Normalize an angle in a 2&pi wide interval around a center value. : Math Functions « Development « Java Tutorial






import java.io.File;

/* 
 * Licensed to the Apache Software Foundation (ASF) under one or more
 *  contributor license agreements.  See the NOTICE file distributed with
 *  this work for additional information regarding copyright ownership.
 *  The ASF licenses this file to You under the Apache License, Version 2.0
 *  (the "License"); you may not use this file except in compliance with
 *  the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *
 */
public class Main {
  /** 2 π. */
  private static final double TWO_PI = 2 * Math.PI;
  /**
   * Normalize an angle in a 2&pi wide interval around a center value.
   * This method has three main uses:
   * <ul>
   *   <li>normalize an angle between 0 and 2&pi;:<br/>
   *       <code>a = MathUtils.normalizeAngle(a, Math.PI);</code></li>
   *   <li>normalize an angle between -&pi; and +&pi;<br/>
   *       <code>a = MathUtils.normalizeAngle(a, 0.0);</code></li>
   *   <li>compute the angle between two defining angular positions:<br>
   *       <code>angle = MathUtils.normalizeAngle(end, start) - start;</code></li>
   * </ul>
   * Note that due to numerical accuracy and since &pi; cannot be represented
   * exactly, the result interval is <em>closed</em>, it cannot be half-closed
   * as would be more satisfactory in a purely mathematical view.
   * @param a angle to normalize
   * @param center center of the desired 2&pi; interval for the result
   * @return a-2k&pi; with integer k and center-&pi; &lt;= a-2k&pi; &lt;= center+&pi;
   * @since 1.2
   */
   public static double normalizeAngle(double a, double center) {
       return a - TWO_PI * Math.floor((a + Math.PI - center) / TWO_PI);
   }

}








6.17.Math Functions
6.17.1.Math Class Methods
6.17.2.Use math functions
6.17.3.Testing the Math class methods
6.17.4.Floating Point Number Enhancements in JDK 6
6.17.5.Math.scalb
6.17.6.Math.getExponent
6.17.7.Math.nextAfter
6.17.8.Math.nextUp
6.17.9.Math.copySign
6.17.10.Demonstrate toDegrees() and toRadians().
6.17.11.Find absolute value of float, int, double and long using Math.abs
6.17.12.Find ceiling value of a number using Math.ceil
6.17.13.Find exponential value of a number using Math.exp
6.17.14.Find floor value of a number using Math.floor
6.17.15.Find maximum of two numbers using Math.max
6.17.16.Find natural logarithm value of a number using Math.log
6.17.17.Find power using Math.pow
6.17.18.Find square root of a number using Math.sqrt
6.17.19.Round Java float and double numbers using Math.round
6.17.20.Math.min
6.17.21.Normalizes an angle to a relative angle.
6.17.22.Normalizes an angle to an absolute angle.
6.17.23.Normalizes an angle to be near an absolute angle
6.17.24.Calculate the floor of the log, base 2
6.17.25.Greatest Common Divisor (GCD) of positive integer numbers
6.17.26.Least Common Multiple (LCM) of two strictly positive integer numbers
6.17.27.Moving Average
6.17.28.Normalize an angle in a 2&pi wide interval around a center value.
6.17.29.Returns n!. Shorthand for n Factorial, the product of the numbers 1,...,n as a double.
6.17.30.Returns n!. Shorthand for n Factorial, the product of the numbers 1,...,n.
6.17.31.Returns the hyperbolic cosine of x.
6.17.32.Returns the hyperbolic sine of x.
6.17.33.Returns the natural log of the (http://mathworld.wolfram.com/BinomialCoefficient.html) Binomial Coefficient
6.17.34.Returns the natural logarithm of n!.
6.17.35.Round the given value to the specified number of decimal places. The value is rounded using the BigDecimal.ROUND_HALF_UP method.
6.17.36.Value is rounded using the given method which is any method defined in BigDecimal
6.17.37.sqrt(a^2 + b^2) without under/overflow