Android Long GCD gcd(final long p, final long q)

Here you can find the source of gcd(final long p, final long q)

Description

Gets the greatest common divisor of the absolute value of two numbers, using the "binary gcd" method which avoids division and modulo operations.

License

Apache License

Parameter

Parameter Description
p Number.
q Number.

Exception

Parameter Description
MathArithmeticException if the result cannot be represented asa non-negative long value.

Return

the greatest common divisor, never negative.

Declaration

public static long gcd(final long p, final long q)
        throws MathArithmeticException 

Method Source Code

/*/*from   w w w  . jav  a2 s  .c  o  m*/
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import java.math.BigInteger;
import java.util.concurrent.atomic.AtomicReference;
import org.apache.commons.math3.exception.MathArithmeticException;
import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.util.Localizable;
import org.apache.commons.math3.exception.util.LocalizedFormats;

public class Main{
    /**
     * Computes the greatest common divisor of the absolute value of two
     * numbers, using a modified version of the "binary gcd" method.
     * See Knuth 4.5.2 algorithm B.
     * The algorithm is due to Josef Stein (1961).
     * <br/>
     * Special cases:
     * <ul>
     *  <li>The invocations
     *   {@code gcd(Integer.MIN_VALUE, Integer.MIN_VALUE)},
     *   {@code gcd(Integer.MIN_VALUE, 0)} and
     *   {@code gcd(0, Integer.MIN_VALUE)} throw an
     *   {@code ArithmeticException}, because the result would be 2^31, which
     *   is too large for an int value.</li>
     *  <li>The result of {@code gcd(x, x)}, {@code gcd(0, x)} and
     *   {@code gcd(x, 0)} is the absolute value of {@code x}, except
     *   for the special cases above.</li>
     *  <li>The invocation {@code gcd(0, 0)} is the only one which returns
     *   {@code 0}.</li>
     * </ul>
     *
     * @param p Number.
     * @param q Number.
     * @return the greatest common divisor (never negative).
     * @throws MathArithmeticException if the result cannot be represented as
     * a non-negative {@code int} value.
     * @since 1.1
     */
    public static int gcd(int p, int q) throws MathArithmeticException {
        int a = p;
        int b = q;
        if (a == 0 || b == 0) {
            if (a == Integer.MIN_VALUE || b == Integer.MIN_VALUE) {
                throw new MathArithmeticException(
                        LocalizedFormats.GCD_OVERFLOW_32_BITS, p, q);
            }
            return FastMath.abs(a + b);
        }

        long al = a;
        long bl = b;
        boolean useLong = false;
        if (a < 0) {
            if (Integer.MIN_VALUE == a) {
                useLong = true;
            } else {
                a = -a;
            }
            al = -al;
        }
        if (b < 0) {
            if (Integer.MIN_VALUE == b) {
                useLong = true;
            } else {
                b = -b;
            }
            bl = -bl;
        }
        if (useLong) {
            if (al == bl) {
                throw new MathArithmeticException(
                        LocalizedFormats.GCD_OVERFLOW_32_BITS, p, q);
            }
            long blbu = bl;
            bl = al;
            al = blbu % al;
            if (al == 0) {
                if (bl > Integer.MAX_VALUE) {
                    throw new MathArithmeticException(
                            LocalizedFormats.GCD_OVERFLOW_32_BITS, p, q);
                }
                return (int) bl;
            }
            blbu = bl;

            // Now "al" and "bl" fit in an "int".
            b = (int) al;
            a = (int) (blbu % al);
        }

