getMaxMergeCost();
    final double minMergeCost = clusteringTree.getMinMergeCost();

    final VisualizationViewer<ClusterNode, Integer> vv = new VisualizationViewer<ClusterNode, Integer>(layout);

    // setup edge rendering

    vv.getRenderContext().setEdgeShapeTransformer(new EdgeShape.Line<ClusterNode, Integer>());
    vv.getRenderContext().setEdgeStrokeTransformer(new Transformer<Integer, Stroke>() {
        @Override
        public Stroke transform(Integer integer) {
            return new BasicStroke(1.0f);
        }
    });
    vv.getRenderContext().setEdgeArrowPredicate(
            PredicateUtils.<Context<Graph<ClusterNode, Integer>, Integer>>falsePredicate());
    vv.getRenderContext().setEdgeDrawPaintTransformer(new Transformer<Integer, Paint>() {
        @Override
        public Paint transform(Integer edge) {
            return Color.BLACK;
        }
    });

    // setup vertex rendering

    vv.getRenderContext().setVertexLabelTransformer(new Transformer<ClusterNode, String>() {
        @Override
        public String transform(ClusterNode clusterNode) {
            Point2D.Double centroid = clusterNode.getCentroid();
            return String.format("%d @ (%f, %f)", clusterNode.getNodes().length, centroid.getX(),
                    centroid.getY());
        }
    });
    vv.getRenderContext().setVertexFillPaintTransformer(new Transformer<ClusterNode, Paint>() {
        @Override
        public Paint transform(ClusterNode clusterNode) {
            Palette palette = mapPane.getState().getSOMViewer().getCurrentlySelectedPalette();

            double pos = clusterNode.getMergeCost() - minMergeCost;
            pos /= maxMergeCost - minMergeCost;
            pos *= palette.getNumberOfColours() - 1;

            return palette.getColor((int) pos);
        }
    });
    vv.getRenderContext().setVertexStrokeTransformer(new Transformer<ClusterNode, Stroke>() {
        @Override
        public Stroke transform(ClusterNode clusterNode) {
            if (vv.getPickedVertexState().isPicked(clusterNode))
                return new BasicStroke(3.0f);
            else
                return new BasicStroke(1.0f);
        }
    });
    vv.setVertexToolTipTransformer(new Transformer<ClusterNode, String>() {
        @Override
        public String transform(ClusterNode clusterNode) {
            StringBuilder result = new StringBuilder();

            result.append("Level: ").append(clusterNode.getLevel()).append("\r\n");
            result.append("Merge-cost: ").append(String.format("%.2f", clusterNode.getMergeCost()))
                    .append("\r\n");
            result.append("Centroid: ").append(String.format("%.2f", clusterNode.getCentroid().getX()))
                    .append(", ").append(String.format("%.2f", clusterNode.getCentroid().getY()))
                    .append("\r\n");
            result.append("Factor-value: ").append(String.format("%.2f", clusterNode.getFactorValue()))
                    .append("\r\n");
            result.append("#Nodes: ").append(clusterNode.getUnitNodes().length).append("\r\n");
            result.append("Mean-vector: ");

            for (double d : clusterNode.getMeanVector())
                result.append(String.format("%.2f", d)).append(", ");

            result.append("\r\n");

            result.append("Bounds: (x=").append(String.format("%.2f", clusterNode.getX())).append(", y=")
                    .append(String.format("%.2f", clusterNode.getY())).append(", w=")
                    .append(String.format("%.2f", clusterNode.getWidth())).append(", h=")
                    .append(String.format("%.2f", clusterNode.getHeight())).append(")\r\n");

            return result.toString();
        }
    });

    GraphZoomScrollPane vv2 = new GraphZoomScrollPane(vv);

    vv2.setPreferredSize(new Dimension(dendogramPanel.getParent().getWidth(), 200));
    vv2.setVisible(true);

    DefaultModalGraphMouse<ClusterNode, Integer> graphMouse = new DefaultModalGraphMouse<ClusterNode, Integer>();
    vv.setGraphMouse(graphMouse);
    graphMouse.setMode(ModalGraphMouse.Mode.PICKING);

    vv.addGraphMouseListener(new GraphMouseListener<ClusterNode>() {
        private ClusterNode previouslySelected;

        @Override
        public void graphClicked(ClusterNode clusterNode, MouseEvent me) {
            if (previouslySelected != null)
                previouslySelected.setSelected(false);

            clusterNode.setSelected(true);
            previouslySelected = clusterNode;

            numClusters = clusterNode.getLevel();
            SortedMap<Integer, ClusterElementsStorage> m = mapPane.getMap().getCurrentClusteringTree()
                    .getAllClusteringElements();
            if (m.containsKey(numClusters)) {
                st = m.get(numClusters).sticky;
            } else {
                st = false;
            }
            sticky.setSelected(st);
            redrawClustering();
        }

        @Override
        public void graphPressed(ClusterNode clusterNode, MouseEvent me) {
        }

        @Override
        public void graphReleased(ClusterNode clusterNode, MouseEvent me) {
        }
    });

    dendogramPanel.removeAll();
    dendogramPanel.add(vv2);

    getContentPane().validate();
}

From source file:de.biomedical_imaging.traj.math.TrajectorySplineFit.java

/**
 * Calculates a spline to a trajectory. Attention: The spline is fitted through a rotated version of the trajectory.
 * To fit the spline the trajectory is rotated into its main direction. You can access this rotated trajectory by 
 * {@link #getRotatedTrajectory() getRotatedTrajectory}.
 * @return The fitted spline//from w  ww .j  av a  2 s  .c o m
 */
public PolynomialSplineFunction calculateSpline() {

    successfull = false;
    /*
     * 1.Calculate the minimum bounding rectangle
     */
    ArrayList<Point2D.Double> points = new ArrayList<Point2D.Double>();
    for (int i = 0; i < t.size(); i++) {
        Point2D.Double p = new Point2D.Double();
        p.setLocation(t.get(i).x, t.get(i).y);
        points.add(p);
    }

