Android examples for java.lang:String Algorithm
Identifies whether two strings are close enough that they are likely to be intended to be the same string
import android.support.v4.util.LruCache; import java.text.Normalizer; import java.util.HashMap; import java.util.regex.Pattern; public class Main{ /**/*from ww w . j ava 2 s .c o m*/ * Identifies whether two strings are close enough that they are likely to be * intended to be the same string. Fuzzy matching is only performed on strings that are * longer than a certain size. * * * @param a * @param b * @return true if the two strings meet CommCare's fuzzy match definition, false otherwise. */ public static boolean fuzzyMatch(String a, String b) { //tweakable parameter: Minimum length before edit distance //starts being used (this is probably not necessary, and //basically only makes sure that "at" doesn't match "or" or similar if (b.length() > 3) { int sizeDiff = Math.abs(a.length() - b.length()); int distance = LevenshteinDistance(a, b); //tweakable parameter: edit distance past string length disparity if (distance <= 2) { return true; } } return false; } /** * Computes the Levenshtein Distance between two strings. * * This code is sourced and unmodified from wikibooks under * the Creative Commons attribution share-alike 3.0 license and * by be re-used under the terms of that license. * * http://creativecommons.org/licenses/by-sa/3.0/ * * TODO: re-implement for efficiency/licensing possibly. * * @param s0 * @param s1 * * @return */ public static int LevenshteinDistance(String s0, String s1) { int len0 = s0.length() + 1; int len1 = s1.length() + 1; // the array of distances int[] cost = new int[len0]; int[] newcost = new int[len0]; // initial cost of skipping prefix in String s0 for (int i = 0; i < len0; i++) cost[i] = i; // dynamicaly computing the array of distances // transformation cost for each letter in s1 for (int j = 1; j < len1; j++) { // initial cost of skipping prefix in String s1 newcost[0] = j - 1; // transformation cost for each letter in s0 for (int i = 1; i < len0; i++) { // matching current letters in both strings int match = (s0.charAt(i - 1) == s1.charAt(j - 1)) ? 0 : 1; // computing cost for each transformation int cost_replace = cost[i - 1] + match; int cost_insert = cost[i] + 1; int cost_delete = newcost[i - 1] + 1; // keep minimum cost newcost[i] = Math.min(Math.min(cost_insert, cost_delete), cost_replace); } // swap cost/newcost arrays int[] swap = cost; cost = newcost; newcost = swap; } // the distance is the cost for transforming all letters in both strings return cost[len0 - 1]; } }