Adds a circular arc to the given path by approximating it through a cubic Bezier curve, splitting it if necessary. - Android android.graphics

Android examples for android.graphics:Path

Description

Adds a circular arc to the given path by approximating it through a cubic Bezier curve, splitting it if necessary.

Demo Code

/**/*  www. j a v a2  s  . com*/
 * ArcUtils.java
 *
 * Copyright (c) 2014 BioWink GmbH.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software. 
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 **/
//package com.java2s;

import android.graphics.Path;
import android.graphics.PointF;
import android.support.annotation.NonNull;
import android.support.annotation.Nullable;
import static java.lang.Math.abs;
import static java.lang.Math.ceil;
import static java.lang.Math.cos;
import static java.lang.Math.floor;
import static java.lang.Math.sin;
import static java.lang.Math.sqrt;
import static java.lang.Math.toRadians;

public class Main {
    private static final double FULL_CIRCLE_RADIANS = toRadians(360d);

    /**
     * Adds a circular arc to the given path by approximating it through a cubic B?er curve, splitting it if
     * necessary. The precision of the approximation can be adjusted through {@code pointsOnCircle} and
     * {@code overlapPoints} parameters.
     * <p>
     * <strong>Example:</strong> imagine an arc starting from 0 degree and sweeping 100 degree with a value of
     * {@code pointsOnCircle} equal to 12 (threshold -> 360 degree / 12 = 30 degree):
     * <ul>
     * <li>if {@code overlapPoints} is {@code true}, it will be split as following:
     * <ul>
     * <li>from 0 degree to 30 degree (sweep 30 degree)</li>
     * <li>from 30 degree to 60 degree (sweep 30 degree)</li>
     * <li>from 60 degree to 90 degree (sweep 30 degree)</li>
     * <li>from 90 degree to 100 degree (sweep 10 degree)</li>
     * </ul>
     * </li>
     * <li>if {@code overlapPoints} is {@code false}, it will be split into 4 equal arcs:
     * <ul>
     * <li>from 0 degree to 25 degree (sweep 25 degree)</li>
     * <li>from 25 degree to 50 degree (sweep 25 degree)</li>
     * <li>from 50 degree to 75 degree (sweep 25 degree)</li>
     * <li>from 75 degree to 100 degree (sweep 25 degree)</li>
     * </ul>
     * </li>
     * </ul>
     * </p>
     * <p/>
     * For a technical explanation:
     * <a href="http://hansmuller-flex.blogspot.de/2011/10/more-about-approximating-circular-arcs.html">
     * http://hansmuller-flex.blogspot.de/2011/10/more-about-approximating-circular-arcs.html
     * </a>
     *
     * @param center            The center of the circle.
     * @param radius            The radius of the circle.
     * @param startAngleDegrees The starting angle on the circle (in degrees).
     * @param sweepAngleDegrees How long to make the total arc (in degrees).
     * @param pointsOnCircle    Defines a <i>threshold</i> (360 degree /{@code pointsOnCircle}) to split the B?er arc to
     *                          better approximate a circular arc, depending also on the value of {@code overlapPoints}.
     *                          The suggested number to have a reasonable approximation of a circle is at least 4 (90 degree).
     *                          Less than 1 will ignored (the arc will not be split).
     * @param overlapPoints     Given the <i>threshold</i> defined through {@code pointsOnCircle}:
     *                          <ul>
     *                          <li>if {@code true}, split the arc on every angle which is a multiple of the
     *                          <i>threshold</i> (yields better results if drawing precision is required,
     *                          especially when stacking multiple arcs, but can potentially use more points)</li>
     *                          <li>if {@code false}, split the arc equally so that each part is shorter than
     *                          the <i>threshold</i></li>
     *                          </ul>
     * @param addToPath         An existing path where to add the arc to, or {@code null} to create a new path.
     *
     * @return {@code addToPath} if it's not {@code null}, otherwise a new path.
     *
     * @see #createBezierArcRadians(PointF, float, double, double, int, boolean, Path)
     */
    @NonNull
    public static Path createBezierArcDegrees(@NonNull PointF center,
            float radius, float startAngleDegrees, float sweepAngleDegrees,
            int pointsOnCircle, boolean overlapPoints,
            @Nullable Path addToPath) {
        return createBezierArcRadians(center, radius,
                toRadians(startAngleDegrees), toRadians(sweepAngleDegrees),
                pointsOnCircle, overlapPoints, addToPath);
    }