    /*
     * 1.1 Rotate that the major axis is parallel with the xaxis
     */

    Array2DRowRealMatrix gyr = RadiusGyrationTensor2D.getRadiusOfGyrationTensor(t);
    EigenDecomposition eigdec = new EigenDecomposition(gyr);

    double inRad = -1 * Math.atan2(eigdec.getEigenvector(0).getEntry(1), eigdec.getEigenvector(0).getEntry(0));
    boolean doTransform = (Math.abs(Math.abs(inRad) - Math.PI) > 0.001);

    if (doTransform) {
        angleRotated = inRad;
        for (int i = 0; i < t.size(); i++) {
            double x = t.get(i).x;
            double y = t.get(i).y;
            double newX = x * Math.cos(inRad) - y * Math.sin(inRad);
            double newY = x * Math.sin(inRad) + y * Math.cos(inRad);
            rotatedTrajectory.add(newX, newY, 0);
            points.get(i).setLocation(newX, newY);
        }
        //for(int i = 0; i < rect.length; i++){
        //   rect[i].setLocation(rect[i].x*Math.cos(inRad)-rect[i].y*Math.sin(inRad), rect[i].x*Math.sin(inRad)+rect[i].y*Math.cos(inRad));
        //}
    } else {
        angleRotated = 0;
        rotatedTrajectory = t;
    }

    /*
     * 2. Divide the rectangle in n equal segments
     * 2.1 Calculate line in main direction
     * 2.2 Project the points in onto this line
     * 2.3 Calculate the distance between the start of the line and the projected point
     * 2.4 Assign point to segment according to distance of (2.3)
     */
    List<List<Point2D.Double>> pointsInSegments = null;
    boolean allSegmentsContainingAtLeastTwoPoints = true;
    int indexSmallestX = 0;

    double segmentWidth = 0;
    do {
        double smallestX = Double.MAX_VALUE;
        double largestX = Double.MIN_VALUE;

        for (int i = 0; i < points.size(); i++) {
            if (points.get(i).x < smallestX) {
                smallestX = points.get(i).x;
                indexSmallestX = i;
            }
            if (points.get(i).x > largestX) {
                largestX = points.get(i).x;
            }
        }

        allSegmentsContainingAtLeastTwoPoints = true;
        segmentWidth = (largestX - smallestX) / nSegments;
        pointsInSegments = new ArrayList<List<Point2D.Double>>(nSegments);
        for (int i = 0; i < nSegments; i++) {
            pointsInSegments.add(new ArrayList<Point2D.Double>());
        }
        for (int i = 0; i < points.size(); i++) {

            int index = (int) Math.abs((points.get(i).x / segmentWidth));

            if (index > (nSegments - 1)) {
                index = (nSegments - 1);
            }
            pointsInSegments.get(index).add(points.get(i));
        }

        for (int i = 0; i < pointsInSegments.size(); i++) {
            if (pointsInSegments.get(i).size() < 2) {
                if (nSegments > 2) {
                    nSegments--;
                    i = pointsInSegments.size();
                    allSegmentsContainingAtLeastTwoPoints = false;

                }
            }
        }

    } while (allSegmentsContainingAtLeastTwoPoints == false);

    /*
     * 3. Calculate the mean standard deviation over each segment: <s>
     */
    //Point2D.Double eMajorP1 = new Point2D.Double(p1.x - (p3.x-p1.x)/2.0,p1.y - (p3.y-p1.y)/2.0); 
    //   Point2D.Double eMajorP2 = new Point2D.Double(p2.x - (p3.x-p1.x)/2.0,p2.y - (p3.y-p1.y)/2.0); 
    double sumSDOrthogonal = 0;
    int Nsum = 0;
    CenterOfGravityFeature cogf = new CenterOfGravityFeature(rotatedTrajectory);
    Point2D.Double cog = new Point2D.Double(cogf.evaluate()[0], cogf.evaluate()[1]);
    Point2D.Double eMajorP1 = cog;
    Point2D.Double eMajorP2 = new Point2D.Double(cog.getX() + 1, cog.getY());
    for (int i = 0; i < nSegments; i++) {
        StandardDeviation sd = new StandardDeviation();
        double[] distances = new double[pointsInSegments.get(i).size()];
        for (int j = 0; j < pointsInSegments.get(i).size(); j++) {
            int factor = 1;
            if (isLeft(eMajorP1, eMajorP2, pointsInSegments.get(i).get(j))) {
                factor = -1;
            }
            distances[j] = factor * distancePointLine(eMajorP1, eMajorP2, pointsInSegments.get(i).get(j));
        }
        if (distances.length > 0) {
            sd.setData(distances);

            sumSDOrthogonal += sd.evaluate();
            Nsum++;
        }
    }
    double s = sumSDOrthogonal / Nsum;
    if (segmentWidth < Math.pow(10, -15)) {
        return null;
    }
    if (s < Math.pow(10, -15)) {
        //If standard deviation is zero, replace it with the half of the segment width

        s = segmentWidth / 2;
    }
    //rotatedTrajectory.showTrajectory("rot");
    /*
     * 4. Build a kd-tree
     */
    KDTree<Point2D.Double> kdtree = new KDTree<Point2D.Double>(2);

    for (int i = 0; i < points.size(); i++) {
        try {
            //To ensure that all points have a different key, add small random number

            kdtree.insert(new double[] { points.get(i).x, points.get(i).y }, points.get(i));
        } catch (KeySizeException e) {
            e.printStackTrace();
        } catch (KeyDuplicateException e) {
            //Do nothing! It is not important
        }

    }

    /*
     * 5. Using the first point f in trajectory and calculate the center of mass
     * of all points around f (radius: 3*<s>))
     */
    List<Point2D.Double> near = null;

    Point2D.Double first = points.get(indexSmallestX);//minDistancePointToLine(p1, p3, points);
    double r1 = 3 * s;
    try {

        near = kdtree.nearestEuclidean(new double[] { first.x, first.y }, r1);

    } catch (KeySizeException e) {
        e.printStackTrace();
    }

    double cx = 0;
    double cy = 0;
    for (int i = 0; i < near.size(); i++) {
        cx += near.get(i).x;
        cy += near.get(i).y;
    }
    cx /= near.size();
    cy /= near.size();

    splineSupportPoints = new ArrayList<Point2D.Double>();
    splineSupportPoints.add(new Point2D.Double(cx, cy));

    /* 
     * 6. The second point is determined by finding the center-of-mass of particles in the p/2 radian 
     * section of an annulus, r1 < r < 2r1, that is directed toward the angle with the highest number 
     * of particles within p/2 radians.
     * 7. This second point is then used as the center of the annulus for choosing the third point, and the process is repeated (6. & 7.).
     */

