Here you can find the source of lcm(long a, long b)
Returns the least common multiple of the absolute value of two numbers, using the formula lcm(a,b) = (a / gcd(a,b)) * b .
Parameter | Description |
---|---|
a | Number. |
b | Number. |
Parameter | Description |
---|---|
MathArithmeticException | if the result cannot be representedas a non-negative long value. |
public static long lcm(long a, long b) throws MathArithmeticException
/*// ww w . j a v a 2 s .c o m * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import java.math.BigInteger; import java.util.concurrent.atomic.AtomicReference; import org.apache.commons.math3.exception.MathArithmeticException; import org.apache.commons.math3.exception.NotPositiveException; import org.apache.commons.math3.exception.NumberIsTooLargeException; import org.apache.commons.math3.exception.util.Localizable; import org.apache.commons.math3.exception.util.LocalizedFormats; public class Main{ /** * <p> * Returns the least common multiple of the absolute value of two numbers, * using the formula {@code lcm(a,b) = (a / gcd(a,b)) * b}. * </p> * Special cases: * <ul> * <li>The invocations {@code lcm(Integer.MIN_VALUE, n)} and * {@code lcm(n, Integer.MIN_VALUE)}, where {@code abs(n)} is a * power of 2, throw an {@code ArithmeticException}, because the result * would be 2^31, which is too large for an int value.</li> * <li>The result of {@code lcm(0, x)} and {@code lcm(x, 0)} is * {@code 0} for any {@code x}. * </ul> * * @param a Number. * @param b Number. * @return the least common multiple, never negative. * @throws MathArithmeticException if the result cannot be represented as * a non-negative {@code int} value. * @since 1.1 */ public static int lcm(int a, int b) throws MathArithmeticException { if (a == 0 || b == 0) { return 0; } int lcm = FastMath.abs(ArithmeticUtils .mulAndCheck(a / gcd(a, b), b)); if (lcm == Integer.MIN_VALUE) { throw new MathArithmeticException( LocalizedFormats.LCM_OVERFLOW_32_BITS, a, b); } return lcm; } /** * <p> * Returns the least common multiple of the absolute value of two numbers, * using the formula {@code lcm(a,b) = (a / gcd(a,b)) * b}. * </p> * Special cases: * <ul> * <li>The invocations {@code lcm(Long.MIN_VALUE, n)} and * {@code lcm(n, Long.MIN_VALUE)}, where {@code abs(n)} is a * power of 2, throw an {@code ArithmeticException}, because the result * would be 2^63, which is too large for an int value.</li> * <li>The result of {@code lcm(0L, x)} and {@code lcm(x, 0L)} is * {@code 0L} for any {@code x}. * </ul> * * @param a Number. * @param b Number. * @return the least common multiple, never negative. * @throws MathArithmeticException if the result cannot be represented * as a non-negative {@code long} value. * @since 2.1 */ public static long lcm(long a, long b) throws MathArithmeticException { if (a == 0 || b == 0) { return 0; } long lcm = FastMath.abs(ArithmeticUtils.mulAndCheck(a / gcd(a, b), b)); if (lcm == Long.MIN_VALUE) { throw new MathArithmeticException( LocalizedFormats.LCM_OVERFLOW_64_BITS, a, b); } return lcm; } /** * Multiply two integers, checking for overflow. * * @param x Factor. * @param y Factor. * @return the product {@code x * y}. * @throws MathArithmeticException if the result can not be * represented as an {@code int}. * @since 1.1 */ public static int mulAndCheck(int x, int y) throws MathArithmeticException { long m = ((long) x) * ((long) y); if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) { throw new MathArithmeticException(); } return (int) m; } /** * Multiply two long integers, checking for overflow. * * @param a Factor. * @param b Factor. * @return the product {@code a * b}. * @throws MathArithmeticException if the result can not be represented * as a {@code long}. * @since 1.2 */ public static long mulAndCheck(long a, long b) throws MathArithmeticException { long ret; if (a > b) { // use symmetry to reduce boundary cases ret = mulAndCheck(b, a); } else { if (a < 0) { if (b < 0) { // check for positive overflow with negative a, negative b if (a >= Long.MAX_VALUE / b) { ret = a * b; } else { throw new MathArithmeticException(); } } else if (b > 0) { // check for negative overflow with negative a, positive b if (Long.MIN_VALUE / b <= a) { ret = a * b; } else { throw new MathArithmeticException(); } } else { // assert b == 0 ret = 0; } } else if (a > 0) { // assert a > 0 // assert b > 0 // check for positive overflow with positive a, positive b if (a <= Long.MAX_VALUE / b) { ret = a * b; } else { throw new MathArithmeticException(); } } else { // assert a == 0 ret = 0; } } return ret; } /** * Computes the greatest common divisor of the absolute value of two * numbers, using a modified version of the "binary gcd" method. * See Knuth 4.5.2 algorithm B. * The algorithm is due to Josef Stein (1961). * <br/> * Special cases: * <ul> * <li>The invocations * {@code gcd(Integer.MIN_VALUE, Integer.MIN_VALUE)}, * {@code gcd(Integer.MIN_VALUE, 0)} and * {@code gcd(0, Integer.MIN_VALUE)} throw an * {@code ArithmeticException}, because the result would be 2^31, which * is too large for an int value.</li> * <li>The result of {@code gcd(x, x)}, {@code gcd(0, x)} and * {@code gcd(x, 0)} is the absolute value of {@code x}, except * for the special cases above.