    /**
     * Adds a circular arc to the given path by approximating it through a cubic B?er curve, splitting it if
     * necessary. The precision of the approximation can be adjusted through {@code pointsOnCircle} and
     * {@code overlapPoints} parameters.
     * <p>
     * <strong>Example:</strong> imagine an arc starting from 0 degree and sweeping 100 degree with a value of
     * {@code pointsOnCircle} equal to 12 (threshold -> 360 degree / 12 = 30 degree):
     * <ul>
     * <li>if {@code overlapPoints} is {@code true}, it will be split as following:
     * <ul>
     * <li>from 0 degree to 30 degree (sweep 30 degree)</li>
     * <li>from 30 degree to 60 degree (sweep 30 degree)</li>
     * <li>from 60 degree to 90 degree (sweep 30 degree)</li>
     * <li>from 90 degree to 100 degree (sweep 10 degree)</li>
     * </ul>
     * </li>
     * <li>if {@code overlapPoints} is {@code false}, it will be split into 4 equal arcs:
     * <ul>
     * <li>from 0 degree to 25 degree (sweep 25 degree)</li>
     * <li>from 25 degree to 50 degree (sweep 25 degree)</li>
     * <li>from 50 degree to 75 degree (sweep 25 degree)</li>
     * <li>from 75 degree to 100 degree (sweep 25 degree)</li>
     * </ul>
     * </li>
     * </ul>
     * </p>
     * <p/>
     * For a technical explanation:
     * <a href="http://hansmuller-flex.blogspot.de/2011/10/more-about-approximating-circular-arcs.html">
     * http://hansmuller-flex.blogspot.de/2011/10/more-about-approximating-circular-arcs.html
     * </a>
     *
     * @param center            The center of the circle.
     * @param radius            The radius of the circle.
     * @param startAngleRadians The starting angle on the circle (in radians).
     * @param sweepAngleRadians How long to make the total arc (in radians).
     * @param pointsOnCircle    Defines a <i>threshold</i> (360 degree /{@code pointsOnCircle}) to split the B?er arc to
     *                          better approximate a circular arc, depending also on the value of {@code overlapPoints}.
     *                          The suggested number to have a reasonable approximation of a circle is at least 4 (90 degree).
     *                          Less than 1 will be ignored (the arc will not be split).
     * @param overlapPoints     Given the <i>threshold</i> defined through {@code pointsOnCircle}:
     *                          <ul>
     *                          <li>if {@code true}, split the arc on every angle which is a multiple of the
     *                          <i>threshold</i> (yields better results if drawing precision is required,
     *                          especially when stacking multiple arcs, but can potentially use more points)</li>
     *                          <li>if {@code false}, split the arc equally so that each part is shorter than
     *                          the <i>threshold</i></li>
     *                          </ul>
     * @param addToPath         An existing path where to add the arc to, or {@code null} to create a new path.
     *
     * @return {@code addToPath} if it's not {@code null}, otherwise a new path.
     *
     * @see #createBezierArcDegrees(PointF, float, float, float, int, boolean, Path)
     */
    @NonNull
    public static Path createBezierArcRadians(@NonNull PointF center,
            float radius, double startAngleRadians,
            double sweepAngleRadians, int pointsOnCircle,
            boolean overlapPoints, @Nullable Path addToPath) {
        final Path path = addToPath != null ? addToPath : new Path();
        if (sweepAngleRadians == 0d) {
            return path;
        }

        if (pointsOnCircle >= 1) {
            final double threshold = FULL_CIRCLE_RADIANS / pointsOnCircle;
            if (abs(sweepAngleRadians) > threshold) {
                double angle = normalizeRadians(startAngleRadians);
                PointF end, start = pointFromAngleRadians(center, radius,
                        angle);
                path.moveTo(start.x, start.y);
                if (overlapPoints) {
                    final boolean cw = sweepAngleRadians > 0; // clockwise?
                    final double angleEnd = angle + sweepAngleRadians;
                    while (true) {
                        double next = (cw ? ceil(angle / threshold)
                                : floor(angle / threshold)) * threshold;
                        if (angle == next) {
                            next += threshold * (cw ? 1d : -1d);
                        }
                        final boolean isEnd = cw ? angleEnd <= next
                                : angleEnd >= next;
                        end = pointFromAngleRadians(center, radius,
                                isEnd ? angleEnd : next);
                        addBezierArcToPath(path, center, start, end, false);
                        if (isEnd) {
                            break;
                        }
                        angle = next;
                        start = end;
                    }
                } else {
                    final int n = abs((int) ceil(sweepAngleRadians
                            / threshold));
                    final double sweep = sweepAngleRadians / n;
                    for (int i = 0; i < n; i++, start = end) {
                        angle += sweep;
                        end = pointFromAngleRadians(center, radius, angle);
                        addBezierArcToPath(path, center, start, end, false);
                    }
                }
                return path;
            }
        }