    /*
     * 6.1 Find all points in the annolous
     */

    /*
     * 6.2 Write each point in a coordinate system centered at the center of the sphere, calculate direction and
     * check if it in the allowed bounds
     */
    int nCircleSegments = 100;
    double deltaRad = 2 * Math.PI / nCircleSegments;
    boolean stop = false;
    int minN = 7;
    double tempr1 = r1;
    double allowedDeltaDirection = 0.5 * Math.PI;

    while (stop == false) {
        List<Point2D.Double> nearestr1 = null;
        List<Point2D.Double> nearest2xr1 = null;
        try {
            nearestr1 = kdtree
                    .nearestEuclidean(new double[] { splineSupportPoints.get(splineSupportPoints.size() - 1).x,
                            splineSupportPoints.get(splineSupportPoints.size() - 1).y }, tempr1);
            nearest2xr1 = kdtree
                    .nearestEuclidean(new double[] { splineSupportPoints.get(splineSupportPoints.size() - 1).x,
                            splineSupportPoints.get(splineSupportPoints.size() - 1).y }, 2 * tempr1);
        } catch (KeySizeException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
        nearest2xr1.removeAll(nearestr1);

        double lThreshRad = 0;
        double hThreshRad = Math.PI / 2;
        double stopThresh = 2 * Math.PI;
        if (splineSupportPoints.size() > 1) {
            double directionInRad = Math.atan2(
                    splineSupportPoints.get(splineSupportPoints.size() - 1).y
                            - splineSupportPoints.get(splineSupportPoints.size() - 2).y,
                    splineSupportPoints.get(splineSupportPoints.size() - 1).x
                            - splineSupportPoints.get(splineSupportPoints.size() - 2).x)
                    + Math.PI;
            lThreshRad = directionInRad - allowedDeltaDirection / 2 - Math.PI / 4;
            if (lThreshRad < 0) {
                lThreshRad = 2 * Math.PI + lThreshRad;
            }
            if (lThreshRad > 2 * Math.PI) {
                lThreshRad = lThreshRad - 2 * Math.PI;
            }
            hThreshRad = directionInRad + allowedDeltaDirection / 2 + Math.PI / 4;
            if (hThreshRad < 0) {
                hThreshRad = 2 * Math.PI + hThreshRad;
            }
            if (hThreshRad > 2 * Math.PI) {
                hThreshRad = hThreshRad - 2 * Math.PI;
            }
            stopThresh = directionInRad + allowedDeltaDirection / 2 - Math.PI / 4;
            if (stopThresh > 2 * Math.PI) {
                stopThresh = stopThresh - 2 * Math.PI;
            }

        }

        double newCx = 0;
        double newCy = 0;
        int newCN = 0;
        int candN = 0;

        //Find center with highest density of points
        double lastDist = 0;
        double newDist = 0;
        do {
            lastDist = Math.min(Math.abs(lThreshRad - stopThresh),
                    2 * Math.PI - Math.abs(lThreshRad - stopThresh));

            candN = 0;
            double candCx = 0;
            double candCy = 0;

            for (int i = 0; i < nearest2xr1.size(); i++) {
                Point2D.Double centerOfCircle = splineSupportPoints.get(splineSupportPoints.size() - 1);
                Vector2d relativeToCircle = new Vector2d(nearest2xr1.get(i).x - centerOfCircle.x,
                        nearest2xr1.get(i).y - centerOfCircle.y);
                relativeToCircle.normalize();
                double angleInRadians = Math.atan2(relativeToCircle.y, relativeToCircle.x) + Math.PI;

                if (lThreshRad < hThreshRad) {
                    if (angleInRadians > lThreshRad && angleInRadians < hThreshRad) {
                        candCx += nearest2xr1.get(i).x;
                        candCy += nearest2xr1.get(i).y;
                        candN++;
                    }
                } else {
                    if (angleInRadians > lThreshRad || angleInRadians < hThreshRad) {
                        candCx += nearest2xr1.get(i).x;
                        candCy += nearest2xr1.get(i).y;
                        candN++;
                    }
                }

            }

            if (candN > 0 && candN > newCN) {
                candCx /= candN;
                candCy /= candN;
                newCx = candCx;
                newCy = candCy;
                newCN = candN;
            }
            lThreshRad += deltaRad;
            hThreshRad += deltaRad;
            if (lThreshRad > 2 * Math.PI) {
                lThreshRad = lThreshRad - 2 * Math.PI;
            }
            if (hThreshRad > 2 * Math.PI) {
                hThreshRad = hThreshRad - 2 * Math.PI;
            }
            newDist = Math.min(Math.abs(lThreshRad - stopThresh),
                    2 * Math.PI - Math.abs(lThreshRad - stopThresh));

        } while ((newDist - lastDist) > 0);

        //Check if the new center is valid
        if (splineSupportPoints.size() > 1) {
            double currentDirectionInRad = Math.atan2(
                    splineSupportPoints.get(splineSupportPoints.size() - 1).y
                            - splineSupportPoints.get(splineSupportPoints.size() - 2).y,
                    splineSupportPoints.get(splineSupportPoints.size() - 1).x
                            - splineSupportPoints.get(splineSupportPoints.size() - 2).x)
                    + Math.PI;
            double candDirectionInRad = Math.atan2(
                    newCy - splineSupportPoints.get(splineSupportPoints.size() - 1).y,
                    newCx - splineSupportPoints.get(splineSupportPoints.size() - 1).x) + Math.PI;
            double dDir = Math.max(currentDirectionInRad, candDirectionInRad)
                    - Math.min(currentDirectionInRad, candDirectionInRad);
            if (dDir > 2 * Math.PI) {
                dDir = 2 * Math.PI - dDir;
            }
            if (dDir > allowedDeltaDirection) {

                stop = true;
            }
        }
        boolean enoughPoints = (newCN < minN);
        boolean isNormalRadius = Math.abs(tempr1 - r1) < Math.pow(10, -18);
        boolean isExtendedRadius = Math.abs(tempr1 - 3 * r1) < Math.pow(10, -18);

        if (enoughPoints && isNormalRadius) {
            //Not enough points, extend search radius
            tempr1 = 3 * r1;
        } else if (enoughPoints && isExtendedRadius) {
            //Despite radius extension: Not enough points!
            stop = true;
        } else if (stop == false) {
            splineSupportPoints.add(new Point2D.Double(newCx, newCy));
            tempr1 = r1;
        }

    }

    //Sort
    Collections.sort(splineSupportPoints, new Comparator<Point2D.Double>() {

        public int compare(Point2D.Double o1, Point2D.Double o2) {
            if (o1.x < o2.x) {
                return -1;
            }
            if (o1.x > o2.x) {
                return 1;
            }
            return 0;
        }
    });

