C++ examples for template:template function
Compute the Discrete Fourier Transform (DFT) efficiently using the Fast Fourier Transform (FFT) algorithm.
#include <iostream> #include <complex> #include <cmath> #include <iterator> using namespace std; unsigned int bitReverse(unsigned int x, int log2n) { int n = 0;/*from w w w . j av a2 s.c om*/ int mask = 0x1; for (int i=0; i < log2n; i++) { n <<= 1; n |= (x & 1); x >>= 1; } return n; } const double PI = 3.1415926536; template<class Iter_T> void fft(Iter_T a, Iter_T b, int log2n) { typedef typename iterator_traits<Iter_T>::value_type complex; const complex J(0, 1); int n = 1 << log2n; for (unsigned int i=0; i < n; ++i) { b[bitReverse(i, log2n)] = a[i]; } for (int s = 1; s <= log2n; ++s) { int m = 1 << s; int m2 = m >> 1; complex w(1, 0); complex wm = exp(-J * (PI / m2)); for (int j=0; j < m2; ++j) { for (int k=j; k < n; k += m) { complex t = w * b[k + m2]; complex u = b[k]; b[k] = u + t; b[k + m2] = u - t; } w *= wm; } } } int main() { typedef complex<double> cx; cx a[] = { cx(0,0), cx(1,1), cx(3,3), cx(4,4),cx(4, 4), cx(3, 3), cx(1,1), cx(0,0) }; cx b[8]; fft(a, b, 3); for (int i=0; i<8; ++i) cout << b[i] << "\n"; }