</li> * <li>The invocation {@code gcd(0, 0)} is the only one which returns * {@code 0}.</li> * </ul> * * @param p Number. * @param q Number. * @return the greatest common divisor (never negative). * @throws MathArithmeticException if the result cannot be represented as * a non-negative {@code int} value. * @since 1.1 */ public static int gcd(int p, int q) throws MathArithmeticException { int a = p; int b = q; if (a == 0 || b == 0) { if (a == Integer.MIN_VALUE || b == Integer.MIN_VALUE) { throw new MathArithmeticException( LocalizedFormats.GCD_OVERFLOW_32_BITS, p, q); } return FastMath.abs(a + b); } long al = a; long bl = b; boolean useLong = false; if (a < 0) { if (Integer.MIN_VALUE == a) { useLong = true; } else { a = -a; } al = -al; } if (b < 0) { if (Integer.MIN_VALUE == b) { useLong = true; } else { b = -b; } bl = -bl; } if (useLong) { if (al == bl) { throw new MathArithmeticException( LocalizedFormats.GCD_OVERFLOW_32_BITS, p, q); } long blbu = bl; bl = al; al = blbu % al; if (al == 0) { if (bl > Integer.MAX_VALUE) { throw new MathArithmeticException( LocalizedFormats.GCD_OVERFLOW_32_BITS, p, q); } return (int) bl; } blbu = bl; // Now "al" and "bl" fit in an "int". b = (int) al; a = (int) (blbu % al); } return gcdPositive(a, b); } /** * <p> * Gets the greatest common divisor of the absolute value of two numbers, * using the "binary gcd" method which avoids division and modulo * operations. See Knuth 4.5.2 algorithm B. This algorithm is due to Josef * Stein (1961). * </p> * Special cases: * <ul> * <li>The invocations * {@code gcd(Long.MIN_VALUE, Long.MIN_VALUE)}, * {@code gcd(Long.MIN_VALUE, 0L)} and * {@code gcd(0L, Long.MIN_VALUE)} throw an * {@code ArithmeticException}, because the result would be 2^63, which * is too large for a long value.</li> * <li>The result of {@code gcd(x, x)}, {@code gcd(0L, x)} and * {@code gcd(x, 0L)} is the absolute value of {@code x}, except * for the special cases above. * <li>The invocation {@code gcd(0L, 0L)} is the only one which returns * {@code 0L}.</li> * </ul> * * @param p Number. * @param q Number. * @return the greatest common divisor, never negative. * @throws MathArithmeticException if the result cannot be represented as * a non-negative {@code long} value. * @since 2.1 */ public static long gcd(final long p, final long q) throws MathArithmeticException { long u = p; long v = q; if ((u == 0) || (v == 0)) { if ((u == Long.MIN_VALUE) || (v == Long.MIN_VALUE)) { throw new MathArithmeticException( LocalizedFormats.GCD_OVERFLOW_64_BITS, p, q); } return FastMath.abs(u) + FastMath.abs(v); } // keep u and v negative, as negative integers range down to // -2^63, while positive numbers can only be as large as 2^63-1 // (i.e. we can't necessarily negate a negative number without // overflow) /* assert u!=0 && v!=0; */ if (u > 0) { u = -u; } // make u negative if (v > 0) { v = -v; } // make v negative // B1. [Find power of 2] int k = 0; while ((u & 1) == 0 && (v & 1) == 0 && k < 63) { // while u and v are // both even... u /= 2; v /= 2; k++; // cast out twos. } if (k == 63) { throw new MathArithmeticException( LocalizedFormats.GCD_OVERFLOW_64_BITS, p, q); } // B2. Initialize: u and v have been divided by 2^k and at least // one is odd. long t = ((u & 1) == 1) ? v : -(u / 2)/* B3 */; // t negative: u was odd, v may be even (t replaces v) // t positive: u was even, v is odd (t replaces u) do { /* assert u<0 && v<0; */ // B4/B3: cast out twos from t. while ((t & 1) == 0) { // while t is even.. t /= 2; // cast out twos } // B5 [reset max(u,v)] if (t > 0) { u = -t; } else { v = t; } // B6/B3. at this point both u and v should be odd. t = (v - u) / 2; // |u| larger: t positive (replace u) // |v| larger: t negative (replace v) } while (t != 0); return -u * (1L << k); // gcd is u*2^k } /** * Computes the greatest common divisor of two <em>positive</em> numbers * (this precondition is <em>not</em> checked and the result is undefined * if not fulfilled) using the "binary gcd" method which avoids division * and modulo operations. * See Knuth 4.5.2 algorithm B. * The algorithm is due to Josef Stein (1961). * <br/> * Special cases: * <ul> * <li>The result of {@code gcd(x, x)}, {@code gcd(0, x)} and * {@code gcd(x, 0)} is the value of {@code x}.</li> * <li>The invocation {@code gcd(0, 0)} is the only one which returns * {@code 0}.</li> * </ul> * * @param a Positive number. * @param b Positive number. * @return the greatest common divisor. */ private static int gcdPositive(int a, int b) { if (a == 0) { return b; } else if (b == 0) { return a; } // Make "a" and "b" odd, keeping track of common power of 2. final int aTwos = Integer.numberOfTrailingZeros(a); a >>= aTwos; final int bTwos = Integer.numberOfTrailingZeros(b); b >>= bTwos; final int shift = Math.min(aTwos, bTwos); // "a" and "b" are positive. // If a > b then "gdc(a, b)" is equal to "gcd(a - b, b)". // If a < b then "gcd(a, b)" is equal to "gcd(b - a, a)". // Hence, in the successive iterations: // "a" becomes the absolute difference of the current values, // "b" becomes the minimum of the current values. while (a != b) { final int delta = a - b; b = Math.min(a, b); a = Math.abs(delta); // Remove any power of 2 in "a" ("b" is guaranteed to be odd). a >>= Integer.numberOfTrailingZeros(a); } // Recover the common power of 2. return a << shift; } }