    //Add endpoints
    if (splineSupportPoints.size() > 1) {
        Vector2d start = new Vector2d(splineSupportPoints.get(0).x - splineSupportPoints.get(1).x,
                splineSupportPoints.get(0).y - splineSupportPoints.get(1).y);
        start.normalize();
        start.scale(r1 * 8);
        splineSupportPoints.add(0, new Point2D.Double(splineSupportPoints.get(0).x + start.x,
                splineSupportPoints.get(0).y + start.y));

        Vector2d end = new Vector2d(
                splineSupportPoints.get(splineSupportPoints.size() - 1).x
                        - splineSupportPoints.get(splineSupportPoints.size() - 2).x,
                splineSupportPoints.get(splineSupportPoints.size() - 1).y
                        - splineSupportPoints.get(splineSupportPoints.size() - 2).y);
        end.normalize();
        end.scale(r1 * 6);
        splineSupportPoints
                .add(new Point2D.Double(splineSupportPoints.get(splineSupportPoints.size() - 1).x + end.x,
                        splineSupportPoints.get(splineSupportPoints.size() - 1).y + end.y));
    } else {
        Vector2d majordir = new Vector2d(-1, 0);
        majordir.normalize();
        majordir.scale(r1 * 8);
        splineSupportPoints.add(0, new Point2D.Double(splineSupportPoints.get(0).x + majordir.x,
                splineSupportPoints.get(0).y + majordir.y));
        majordir.scale(-1);
        splineSupportPoints
                .add(new Point2D.Double(splineSupportPoints.get(splineSupportPoints.size() - 1).x + majordir.x,
                        splineSupportPoints.get(splineSupportPoints.size() - 1).y + majordir.y));

    }

    //Interpolate spline
    double[] supX = new double[splineSupportPoints.size()];
    double[] supY = new double[splineSupportPoints.size()];
    for (int i = 0; i < splineSupportPoints.size(); i++) {
        supX[i] = splineSupportPoints.get(i).x;
        supY[i] = splineSupportPoints.get(i).y;
    }

    SplineInterpolator sIinter = new SplineInterpolator();
    spline = sIinter.interpolate(supX, supY);
    successfull = true;
    return spline;
}

From source file:com.joliciel.jochre.graphics.SegmenterImpl.java

/**
 * Detects paragraph splits and assign rows to correct paragraphs.
 * @param sourceImage/*from w ww. jav a  2s  .  com*/
 */
void groupRowsIntoParagraphs(SourceImage sourceImage) {
    LOG.debug("########## groupRowsIntoParagraphs #########");
    // We'll use various possible indicators, including
    // indented start, indented end, and spacing between rows.

    // On pages with a single big paragraph makes it hypersensitive to differences in row-start/row-end
    // This means we cannot use deviation. Instead, we use the average shape width on the page.
    // We also adjust maxLeft & minRight to match the vertical line slope

    // This is now complicated by the possibility of multiple columns

    // Need to take into account a big horizontal space - Pietrushka page 14
    // Find horizontal spaces that go all the way across and are wider than a certain threshold
    // simply do a boolean column and black out everything in a row, than see if there are any remaining spaces above a certain threshold
    // Columns are thus arranged into "areas", separated by white-space.
    boolean[] fullRows = new boolean[sourceImage.getHeight()];
    for (RowOfShapes row : sourceImage.getRows()) {
        for (int y = row.getTop(); y <= row.getBottom(); y++) {
            fullRows[y] = true;
        }
    }
    DescriptiveStatistics rowHeightStats = new DescriptiveStatistics();

    for (RowOfShapes row : sourceImage.getRows()) {
        int height = row.getXHeight();
        rowHeightStats.addValue(height);
    }
    double avgRowHeight = rowHeightStats.getPercentile(50);
    LOG.debug("meanRowHeight: " + avgRowHeight);
    double minHeightForWhiteSpace = avgRowHeight * 1.3;
    LOG.debug("minHeightForWhiteSpace: " + minHeightForWhiteSpace);

    // find the "white rows" - any horizontal white space
    // in the page which is sufficiently high
    List<int[]> whiteRows = new ArrayList<int[]>();
    boolean inWhite = false;
    int startWhite = 0;
    for (int y = 0; y < sourceImage.getHeight(); y++) {
        if (!inWhite && !fullRows[y]) {
            inWhite = true;
            startWhite = y;
        } else if (inWhite && fullRows[y]) {
            int length = y - startWhite;
            if (length > minHeightForWhiteSpace) {
                LOG.debug("Adding whiteRow " + startWhite + "," + (y - 1));
                whiteRows.add(new int[] { startWhite, y - 1 });
            }
            inWhite = false;
        }
    }
    if (inWhite)
        whiteRows.add(new int[] { startWhite, sourceImage.getHeight() - 1 });
    whiteRows.add(new int[] { sourceImage.getHeight(), sourceImage.getHeight() });

    // place rows in "areas" defined by the "white rows" found above
    List<List<RowOfShapes>> areas = new ArrayList<List<RowOfShapes>>();
    int startY = -1;
    for (int[] whiteRow : whiteRows) {
        List<RowOfShapes> area = new ArrayList<RowOfShapes>();
        for (RowOfShapes row : sourceImage.getRows()) {
            if (row.getTop() >= startY && row.getBottom() <= whiteRow[0]) {
                area.add(row);
            }
        }
        if (area.size() > 0) {
            areas.add(area);
        }
        startY = whiteRow[1];
    }

    // break up each area into vertical columns
    LOG.debug("break up each area into vertical columns");
    List<Column> columns = new ArrayList<Column>();
    List<List<Column>> columnsPerAreaList = new ArrayList<List<Column>>();
    for (List<RowOfShapes> area : areas) {
        LOG.debug("Next area");
        List<Column> columnsPerArea = new ArrayList<SegmenterImpl.Column>();
        columnsPerAreaList.add(columnsPerArea);
        TreeSet<RowOfShapes> rows = new TreeSet<RowOfShapes>(new RowOfShapesVerticalLocationComparator());
        rows.addAll(area);
        for (RowOfShapes row : rows) {
            // try to place this row in one of the columns directly above it.
            // this means that a row which overlaps more than one column has to "close" this column, so it is no longer considered
            List<Column> overlappingColumns = new ArrayList<Column>();
            for (Column column : columnsPerArea) {
                if (!column.closed) {
                    RowOfShapes lastRowInColumn = column.get(column.size() - 1);
                    if (row.getRight() - row.getXAdjustment() >= lastRowInColumn.getLeft()
                            - lastRowInColumn.getXAdjustment()
                            && row.getLeft() - row.getXAdjustment() <= lastRowInColumn.getRight()
                                    - lastRowInColumn.getXAdjustment()) {
                        overlappingColumns.add(column);
                    }
                }
            }
            if (overlappingColumns.size() == 1) {
                Column myColumn = overlappingColumns.get(0);
                RowOfShapes lastRowInMyColumn = myColumn.get(0);

