Asynchronous
Programming in Play 2.0

for Non Functional Developers

James Roper
@ jroper



Why Asynchronous?

OS schedulers are good at scheduling
blocking threads

Asynchronous programming can be hard to
debug and understand

Callbacks introduce lots of boiler plate in
Java (not so in Scala)



Why Asynchronous?

Long polling comet applications

More fine grained control over resources
(and resource contention)

. Better performance characteristics under
high load

Play makes it easy!



Promise<T>

Similar abstraction to Java’s Future<T>

I promise to give you something of type T
at some point in future



Promise<T>

Waiting for the promise value:
T value = promise.get();

T value = promise.get(timeout);



Promise<T>

Asynchronous handling of the result value:

promise.onRedeem(new Callback<T>() {
public void invoke(T value) {
// do something

}
1)



Promise<T>

get() and onRedeem() not usually useful

If you use get(), you're no longer
asynchronous

If you use onRedeem(), you can’t easily
return the result to anything

Use async(), map(), flatMap() and other
methods



map()

Map converts a Promise of one type to a
Promise of another type

eg. Promise<Flour> -> Promise<Dough>



flatMap()

. Combines two functional concepts

. Map

. Flatten



flatMap()

The map function maps from type A to a
promise of type B

eg. Dough -> Promise<Bread>

If using ordinary map, this would result in
Promise<Promise<Bread>>



flatMap()

Flatten converts Container<Container<A>> to
Container<A>

eg List<List<String>> -> List<String>

{{\\all' \\bll}’ {\\CII' “d”}} -> {\\a”, \\bll’ “C”’
W\ /7
d”}

Promise<Promise<Bread>> -> Promise<Bread>



recover()

If a Promise<A> is unable to fulfill its
promise, recover can be used to map an
exception to an A

For example, HTTP status code not returned,
exception thrown in a map() function



waitAll()

Used to wait for multiple promises in
parallel

Returns a Promise of a List of the results
of each promise



Pure promises

You may need to return a promise for
something that you have now

eg, a cache hit

return Promise.pure(value);



Using promises in play

. Actions
. WS API
. Akka API



Actions

An action must refurn a Result

AsyncResult is a result that wraps a
Promise<Result>, and handles it
asynchronously

async() convenient static method for
wrapping



WS API

WS API returns Promise<WS.Response>:
WS.url(* “)-get()

Use in combination with map() to provide an
interface that returns promises for domain
objects

Or, map directly to a result from an action



Akka

Akka can be used to offload expensive tasks
to dedicated threads, or even other machines

At a minimum, ensures Your request
processing isn't adversely impacted by slow
requests



Take aways

Play 2.0 promise API allows very simple
asynchronous programming in Java

Even simpler in Scala - try it yourself!



Thankyou
Questions?

James Roper
@jroper