        return gcdPositive(a, b);
    }
    /**
     * <p>
     * Gets the greatest common divisor of the absolute value of two numbers,
     * using the "binary gcd" method which avoids division and modulo
     * operations. See Knuth 4.5.2 algorithm B. This algorithm is due to Josef
     * Stein (1961).
     * </p>
     * Special cases:
     * <ul>
     * <li>The invocations
     * {@code gcd(Long.MIN_VALUE, Long.MIN_VALUE)},
     * {@code gcd(Long.MIN_VALUE, 0L)} and
     * {@code gcd(0L, Long.MIN_VALUE)} throw an
     * {@code ArithmeticException}, because the result would be 2^63, which
     * is too large for a long value.</li>
     * <li>The result of {@code gcd(x, x)}, {@code gcd(0L, x)} and
     * {@code gcd(x, 0L)} is the absolute value of {@code x}, except
     * for the special cases above.
     * <li>The invocation {@code gcd(0L, 0L)} is the only one which returns
     * {@code 0L}.</li>
     * </ul>
     *
     * @param p Number.
     * @param q Number.
     * @return the greatest common divisor, never negative.
     * @throws MathArithmeticException if the result cannot be represented as
     * a non-negative {@code long} value.
     * @since 2.1
     */
    public static long gcd(final long p, final long q)
            throws MathArithmeticException {
        long u = p;
        long v = q;
        if ((u == 0) || (v == 0)) {
            if ((u == Long.MIN_VALUE) || (v == Long.MIN_VALUE)) {
                throw new MathArithmeticException(
                        LocalizedFormats.GCD_OVERFLOW_64_BITS, p, q);
            }
            return FastMath.abs(u) + FastMath.abs(v);
        }
        // keep u and v negative, as negative integers range down to
        // -2^63, while positive numbers can only be as large as 2^63-1
        // (i.e. we can't necessarily negate a negative number without
        // overflow)
        /* assert u!=0 && v!=0; */
        if (u > 0) {
            u = -u;
        } // make u negative
        if (v > 0) {
            v = -v;
        } // make v negative
          // B1. [Find power of 2]
        int k = 0;
        while ((u & 1) == 0 && (v & 1) == 0 && k < 63) { // while u and v are
                                                         // both even...
            u /= 2;
            v /= 2;
            k++; // cast out twos.
        }
        if (k == 63) {
            throw new MathArithmeticException(
                    LocalizedFormats.GCD_OVERFLOW_64_BITS, p, q);
        }
        // B2. Initialize: u and v have been divided by 2^k and at least
        // one is odd.
        long t = ((u & 1) == 1) ? v : -(u / 2)/* B3 */;
        // t negative: u was odd, v may be even (t replaces v)
        // t positive: u was even, v is odd (t replaces u)
        do {
            /* assert u<0 && v<0; */
            // B4/B3: cast out twos from t.
            while ((t & 1) == 0) { // while t is even..
                t /= 2; // cast out twos
            }
            // B5 [reset max(u,v)]
            if (t > 0) {
                u = -t;
            } else {
                v = t;
            }
            // B6/B3. at this point both u and v should be odd.
            t = (v - u) / 2;
            // |u| larger: t positive (replace u)
            // |v| larger: t negative (replace v)
        } while (t != 0);
        return -u * (1L << k); // gcd is u*2^k
    }
    /**
     * Computes the greatest common divisor of two <em>positive</em> numbers
     * (this precondition is <em>not</em> checked and the result is undefined
     * if not fulfilled) using the "binary gcd" method which avoids division
     * and modulo operations.
     * See Knuth 4.5.2 algorithm B.
     * The algorithm is due to Josef Stein (1961).
     * <br/>
     * Special cases:
     * <ul>
     *  <li>The result of {@code gcd(x, x)}, {@code gcd(0, x)} and
     *   {@code gcd(x, 0)} is the value of {@code x}.</li>
     *  <li>The invocation {@code gcd(0, 0)} is the only one which returns
     *   {@code 0}.</li>
     * </ul>
     *
     * @param a Positive number.
     * @param b Positive number.
     * @return the greatest common divisor.
     */
    private static int gcdPositive(int a, int b) {
        if (a == 0) {
            return b;
        } else if (b == 0) {
            return a;
        }

        // Make "a" and "b" odd, keeping track of common power of 2.
        final int aTwos = Integer.numberOfTrailingZeros(a);
        a >>= aTwos;
        final int bTwos = Integer.numberOfTrailingZeros(b);
        b >>= bTwos;
        final int shift = Math.min(aTwos, bTwos);

        // "a" and "b" are positive.
        // If a > b then "gdc(a, b)" is equal to "gcd(a - b, b)".
        // If a < b then "gcd(a, b)" is equal to "gcd(b - a, a)".
        // Hence, in the successive iterations:
        //  "a" becomes the absolute difference of the current values,
        //  "b" becomes the minimum of the current values.
        while (a != b) {
            final int delta = a - b;
            b = Math.min(a, b);
            a = Math.abs(delta);

            // Remove any power of 2 in "a" ("b" is guaranteed to be odd).
            a >>= Integer.numberOfTrailingZeros(a);
        }

        // Recover the common power of 2.
        return a << shift;
    }
}