                // close any columns that are now at a distance of more than one row
                for (Column column : columnsPerArea) {
                    if (!column.closed && !column.equals(myColumn)) {
                        RowOfShapes lastRowInColumn = column.get(column.size() - 1);
                        if (lastRowInMyColumn.getTop() > lastRowInColumn.getBottom()) {
                            column.closed = true;
                            LOG.debug("Closing distant column " + lastRowInColumn);
                        }
                    }
                }

                myColumn.add(row);
                LOG.debug(row.toString());
                LOG.debug("  added to column " + lastRowInMyColumn);
            } else {
                for (Column overlappingColumn : overlappingColumns) {
                    overlappingColumn.closed = true;
                    RowOfShapes lastRowInColumn = overlappingColumn.get(overlappingColumn.size() - 1);
                    LOG.debug("Closing overlapping column " + lastRowInColumn);
                }
                Column myColumn = new Column(sourceImage);
                myColumn.add(row);
                LOG.debug("Found new column");
                LOG.debug(row.toString());
                columns.add(myColumn);
                columnsPerArea.add(myColumn);
            }
        }
    } // next area

    for (Column column : columns)
        column.recalculate();

    // Intermediate step to reform the vertical columns, if they exist
    // basically the idea is that if the columns are aligned vertically, then the thresholds for paragraph indents
    // should be shared, to increase the statistical sample size and reduce anomalies.
    // We'll assume that two columns from two consecutive areas are in the same vertical group if they overlap with each other horizontally
    // and don't overlap with any other column in the other column's area.
    List<List<Column>> columnGroups = new ArrayList<List<Column>>();
    List<Column> columnsInPrevArea = null;
    for (List<Column> columnsPerArea : columnsPerAreaList) {
        if (columnsInPrevArea != null) {
            for (Column prevColumn : columnsInPrevArea) {
                LOG.debug("Checking " + prevColumn);
                // find the column group containing the previous column
                List<Column> myColumnGroup = null;
                for (List<Column> columnGroup : columnGroups) {
                    if (columnGroup.contains(prevColumn)) {
                        myColumnGroup = columnGroup;
                        break;
                    }
                }
                if (myColumnGroup == null) {
                    myColumnGroup = new ArrayList<SegmenterImpl.Column>();
                    LOG.debug("Creating column group for column " + prevColumn.toString());
                    columnGroups.add(myColumnGroup);
                    myColumnGroup.add(prevColumn);
                }

                // does only one column overlap with this one?
                Column overlappingColumn = null;
                for (Column column : columnsPerArea) {
                    if (column.adjustedRight >= prevColumn.adjustedLeft
                            && column.adjustedLeft <= prevColumn.adjustedRight) {
                        if (overlappingColumn == null) {
                            LOG.debug("I overlap with " + column);

                            overlappingColumn = column;
                        } else {
                            LOG.debug("But I overlap also with " + column);

                            overlappingColumn = null;
                            break;
                        }
                    }
                }
                if (overlappingColumn != null) {
                    // does it overlap with only me?
                    for (Column otherPrevColumn : columnsInPrevArea) {
                        if (otherPrevColumn.equals(prevColumn))
                            continue;
                        if (overlappingColumn.adjustedRight >= otherPrevColumn.adjustedLeft
                                && overlappingColumn.adjustedLeft <= otherPrevColumn.adjustedRight) {
                            LOG.debug("But it overlaps also with " + otherPrevColumn);
                            overlappingColumn = null;
                            break;
                        }
                    }
                }
                if (overlappingColumn != null) {
                    myColumnGroup.add(overlappingColumn);
                    LOG.debug("Adding " + overlappingColumn);
                    LOG.debug(" to group with " + prevColumn);
                }

            } // next previous column
        } // have previous columns
        columnsInPrevArea = columnsPerArea;
    } // next area
    if (columnsInPrevArea != null) {
        for (Column prevColumn : columnsInPrevArea) {
            // find the column group containing the previous column
            List<Column> myColumnGroup = null;
            for (List<Column> columnGroup : columnGroups) {
                if (columnGroup.contains(prevColumn)) {
                    myColumnGroup = columnGroup;
                    break;
                }
            }
            if (myColumnGroup == null) {
                myColumnGroup = new ArrayList<SegmenterImpl.Column>();
                LOG.debug("Creating column group for column " + prevColumn.toString());
                columnGroups.add(myColumnGroup);
                myColumnGroup.add(prevColumn);
            }
        }
    }

    // What we really want here is, for each column (in the case of right-to-left),
    // two clusters on the right
    // and one relatively big cluster on the left.
    // anything outside of the cluster on the left is an EOP.
    boolean hasTab = false;
    for (List<Column> columnGroup : columnGroups) {
        LOG.debug("Next column group");
        double averageShapeWidth = sourceImage.getAverageShapeWidth();
        LOG.debug("averageShapeWidth: " + averageShapeWidth);
        double epsilon = averageShapeWidth / 2.0;
        LOG.debug("epsilon: " + epsilon);

        int columnGroupTop = sourceImage.getHeight();
        int columnGroupBottom = 0;
        int columnGroupLeft = sourceImage.getWidth();
        int columnGroupRight = 0;
        for (Column column : columnGroup) {
            if (column.top < columnGroupTop)
                columnGroupTop = (int) Math.round(column.top);
            if (column.bottom > columnGroupBottom)
                columnGroupBottom = (int) Math.round(column.bottom);
            if (column.adjustedLeft < columnGroupLeft)
                columnGroupLeft = (int) Math.round(column.adjustedLeft);
            if (column.adjustedRight > columnGroupRight)
                columnGroupRight = (int) Math.round(column.adjustedRight);
        }

        // right thresholds
        LOG.debug("Calculating right thresholds");