        final PointF start = pointFromAngleRadians(center, radius,
                startAngleRadians);
        final PointF end = pointFromAngleRadians(center, radius,
                startAngleRadians + sweepAngleRadians);
        addBezierArcToPath(path, center, start, end, true);
        return path;
    }

    /**
     * Normalize the input radians in the range 360 degree > x >= 0 degree.
     *
     * @param radians The angle to normalize (in radians).
     *
     * @return The angle normalized in the range 360 degree > x >= 0 degree.
     */
    public static double normalizeRadians(double radians) {
        radians %= FULL_CIRCLE_RADIANS;
        if (radians < 0d) {
            radians += FULL_CIRCLE_RADIANS;
        }
        if (radians == FULL_CIRCLE_RADIANS) {
            radians = 0d;
        }
        return radians;
    }

    /**
     * Returns the point of a given angle (in radians) on a circle.
     *
     * @param center       The center of the circle.
     * @param radius       The radius of the circle.
     * @param angleRadians The angle (in radians).
     *
     * @return The point of the given angle on the specified circle.
     *
     * @see #pointFromAngleDegrees(PointF, float, float)
     */
    @NonNull
    public static PointF pointFromAngleRadians(@NonNull PointF center,
            float radius, double angleRadians) {
        return new PointF((float) (center.x + radius * cos(angleRadians)),
                (float) (center.y + radius * sin(angleRadians)));
    }

    /**
     * Adds a circular arc to the given path by approximating it through a cubic B?er curve.
     * <p/>
     * <p>
     * Note that this <strong>does not</strong> split the arc to better approximate it, for that see either:
     * <ul>
     * <li>{@link #createBezierArcDegrees(PointF, float, float, float, int, boolean,
     * Path)}</li>
     * <li>{@link #createBezierArcRadians(PointF, float, double, double, int, boolean,
     * Path)}</li>
     * </ul>
     * </p>
     * <p/>
     * For a technical explanation:
     * <a href="http://hansmuller-flex.blogspot.de/2011/10/more-about-approximating-circular-arcs.html">
     * http://hansmuller-flex.blogspot.de/2011/10/more-about-approximating-circular-arcs.html
     * </a>
     *
     * @param path        The path to add the arc to.
     * @param center      The center of the circle.
     * @param start       The starting point of the arc on the circle.
     * @param end         The ending point of the arc on the circle.
     * @param moveToStart If {@code true}, move to the starting point of the arc
     *                    (see: {@link Path#moveTo(float, float)}).
     *
     * @see #createBezierArcDegrees(PointF, float, float, float, int, boolean, Path)
     * @see #createBezierArcRadians(PointF, float, double, double, int, boolean, Path)
     */
    public static void addBezierArcToPath(@NonNull Path path,
            @NonNull PointF center, @NonNull PointF start,
            @NonNull PointF end, boolean moveToStart) {
        if (moveToStart) {
            path.moveTo(start.x, start.y);
        }
        if (start.equals(end)) {
            return;
        }

        final double ax = start.x - center.x;
        final double ay = start.y - center.y;
        final double bx = end.x - center.x;
        final double by = end.y - center.y;
        final double q1 = ax * ax + ay * ay;
        final double q2 = q1 + ax * bx + ay * by;
        final double k2 = 4d / 3d * (sqrt(2d * q1 * q2) - q2)
                / (ax * by - ay * bx);
        final float x2 = (float) (center.x + ax - k2 * ay);
        final float y2 = (float) (center.y + ay + k2 * ax);
        final float x3 = (float) (center.x + bx + k2 * by);
        final float y3 = (float) (center.y + by - k2 * bx);

        path.cubicTo(x2, y2, x3, y3, end.x, end.y);
    }
}

Related Tutorials