        // first, create a DBScan cluster of all rows by their adjusted right coordinate
        List<RowOfShapes> rightHandRows = new ArrayList<RowOfShapes>();
        List<double[]> rightCoordinates = new ArrayList<double[]>();

        for (Column column : columnGroup) {
            for (RowOfShapes row : column) {
                double right = row.getRight() - row.getXAdjustment();
                //               double rightOverlap = this.findLargeShapeOverlapOnRight(row, column, sourceImage);
                //               if (rightOverlap==0) {
                //                  // leave out any right-overlapping rows here
                //                  // since we need accurate statistics for margin detection
                //               // This is questionable - especially since a long vertical bar (see Petriushka)
                //               // tends to give all rows a left overlap. Also, because the overlap is calculated based
                //               // on the mean right & mean left, not based on any sort of margin clusters.
                //                  rightHandRows.add(row);
                //                  rightCoordinates.add(new double[] {right});
                //               }
                rightHandRows.add(row);
                rightCoordinates.add(new double[] { right });

            }
        }

        int minCardinalityForRightMargin = 5;
        DBSCANClusterer<RowOfShapes> rightMarginClusterer = new DBSCANClusterer<RowOfShapes>(rightHandRows,
                rightCoordinates);
        Set<Set<RowOfShapes>> rowClusters = rightMarginClusterer.cluster(epsilon, minCardinalityForRightMargin,
                true);

        TreeSet<Set<RowOfShapes>> orderedRowClusters = new TreeSet<Set<RowOfShapes>>(
                new CardinalityComparator<RowOfShapes>());
        orderedRowClusters.addAll(rowClusters);

        int i = 0;

        // find the two right-most clusters, and assume they are the margin & the tab
        DescriptiveStatistics rightMarginStats = null;
        DescriptiveStatistics rightTabStats = null;
        for (Set<RowOfShapes> cluster : orderedRowClusters) {
            DescriptiveStatistics rightStats = new DescriptiveStatistics();
            MeanAbsoluteDeviation rightDev = new MeanAbsoluteDeviation();
            for (RowOfShapes row : cluster) {
                int rowIndex = rightHandRows.indexOf(row);
                double right = rightCoordinates.get(rowIndex)[0];
                rightStats.addValue(right);
                rightDev.increment(right);
            }

            LOG.debug("Cluster " + i + ". Cardinality=" + cluster.size());
            LOG.debug("Right mean : " + rightStats.getMean());
            LOG.debug("Right dev: " + rightDev.getResult());

            if (cluster.size() >= minCardinalityForRightMargin) {
                if (rightMarginStats == null || rightMarginStats.getMean() < rightStats.getMean()) {
                    if (rightMarginStats != null)
                        rightTabStats = rightMarginStats;
                    rightMarginStats = rightStats;
                } else if (rightTabStats == null || rightTabStats.getMean() < rightStats.getMean()) {
                    rightTabStats = rightStats;
                }
            } else {
                break;
            }
            i++;
        } // next right-coordinate cluster

        double rightMargin = sourceImage.getWidth();
        double rightTab = sourceImage.getWidth();
        if (rightMarginStats != null) {
            rightMargin = rightMarginStats.getMean();
        } else {
            List<Rectangle> columnSeparators = sourceImage.findColumnSeparators();
            for (Rectangle columnSeparator : columnSeparators) {
                if (columnSeparator.getTop() <= columnGroupTop
                        && columnSeparator.getBottom() >= columnGroupBottom
                        && columnSeparator.getLeft() >= columnGroupRight) {
                    if (columnSeparator.getLeft() < rightMargin)
                        rightMargin = columnSeparator.getLeft();
                }
            }
        }
        if (rightTabStats != null) {
            rightTab = rightTabStats.getMean();
        }

        LOG.debug("rightMargin: " + rightMargin);
        LOG.debug("rightTab: " + rightTab);

        // left thresholds
        LOG.debug("Calculating left thresholds");

        // first, create a DBScan cluster of all rows by their adjusted left coordinate
        List<RowOfShapes> leftHandRows = new ArrayList<RowOfShapes>();
        List<double[]> leftCoordinates = new ArrayList<double[]>();

        for (Column column : columnGroup) {
            for (RowOfShapes row : column) {
                double left = row.getLeft() - row.getXAdjustment();
                //               double leftOverlap = this.findLargeShapeOverlapOnLeft(row, column, sourceImage);
                //               if (leftOverlap == 0) {
                //                  // leave out any overlapping rows from margin calcs,
                //                  // since we need accurate statistics here
                //                  leftHandRows.add(row);
                //                  leftCoordinates.add(new double[] {left});
                //               }
                leftHandRows.add(row);
                leftCoordinates.add(new double[] { left });
            }
        }

        int minCardinalityForLeftMargin = 5;
        DBSCANClusterer<RowOfShapes> leftMarginClusterer = new DBSCANClusterer<RowOfShapes>(leftHandRows,
                leftCoordinates);
        Set<Set<RowOfShapes>> leftRowClusters = leftMarginClusterer.cluster(epsilon,
                minCardinalityForLeftMargin, true);

        TreeSet<Set<RowOfShapes>> orderedLeftRowClusters = new TreeSet<Set<RowOfShapes>>(
                new CardinalityComparator<RowOfShapes>());
        orderedLeftRowClusters.addAll(leftRowClusters);

        i = 0;

        // find the two left-most clusters, and assume they are the margin & the tab
        DescriptiveStatistics leftMarginStats = null;
        DescriptiveStatistics leftTabStats = null;
        for (Set<RowOfShapes> cluster : orderedLeftRowClusters) {
            DescriptiveStatistics leftStats = new DescriptiveStatistics();
            MeanAbsoluteDeviation leftDev = new MeanAbsoluteDeviation();
            for (RowOfShapes row : cluster) {
                int rowIndex = leftHandRows.indexOf(row);
                double left = leftCoordinates.get(rowIndex)[0];
                leftStats.addValue(left);
                leftDev.increment(left);
            }

            LOG.debug("Cluster " + i + ". Cardinality=" + cluster.size());
            LOG.debug("Left mean : " + leftStats.getMean());
            LOG.debug("Left dev: " + leftDev.getResult());

            if (cluster.size() >= minCardinalityForLeftMargin) {
                if (leftMarginStats == null || leftMarginStats.getMean() > leftStats.getMean()) {
                    if (leftMarginStats != null)
                        leftTabStats = leftMarginStats;
                    leftMarginStats = leftStats;
                } else if (leftTabStats == null || leftTabStats.getMean() > leftStats.getMean()) {
                    leftTabStats = leftStats;
                }
            } else {
                break;
            }
            i++;
        } // next left-coordinate cluster

        double leftMargin = 0;
        double leftTab = 0;
        if (leftMarginStats != null) {
            leftMargin = leftMarginStats.getMean();
        } else {
            List<Rectangle> columnSeparators = sourceImage.findColumnSeparators();
            for (Rectangle columnSeparator : columnSeparators) {
                if (columnSeparator.getTop() <= columnGroupTop
                        && columnSeparator.getBottom() >= columnGroupBottom
                        && columnSeparator.getRight() <= columnGroupLeft) {
                    if (columnSeparator.getRight() > leftMargin)
                        leftMargin = columnSeparator.getRight();
                }
            }
        }
        if (leftTabStats != null) {
            leftTab = leftTabStats.getMean();
        }

        LOG.debug("leftMargin: " + leftMargin);
        LOG.debug("leftTab: " + leftTab);

        for (Column column : columnGroup) {
            if (sourceImage.isLeftToRight()) {
                column.startMargin = leftMargin;
                if (leftTabStats != null) {
                    column.startTab = leftTab;
                    column.hasTab = true;
                } else {
                    LOG.debug("No left tab - setting based on left margin");
                    column.startTab = leftMargin + (5.0 * sourceImage.getAverageShapeWidth());
                    column.hasTab = false;
                }

                column.endMargin = rightMargin;
            } else {
                column.startMargin = rightMargin;
                if (rightTabStats != null) {
                    column.startTab = rightTab;
                    column.hasTab = true;
                } else {
                    LOG.debug("No right tab - setting based on right margin");
                    column.startTab = rightMargin - (5.0 * sourceImage.getAverageShapeWidth());
                    column.hasTab = false;
                }

                column.endMargin = leftMargin;
            }
            LOG.debug("Margins for " + column);
            LOG.debug("startMargin: " + column.startMargin);
            LOG.debug("startTab: " + column.startTab);
            LOG.debug("endMargin: " + column.endMargin);
        } // next column
    } // next column group
    LOG.debug("hasTab: " + hasTab);

    double safetyMargin = 1.5 * sourceImage.getAverageShapeWidth();

    // Now, paragraphs are either "indented", "outdented" or not "dented" at all (no tabs).
    // This applies to the entire page.
    // To recognise indenting vs. outdenting, we have to see if the row preceding each
    // indent/outdent is full or partial. In the case of indentation, partial rows will
    // typically be followed by an indent. In the case of outdentation, partial rows will
    // typically be followed by an outdent.
    boolean isIndented = true;

    int indentCount = 0;
    int outdentCount = 0;
    for (List<Column> columnGroup : columnGroups) {
        LOG.debug("Next column group");
        boolean prevRowPartial = false;
        for (Column column : columnGroup) {
            if (column.hasTab) {
                for (RowOfShapes row : column) {
                    if (sourceImage.isLeftToRight()) {
                        if (prevRowPartial) {
                            if (row.getLeft() - row.getXAdjustment() > column.startTab - safetyMargin) {
                                indentCount++;
                            } else if (row.getLeft() - row.getXAdjustment() < column.startMargin
                                    + safetyMargin) {
                                outdentCount++;
                            }
                        }
                        if (row.getRight() - row.getXAdjustment() < column.endMargin - safetyMargin) {
                            prevRowPartial = true;
                        } else {
                            prevRowPartial = false;
                        }
                    } else {
                        if (prevRowPartial) {
                            if (row.getRight() - row.getXAdjustment() < column.startTab + safetyMargin) {
                                indentCount++;
                            } else if (row.getRight() - row.getXAdjustment() > column.startMargin
                                    - safetyMargin) {
                                outdentCount++;
                            }
                        }
                        if (row.getLeft() - row.getXAdjustment() > column.endMargin + safetyMargin) {
                            prevRowPartial = true;
                        } else {
                            prevRowPartial = false;
                        }
                    } // left-to-right?
                } // next row  
            } // column has tab
        } // next column
    } // next column group
    isIndented = (indentCount + 2 >= outdentCount);
    LOG.debug("indentCount: " + indentCount);
    LOG.debug("outdentCount: " + outdentCount);
    LOG.debug("isIndented: " + isIndented);

    // order the columns
    TreeSet<Column> orderedColumns = new TreeSet<SegmenterImpl.Column>(columns);
    columns.clear();
    columns.addAll(orderedColumns);

    // find the paragraphs found in each column
    for (Column column : columns) {
        LOG.debug("--- Next column ---");

        // break up the column into paragraphs 
        Paragraph paragraph = null;
        RowOfShapes previousRow = null;
        int maxShapesForStandaloneParagraph = 2;
        List<RowOfShapes> rowsForStandaloneParagraphs = new ArrayList<RowOfShapes>();
        Point2D previousPointStartMargin = null;
        Point2D previousPointStartTab = null;
        Point2D previousPointEndMargin = null;

        for (RowOfShapes row : column) {
            boolean rowForStandaloneParagraph = false;
            boolean newParagraph = false;
            if (row.getShapes().size() <= maxShapesForStandaloneParagraph) {
                rowsForStandaloneParagraphs.add(row);
                rowForStandaloneParagraph = true;
            } else {
                double rightOverlap = this.findLargeShapeOverlapOnRight(row, column, sourceImage);
                double leftOverlap = this.findLargeShapeOverlapOnLeft(row, column, sourceImage);

                if (drawSegmentation) {
                    double rowVerticalMidPoint = row.getBaseLineMiddlePoint();
                    double startMarginX = column.startMargin + row.getXAdjustment();
                    double startTabX = column.startTab + row.getXAdjustment();
                    double endMarginX = column.endMargin + row.getXAdjustment();

                    if (sourceImage.isLeftToRight()) {
                        startMarginX += safetyMargin;
                        startTabX -= safetyMargin;
                        endMarginX -= safetyMargin;

                        startMarginX += leftOverlap;
                        startTabX += leftOverlap;
                        endMarginX -= rightOverlap;
                    } else {
                        startMarginX -= safetyMargin;
                        startTabX += safetyMargin;
                        endMarginX += safetyMargin;

                        startMarginX -= rightOverlap;
                        startTabX -= rightOverlap;
                        endMarginX += leftOverlap;
                    }

                    Point2D.Double currentPointStartMargin = new Point2D.Double(startMarginX,
                            rowVerticalMidPoint);
                    Point2D.Double currentPointStartTab = new Point2D.Double(startTabX, rowVerticalMidPoint);
                    Point2D.Double currentPointEndMargin = new Point2D.Double(endMarginX, rowVerticalMidPoint);

                    if (previousPointStartMargin != null) {
                        graphics2D.setStroke(new BasicStroke(1));
                        graphics2D.setPaint(Color.BLUE);
                        graphics2D.drawLine((int) Math.round(previousPointStartMargin.getX()),
                                (int) Math.round(previousPointStartMargin.getY()),
                                (int) Math.round(currentPointStartMargin.getX()),
                                (int) Math.round(currentPointStartMargin.getY()));
                        graphics2D.drawLine((int) Math.round(previousPointEndMargin.getX()),
                                (int) Math.round(previousPointEndMargin.getY()),
                                (int) Math.round(currentPointEndMargin.getX()),
                                (int) Math.round(currentPointEndMargin.getY()));

                        graphics2D.setPaint(Color.RED);
                        graphics2D.drawLine((int) Math.round(previousPointStartTab.getX()),
                                (int) Math.round(previousPointStartTab.getY()),
                                (int) Math.round(currentPointStartTab.getX()),
                                (int) Math.round(currentPointStartTab.getY()));

                        graphics2D.setPaint(Color.RED);
                        graphics2D.drawLine((int) Math.round(previousPointEndMargin.getX()),
                                (int) Math.round(previousPointEndMargin.getY()),
                                (int) Math.round(currentPointEndMargin.getX()),
                                (int) Math.round(currentPointEndMargin.getY()));
                    }
                    previousPointStartMargin = currentPointStartMargin;
                    previousPointStartTab = currentPointStartTab;
                    previousPointEndMargin = currentPointEndMargin;
                }

                if (previousRow == null) {
                    LOG.debug("New paragraph (first)");
                    newParagraph = true;
                } else {
                    if (sourceImage.isLeftToRight()) {
                        if (previousRow.getRight() - previousRow.getXAdjustment()
                                - rightOverlap < column.endMargin - safetyMargin) {
                            LOG.debug("New paragraph (previous EOP)");
                            newParagraph = true;
                        } else if (column.hasTab && isIndented && row.getLeft() - row.getXAdjustment()
                                + leftOverlap > column.startTab - safetyMargin) {
                            LOG.debug("New paragraph (indent)");
                            newParagraph = true;
                        } else if (column.hasTab && !isIndented && row.getLeft() - row.getXAdjustment()
                                + leftOverlap < column.startMargin + safetyMargin) {
                            LOG.debug("New paragraph (outdent)");
                            newParagraph = true;
                        }
                    } else {
                        if (previousRow.getLeft() - previousRow.getXAdjustment()
                                + leftOverlap > column.endMargin + safetyMargin) {
                            LOG.debug("New paragraph (previous EOP)");
                            newParagraph = true;
                        } else if (column.hasTab && isIndented && row.getRight() - row.getXAdjustment()
                                - rightOverlap < column.startTab + safetyMargin) {
                            LOG.debug("New paragraph (indent)");
                            newParagraph = true;
                        } else if (column.hasTab && !isIndented && row.getRight() - row.getXAdjustment()
                                - rightOverlap > column.startMargin - safetyMargin) {
                            LOG.debug("New paragraph (outdent)");
                            newParagraph = true;
                        }
                    } // left-to-right?
                } // have previous row
            } // standalone paragraph?

            if (!rowForStandaloneParagraph)
                LOG.debug(row.toString());

            if (newParagraph) {
                if (rowsForStandaloneParagraphs.size() > 0) {
                    for (RowOfShapes oneRow : rowsForStandaloneParagraphs) {
                        LOG.debug("Standalone paragraph");
                        LOG.debug("Standalone row: left(" + oneRow.getLeft() + "), top(" + oneRow.getTop()
                                + "), right(" + oneRow.getRight() + "), bottom(" + oneRow.getBottom() + ")");
                        Paragraph standaloneParagraph = sourceImage.newParagraph();
                        standaloneParagraph.getRows().add(oneRow);
                    }
                    rowsForStandaloneParagraphs.clear();
                }
                paragraph = sourceImage.newParagraph();
            }
            //LOG.debug("Row: left(" + row.getLeft() + "), right(" + row.getRight() + "), width(" + (row.getRight() - row.getLeft() + 1) + ")");

            if (!rowForStandaloneParagraph) {
                paragraph.getRows().add(row);
                previousRow = row;
            }
        } // next row in column
        if (rowsForStandaloneParagraphs.size() > 0) {
            for (RowOfShapes oneRow : rowsForStandaloneParagraphs) {
                LOG.debug("Standalone paragraph");
                LOG.debug("Standalone row: left(" + oneRow.getLeft() + "), top(" + oneRow.getTop() + "), right("
                        + oneRow.getRight() + "), bottom(" + oneRow.getBottom() + ")");
                Paragraph standaloneParagraph = sourceImage.newParagraph();
                standaloneParagraph.getRows().add(oneRow);
            }
            rowsForStandaloneParagraphs.clear();
        }
    } // next column

}

From source file:org.calrissian.accumulorecipes.geospatialstore.impl.AccumuloGeoSpatialStore.java

protected String buildKeyValue(String id, Attribute attribute, Point2D.Double location) {
    return id + NULL_BYTE + location.getX() + NULL_BYTE + location.getY() + NULL_BYTE + attribute.getKey()
            + NULL_BYTE + registry.getAlias(attribute.getValue()) + NULL_BYTE
            + registry.encode(attribute.getValue());
}

From source file:org.kuali.student.repository.viewer.GitGraphTransformer.java

private Point2D place(RevCommit commit, RevCommit parentCommit) {

    Point2D parentPlacement = findPlacement(parentCommit);

    if (parentPlacement == null) {

        parentPlacement = place(parentCommit);

    }//from   w ww .  ja  v a  2 s  .c  o m

    Point2D.Double placement = new Point2D.Double(parentPlacement.getX(), parentPlacement.getY() + 10);

    while (this.pointToCommitsMap.containsKey(placement)) {
        // prevent placements on the same point

        placement = new Point2D.Double(placement.getX() + 10, placement.getY() + 10);

    }

    this.placedCommitsMap.put(commit, placement);
    this.pointToCommitsMap.put(placement, commit);

    return placement;

}